Methods 3 - Question Sheet 8

J. Evans

Question 1. (10 marks) Solve the wave equation $\partial_t^2 \phi = \partial_x^2 \phi$ with the initial conditions

(a) * $\phi(x, 0) = x$ $\partial_t \phi(x, 0) = x^2$. (b) $\phi(x, 0) = x^2$ $\partial_t \phi(x, 0) = x$. (c) $\phi(x, 0) = 0$ $\partial_t \phi(x, 0) = k \sin kx$. (d) * $\phi(x, 0) = \begin{cases} 0 & \text{if } |x| > 1 \\ 1 & \text{if } |x| \le 1, \end{cases}$ $\partial_t \phi(x, 0) = \begin{cases} 0 & \text{if } |x| > 1 \\ -1 & \text{if } |x| \le 1. \end{cases}$

In this last case illustrate your answer with a spacetime diagram.

Question 2. (10 marks for * parts) For each of the following equations:

- (i) * Find coordinates u, v such that the left-hand side of the equation becomes $\partial_u \partial_v F$.
- (ii) * Find the general solution of the equation.
- (iii) * Find the particular solution for the given initial conditions.

(a) *
$$F_{xx} + 5F_{xy} + 6F_{yy} = 0$$
, $F(x, 0) = \sin(x)$, $\partial_y F(x, 0) = \cos(x)$.

- (b) * $2F_{xx} + 3F_{xy} + F_{yy} = x$, F(x, 0) = x, $\partial_y F(x, 0) = 0$.
- (c) $F_{xy} + F_{yy} = \sin x$, F(x, 0) = x, $\partial_y F(x, 0) = x$.

Question 3.

Consider the parabolic differential equation $F_{xx} + 2F_{xy} + F_{yy} = 0$. Let

$$u(x,y) = Px + Qy,$$
 $v(x,y) = Rx + Sy,$ $PS - QR \neq 0$

be a linear change of coordinates. Find a choice¹ of P, Q, R, S so that

$$F_{uu} = F_{xx} + 2F_{xy} + F_{yy} = 0$$

and hence find the general solution of the given parabolic equation in terms of x and y.

¹There are many choices that will work! Make sure that your choice satisfies $PS - QR \neq 0$ otherwise it's not a valid (invertible) change of coordinates.

Question 4.

Find complex coordinates (u(x, y), v(x, y)) so that the Laplace equation $\phi_{xx} + \phi_{yy} = 0$ becomes $\phi_{uv} = 0$. Deduce that a solution of Laplace's equation can be written $\phi(x, y) = F(u) + G(v)$ for some complex functions F, G. Express the solutions $\phi(x, y) = xy$ and $\phi(x, y) = \sin nx \sinh ny$ in this form.

Question 5. This question is a little different: in each case we study a function y(x,t) where $x \ge 0$ as well as $t \ge 0$ and so we impose a boundary condition along x = 0 as well as the usual boundary condition along t = 0.

A prisoner is attached to an infinitely long chain parametrised by a coordinate $x \in [0, \infty)$. At time t = 0 the prisoner starts jumping up and down on the spot x = 0 so that his height at time $t \ge 0$ is $y(0, t) = 1 - \cos(t)$. The chain starts off with

$$y(x,0) = 0, \ x \ge 0$$
 $\partial_t y(x,0) = 0, \ x \ge 0,$

and obeys the wave equation

$$y_{tt} = y_{xx}.$$

By substituting D'Alembert's solution y(x,t) = F(x+t) + G(x-t) into the initial conditions show that for some constant k, F(z) = k and G(z) = -k for all $z \ge 0$. Using the condition $y(0,t) = 1 - \cos t$ for $t \ge 0$, deduce that $G(z) = 1 - k - \cos(z)$ for z < 0. Find y(x,t) for all $x \ge 0$, $t \ge 0$ (be careful to separate the cases $x - t \le 0$ and $x - t \ge 0$) and sketch $y(x, 3\pi)$.

A prison guard is sitting at x = 8, watching the chain. At what point does he notice that the prisoner is jumping up and down?