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1. Introduction

The focus of this talk is the rigidity phenomena displayed by Lagrangian tori in
the standard symplectic vector space R4. Let me recall:

• The standard symplectic vector space is

(R2n, ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn)

• A Lagrangian submanifold L is an n-dimensional embedded submanifold
whose tangent spaces are ω-isotropic. (We’ll only use orientable ones).

Caveat: All submanifolds are assumed orientable and parametrised, i.e. we actually
have a map ι : L→ C2.

Example 1. Rn ⊂ R2n given by

{x1 = · · · = xn = 0}

is a Lagrangian submanifold. We’re more interested in compact examples like the
Lagrangian n-torus

{x21 + y21 = 1, . . . , x2n + y2n = 1}

We can identify R2n with Cn via zk = xk + iyk. We have that iTL ⊥ TL, which
means that multiplication gives an isomorphism TL ∼= νL between the tangent and
normal bundles of L.

In C2 the normal bundle is trivial: it’s classified by its Euler class which counts
the homological self-intersection of L, in C2 this is zero since any submanifold can
be displaced. Therefore the tangent bundle of L must also be trivial and hence
(remember we’re assuming L is orientable) L is a 2-torus.

Luttinger surgery is a surgery operation which takes a Lagrangian torus in a
symplectic manifold and gives back a new symplectic manifold with a Lagrangian
torus. It is analogous to Dehn surgery in 3-dimensional topology.

2. Review of Dehn surgery

Given a knot in a 3-manifold ι : K ↪→M3 let νK denote the normal bundle of K
and T denote its boundary ∂νK. The exponential map (for some metric) gives an
embedding of some disc subbundle of νK intoM so I’ll blur the distinction between
normal bundle and tubular neighbourhood.

The normal bundle is trivial, but not in a canonical way. To define Dehn surgery
we need an explicit trivialisation. We call this a choice of framing K ×D2 ∼= νK.

1



2 JONATHAN DAVID EVANS

2.1. Framings. A framing is a diffeomorphism K × D2 → νK which commutes
with the projections to K. In particular any two are related by a gauge transfor-
mation of the trivial D2-bundle.

Lemma 2. Gauge transformations (and hence framings) up to homotopy are in
bijection with homology classes H1(K;Z) ∼= Z.

Proof. A gauge transformation of the trivial bundle is just a map fromK to Diff(S1)
which is homotopy equivalent to S1 itself. Homotopy classes of maps K → S1

biject with H1(K;Z). Equivalently, we can canonically-up-to-homotopy identify
the meridian γ ⊂ T which is the boundary of a normal fibre D2. The framing is
a choice of longitude, that is a curve in T which projects with degree 1 down to
K. There are Z possibilities depending on how many times this longitude wraps
around the meridian. �

Note that a knot in R3 has a canonical framing called the Seifert framing. To
define it, since any knot is nullhomologous in R3 it bounds an orientable (so-called
‘Seifert’) surface and we push the knot K off itself inside this surface. This gives
a choice of longitude. Alternatively we can specify the longitude as a homology
class in a way which makes it clear that the framing doesn’t depend on the choice
of Seifert surface. Namely, consider the Mayer-Vietoris sequence associated to the
decomposition M = (M \ νK) ∪ νK:

0→ H1(T ;Z)→ H1(M \ νK;Z)⊕H1(νK;Z)→ 0

and let [λ] be the longitude which is the preimage of (0, 1) under this map. Think
about it! This means that λ is nullhomologous in the complement (still bounds a
Seifert surface) and projects with degree 1 to K.

2.2. Surgery. Now given a framed knot we define the Dehn surgery with coefficient
1/k to be

(M \ νK) ∪φ νK
where φ is the gauge transformation (diffeomorphism of T ) which sends the longi-
tude λ of the chosen framing to λ + kγ. The notation means that we cut out the
tubular neighbourhood and then glue it back in, identifying x ∈ ∂(M \ νK) with
φ(x) ∈ ∂(νK).

The great thing about Dehn surgery is that it allows you to construct any 3-
manifold (given a 3-manifold M there exists a sequence of framed knots in S3 on
which you can perform Dehn surgery to get M).

3. Luttinger surgery

To do something similar for Lagrangian tori instead of knots we first need to
discuss framings. For smooth embeddings T 2 ↪→ C2 the normal bundle is trivial and
to specify a framing it suffices to specify two numbers (an element of H1(T 2;Z)).
In terms of the Mayer-Vietoris sequence one sees

H1(T = ∂νT 2;Z)
F∼= H1(C2 \ T 2;Z)⊕H1(T 2;Z)

and if a and b denote (1, 0) and (0, 1) in H2(T 2;Z) then the framing is just a
specification of α = F−1((A, (1, 0))) and β = F−1((B, (0, 1))) in the cohomology of
T . Again, A = B = 0 gives a canonical Seifert framing. But Lagrangian tori come
with another canonical framing: the Weinstein framing.
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3.1. Weinstein framing. Earlier we said that there is an isomorphism TL ∼= νL.
In fact

Theorem 3 (Weinstein). There exists a neighbourhood L ⊂ U ⊂ C2, a neigh-
bourhood L ⊂ U ′ ⊂ T ∗L and a symplectomorphism U ′ ∼= U taking L identically to
L.

