Questions for enthusiasts

J. Evans

Question 1. (Special case of the maximum principle)

Suppose that $\phi(x, y)$ solves Laplace's equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

A nondegenerate critical point is a critical point where the Hessian

$$\left(\begin{array}{cc} \frac{\partial^2 \phi}{\partial x^2} & \frac{\partial^2 \phi}{\partial x \partial y} \\ \frac{\partial^2 \phi}{\partial x \partial y} & \frac{\partial^2 \phi}{\partial y^2} \end{array}\right)$$

is an invertible matrix (in particular it cannot have zero eigenvalues). Show that ϕ has no nondegenerate maxima or minima.

Hint: Take the trace of the Hessian (the sum of its diagonal values) and recall that the trace does not change under conjugation.

Question 2. (Uniqueness of solutions to Laplace's equation)

Let $U \subset \mathbf{R}^2$ be an open set with boundary curve ∂U . Recall Green's theorem $\int_U \nabla \cdot v dx dy = \int_{\partial U} v \cdot \hat{n} ds$ where \hat{n} is the unit outward normal to ∂U and ds is the length element on ∂U . Let Δ denote the Laplacian operator $\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}$.

- (a) Suppose that $\phi: U \to \mathbf{R}$ is a function with $\phi(x) = 0$ for $x \in \partial U$. By considering $v = \phi \nabla \phi$, show that $\int_U \phi \Delta \phi dx dy = -\int_U |\nabla \phi|^2 dx dy$.
- (b) Deduce that if $\Delta \phi = 0$ then $\phi(x) = 0$ for all $x \in U$.
- (c) Deduce that if ϕ_1 and ϕ_2 are solutions to Laplace's equation and $\phi_1(x) = \phi_2(x)$ for all $x \in \partial U$ then $\phi_1(x) = \phi_2(x)$ for all $x \in U$.

Question 3. (Hurwitz's solution to the isoperimetric problem)

Suppose that $\gamma(t) = (x(t), y(t))$ is a path in the plane such that $\gamma(t + 2\pi) = \gamma(t)$. Suppose that $\gamma([0, 2\pi])$ has length K and that γ is parametrised by arc-length, so that $\sqrt{\dot{x}^2 + \dot{y}^2} = K/2\pi$. Note that because it is parametrised by arc-length, we have

$$K^{2} = 2\pi \int_{0}^{2\pi} \left(\dot{x}^{2} + \dot{y}^{2} \right) dt.$$

If

$$x(t) = a_0 + \sum_{k=1}^{\infty} (a_k \cos(kt) + b_k \sin(kt))$$
$$y(t) = c_0 + \sum_{k=1}^{\infty} (c_k \cos(kt) + d_k \sin(kt))$$

are Fourier series for the functions x(t) and y(t), write expressions for K^2 and the area

$$A = \int_0^{2\pi} x \dot{y} dt$$

bounded by γ in terms of the Fourier coefficients. Use these formulae to deduce the *isoperimetric inequality*:

$$K^2 - 4\pi A \ge 0.$$

When does equality hold?

Question 4. (Gram-Schmidt orthogonalisation)

Let V be the vector space of (square-integrable) functions on the interval [-1, 1] and let

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x)dx$$

denote the L^2 -inner product on V.

The Gram-Schmidt process in linear algebra starts with a sequence of linearly independent vectors v_1, v_2, v_3, \ldots and produces an orthonormal basis u_1, u_2, u_3, \ldots (normalise the first vector v_1 to get u_1 , then set u_2 to be the normalisation of $v_2 - (v_2 \cdot u_1)u_1$, etc.). One can apply Gram-Schmidt to the sequence of polynomials $1, x, x^2, x^3, \ldots$ in V to produce an basis orthonormal with respect to the L^2 -inner product. Compute the first few orthonormal polynomials.

Question 5. (The Γ -function)

Define $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$ for r > 0 a positive real number.

- (a) Prove that $\Gamma(r+1) = r\Gamma(r)$. We define $\Gamma(r)$ for $r \in (-1,0)$ by setting $\Gamma(r) := \Gamma(r+1)/r$ (and inductively we can extend to all negative non-integers). In particular $\Gamma(-1/2) = 2\Gamma(1/2)$.
- (b) Compute $\Gamma(1)$ and prove that $\Gamma(n+1) = n!$ if n is a positive integer.
- (c) Show that $\Gamma(1/2) = \sqrt{\pi}$.
- (d) Compute $\int_0^\infty \sqrt{y} e^{-y^3} dy$ and $\int_0^1 \frac{dx}{\sqrt{-\ln(x)}}$.

Question 6. (Sturm-Liouville systems) Let p(x), q(x) be functions and define the differential operator

$$Dy = \frac{d}{dx} \left(p \frac{dy}{dx} \right) + qy.$$

An eigenfunction of D with eigenvalue λ is a (nonzero, possible complex-valued) function y such that $Dy = \lambda y$.

- (a) Show that $\langle f, Dg \rangle = \langle Df, g \rangle$.
- (b) Prove that if λ is an eigenvalue of D then $\lambda \in \mathbf{R}$.
- (c) Prove that if y_i is a λ_i eigenfunction, for i = 1, 2, and $\lambda_1 \neq \lambda_2$ then y_1 and y_2 are orthogonal.

Question 7. (The minimal surface equation)

Show that the Euler-Lagrange equation for the functional

$$\int_0^1 \int_0^1 \sqrt{1 + \left(\frac{\partial \phi}{\partial x}\right)^2 + \left(\frac{\partial \phi}{\partial y}\right)^2} dx dy$$

is the minimal surface equation

$$\frac{\partial^2 \phi}{\partial x^2} \left(1 + \left(\frac{\partial \phi}{\partial y} \right)^2 \right) + \frac{\partial^2 \phi}{\partial y^2} \left(1 + \left(\frac{\partial \phi}{\partial x} \right)^2 \right) = 2 \frac{\partial^2 \phi}{\partial x \partial y} \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y}$$