Methods 3 - Question Sheet 5

J. Evans

Question 1. (10 marks for * parts)

Solve the Euler-Lagrange equation for the following constrained functionals:

- (a) * $F(y) = \int_0^{\pi/2} ((y')^2 + 2xyy') dx$ subject to $\int_0^{\pi/2} y dx = K$ and the boundary conditions $y(0) = 0 = y(\pi/2)$.
- (b) * $F(y) = \int_0^1 ((y')^2 + y^2) dx$ subject to $\int_0^1 xy = \frac{1}{6} + \frac{1}{e}$ and the boundary conditions $y(0) = 0, y(1) = \sinh(1) + 1/2.$
- (c) $F(y) = \int_0^1 \sqrt{1 + (y')^2} dx$ subject to $\int_0^1 \sqrt{y} dx = K$ and the boundary conditions y(0) = A, y(1) = B (you need not compute any constants in the solution and may leave the solution in implicit form).
- (d) $F(y) = \int_0^{\pi/2} ((y')^2 y^2) dx$ subject to $\int_0^{\pi/2} y dx = 6 \pi$ and the boundary conditions $y(0) = 1 = y(\pi/2)$.
- (e) $F(y) = \int_a^b (y')^2 dx$ subject to $\int_a^b \frac{dx}{y} = K$ (give your solution in implicit form, specifying x in terms of y).

Question 2. (5 marks)

Suppose that (x(t), y(t)) is a vector-valued function of t such that (x(a), y(a)) = (x(b), y(b)) = (0, 0). If $L(t, x, y, \dot{x}, \dot{y})$ is a Lagrangian and $F(x, y) = \int_a^b L(t, x, y, \dot{x}, \dot{y}) dt$ is the corresponding functional, show that (x(t), y(t)) is a critical point of F if and only if the equations

$$\frac{\partial L}{\partial x} = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}}, \quad \frac{\partial L}{\partial y} = \frac{d}{dt} \frac{\partial L}{\partial \dot{y}}$$

both hold.

Question 3. (5 marks)

Let P be a polynomial of even degree 2 or more and consider the functional

$$F(y) = \int_0^1 P(y')dx$$

for functions y satisfying y(0) = 0, y(1) = 1. Find the Euler-Lagrange equation and show that if y is a solution then y' is constant. Deduce that y(x) = x.

Hint: When computing the Euler-Lagrange equation, use the chain rule. Your Euler-Lagrange equation should involve the derivative P' of P.

Question 4.

A smooth probability distribution on **R** with second moment σ^2 is a smooth function $\rho \colon \mathbf{R} \to [0, \infty)$ satisfying

$$(\star) \quad \int_{\mathbf{R}} \rho(x) = 1, \qquad (\star \star) \quad \int_{\mathbf{R}} x^2 \rho(x) dx = \sigma^2.$$

Show that if ρ is a smooth probability distribution maximising the *entropy functional*

$$S(\rho) = -\int_{\mathbf{R}} \rho(x) \ln(\rho(x)) dx$$

amongst all smooth probability distributions with second moment σ^2 then

$$\rho(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right).$$

Hint: Introduce two Lagrange multipliers: one for (\star) and one for $(\star\star)$. When imposing the constraints (\star) and $(\star\star)$ it may help to remember that $\int_{\mathbf{R}} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$ and $\int_{\mathbf{R}} x^2 e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a^3}}$.