Methods 3 - Question Sheet 2

J. Evans

Question 1. (7 marks)

- (a) For each of the following PDEs for $\phi(x, y)$, separate variables $(\phi(x, y) = X(x)Y(y))$ and find the ODEs satisfied by X and Y.
 - (i) $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial \phi}{\partial y} + \phi.$ (Telegraph equation, governing lossy wave transmission)
 - (ii) $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = K\phi$ where K is a constant. (Helmholtz equation, governing static temperature distributions in 2D)
- (b) For equations (i) and (ii) above, solve the ODEs you found.
 Be careful to distinguish the values of the separation constant λ where the behaviour of X changes and those where the behaviour of Y changes.

Question 2. (6 marks for * parts)

In each case, solve the heat equation $\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2}$ for a temperature distribution $\phi(x, t)$ on the rod $x \in [0, \pi]$ with the given initial and boundary conditions. You may quote any Fourier series you need from Question Sheet 1:

(a) *
$$\phi(x, 0) = x^3$$
, $\phi(0, t) = 0$, $\phi(\pi, t) = \pi^3$ (Dirichlet).

(b) *
$$\phi(x, 0) = \cos x$$
, $\phi(0, t) = 1$, $\phi(\pi, t) = -1$ (Dirichlet).

(c)
$$\phi(x,0) = x^4 - 2\pi^2 x^2$$
, $\frac{\partial \phi}{\partial x}(0,t) = 0$, $\frac{\partial \phi}{\partial x}(\pi,t) = 0$ (Neumann).

(d)
$$\phi(x,0) = \cos x, \ \frac{\partial \phi}{\partial x}(0,t) = 0, \ \frac{\partial \phi}{\partial x}(\pi,t) = 0$$
 (Neumann).

- (e) $\phi(x,0) = \begin{cases} x & \text{if } x \in [0,\frac{\pi}{2}] \\ \pi x & \text{if } x \in [\frac{\pi}{2},\pi] \end{cases}, \ \phi(0,t) = 0, \ \phi(\pi,t) = 0 \ \text{(Dirichlet)}. \end{cases}$
- (f) $\phi(x,0) = e^x$, $\phi(0,t) = 1$, $\phi(\pi,t) = e^{\pi}$ (Dirichlet).

Question 3. (7 marks)

Suppose $\phi(x, y) = X(x)Y(y)$ is a nontrivial separated solution of the Helmholtz equation $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = K\phi$ satisfying the boundary conditions X(0) = X(1) = 0, Y(0) = Y(1) = 0.

- (a) Show that $\phi(x, y) = C \sin(px) \sin(qy)$ for some $p, q \in \pi \mathbb{Z}, C \in \mathbb{R}$.
- (b) Deduce that if there is a nontrivial separated solution then $K \in \pi^2 \mathbf{Z}$.
- (c) If $K = -2\pi^2$, deduce that the only solutions have the form $C\sin(\pi x)\sin(\pi y)$, $C \in \mathbf{R}$, and sketch the graph of such a solution.
- (d) How many solutions can you find when $K = -5\pi^2$? When $K = -50\pi^2$?
- (e) Why is the space of solutions to the Helmholtz equation (for fixed K) a vector space? What is its dimension?

Question 4.

The Schrödinger equation for the complex probability amplitude $\psi(x,t)$ of a free particle is

$$-i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}$$

where \hbar , *m* are constants and $i = \sqrt{-1}$.

- (a) Separate variables $\psi(x,t) = X(x)T(t)$ and show that $T(t) = e^{iEt/\hbar}$ for some constant E (called the *energy* in our language it arises as a separation constant).
- (b) Assume that X(0) = X(L) (i.e. we are considering a free particle living in the interval [0, L]). Show that the energy of a separated solution is *quantised*: it can only take on values $\frac{n^2 \hbar^2 \pi^2}{2mL^2}$.

Question 5.

Let X(x)T(t) be a separated solution to the heat equation and suppose that it satisfies Neumann boundary conditions X'(0) = X'(L) = 0. Show that $X = A \cos\left(\frac{n\pi x}{L}\right)$ for some $n \in \mathbb{Z}$ (*Note:* n = 0 *is allowed*).