Methods 3 - Question Sheet 3

J. Evans

Question 1. (10 marks for * parts)

Solve Laplace's equation for the following boundary value problems. You may use Fourier series you computed in Sheet 1 and standard formulas for general solutions from lectures provided you state them correctly.

$$\phi(x,\pi) = x + \pi \qquad \qquad \phi(x,\pi) = x^{3}$$

$$\phi(0,y) = y \qquad (a)^{*} \qquad \phi(\pi,y) = 2y \qquad \qquad \phi(0,y) = \sin y \qquad (b)^{*} \qquad \phi(\pi,y) = \pi^{3} - \sin y$$

$$\phi(x,0) = 0 \qquad \qquad \phi(x,0) = \pi^{2}x$$

$$\phi(x,\pi) = \pi^{2} \qquad \qquad \phi(x,\pi) = -\cos x$$

$$\phi(x,\pi) = -\cos x$$

$$\phi(x,0) = 0 \qquad \qquad \phi(x,0) = \cos x$$

Question 2. (5 marks for * part) Solve the wave equation

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial t^2}$$

on $x \in [0,1]$ (so L = 1) with boundary conditions $\phi(0,t) = \phi(1,t) = 0$ for each of the initial conditions.

(a)
$$* \phi(x,0) = x - x^2, \frac{\partial \phi}{\partial t}(x,0) = 0.$$

(b) $\phi(x,0) = x - x^3, \frac{\partial \phi}{\partial t}(x,0) = 0.$
(c) $\phi(x,0) = \cos 2\pi x - 1, \frac{\partial \phi}{\partial t}(x,0) = 0.$

Question 3. (5 marks)

Suppose that ϕ satisfies the wave equation $\partial_t^2 \phi = c^2 \partial_x^2 \phi$ where c depends discontinuously on x:

$$c(x) = \begin{cases} 1 & \text{if } x < 0\\ 2 & \text{if } x > 0. \end{cases}$$

We impose the boundary conditions $\phi(-L,t) = \phi(L,t) = 0$ and the conditions that ϕ and $\partial_x \phi$ are continuous at x = 0. Let X(x)T(t) be a separated solution; the boundary conditions imply X(-L) = X(L) = 0. If $T''/T = -m^2$, prove that m satisfies

$$\tan(mL) = -2\tan(mL/2).$$

Question 4.

Consider the wave equation $\frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2}$ on the interval [0, 1].

(a) Find the separated solutions satisfying $\phi(0,t) = 0$, $\frac{\partial \phi}{\partial x}(1,t) = 0$.

(b) Find the full solution satisfying the boundary conditions in (a) and the initial conditions

$$\phi(x,0) = \cos(x\pi/2), \quad \frac{\partial\phi}{\partial t}(x,0) = 0.$$

Question 5.

Consider the 2-dimensional heat equation for a temperature distribution $\phi(x, y, t)$

$$\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}.$$

(a) By separating variables $\phi(x, y, t) = X(x)Y(y)T(t)$, show that

$$T = e^{Kt}, \quad \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = K\phi$$

(remember this second equation is the Helmholtz equation from Sheet 2).

For a separated solution, the Dirichlet conditions

$$\phi(x,0,t) = \phi(x,1,t) = \phi(0,y,t) = \phi(1,y,t) = 0$$

mean that we require X(0) = X(1) = Y(0) = Y(1) = 0. The possible separated solutions to the Helmholtz equation with these boundary conditions were $\sin(px)\sin(qx)$ with $p, q \in \pi \mathbb{Z}$, $K = -(p^2 + q^2)$.

(b) What is the solution to the 2-dimensional heat equation with the initial condition $\phi(x, y, 0) = x(1-x)\sin(\pi y)$?