Here the cotangent bundle T ∗L is equipped with its canonical symplectic struc-
ture. As I’m in France, I’ll be conceptual. Points in T ∗L parametrise 1-forms at
points of L so there’s a universal 1-form on T ∗L whose value at (q, ψ ∈ Hom(TqL;R))
on a vector V ∈ TT ∗L is ψ(π∗V ) where π : T ∗L → L. Take its exterior derivative
and you get a canonical symplectic form ωcan.

Moreover given an identification of L with T 2 there’s a canonical trivialisation
of T ∗L: if q1 and q2 are linear coordinates on L then dq1 and dq2 are directions in
the fibre of T ∗L and we introduce the ‘canonically conjugate momenta’ pi which
are just the coordinates in these directions. There’s a reason symplectic geometry
used to be called the canonical formalism. Anyway, this canonical identification
T 2 ×D2 → νT 2 is called the Weinstein framing.

In terms of these coordinates (qi, pi) we have ωcan = dq1 ∧ dp1 + dq2 ∧ dp2. We
will consider a small ε such that the square [−ε, ε]2 ⊂ D2 and let Uε = T 2× [−ε, ε]2.
Using these coordinates we will define a symplectomorphism of Uε \Uε/2 with itself
which we will use to reglue νL and perform surgery.

Let χ : [−ε, ε] → [0, 1] be a smooth cutoff function equal to 0 on [−ε,−ε/3] and
to 1 on [ε/3, ε]. Note that ε/3 < ε/2. Define

φk : Uε \ Uε/2 → Uε \ Uε/2
by

φk(q1, p2, q2, p2) =

{
(q1, p2, q2, p2) ifp2 < ε/2

(q1 + kχ(p1), p2, q2, p2) else

Consider the (square-looking!) torus given by ∂Uε × S1 where the S1 is in the
q1-direction. This torus is preserved and φk acts as k-times a Dehn twist around
the curve {?}×S1. Note that φk preserves the symplectic structure because only q1
is affected and it’s affected by a function of p1 so the symplectic structure changes
by something proportional to dp1 ∧ dp1.
Definition 4. The Luttinger surgery on L ⊂ X is

Xk(L) = (X \ Uε/2) ∪φk
Uε

and this is symplectic because φk is symplectic. With a bit more care about the
choice of χ one can ensure that this is independent of all choices, etc. See the paper
of Auroux-Donaldson-Katzarkov [1].

3.2. Rigidity. Of course one can do this surgery on a purely topological level for
any framed smooth torus with trivial normal bundle in a 4-manifold. We don’t
need it to be Lagrangian or the framing to be Weinstein. In that case, however,
the resulting manifold might not be symplectic. If it’s not symplectic then we know
that the torus/framing pair is not isotopic to a Lagrangian/Weinstein pair. One
can therefore think of two ways to use Luttinger surgery:

• To produce new examples of symplectic manifolds (e.g. people use it these
days to produce smooth 4-manifolds homeomorphic but not diffeomorphic
to small blow-ups of CP2). See [3] for a survey.
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• To rule out the existence of Lagrangian tori in certain smooth isotopy classes
of tori.

It is the latter which we mean by rigidity and which we will now focus on.

Theorem 5 (Luttinger [5]). There are smoothly embedded tori T 2 → R4 which are
not isotopic to any Lagrangian torus.

Note that any smoothly immersed torus is isotopic through immersions to an
immersed Lagrangian torus. This is an h-principle, so the phenomenon described
by Luttinger’s theorem is rightly called a rigidity result.

Explicitly, Luttinger’s examples are constructed as follows:
• Take a knot K in the upper-half space in R3, i.e. in R2 × [0,∞).
• Identify R4 minus a neighbourhood of a line with the upper-half space

crossed with a circle.
• Take K times the circle. We call this a spun knot because it’s obtained by

‘spinning’ K around the line.

Theorem 6 (Luttinger). If K is not the unknot then K ×S1 → R4 is not isotopic
to a Lagrangian torus.

The idea is to assume it were isotopic to a Lagrangian, to perform Luttinger surgery
and obtain a manifold C2

k(L) which admits no symplectic structure. However, we
need to know what framing to use, that is: if L were Lagrangian, what would its
Weinstein framing be?

Proposition 7 (Luttinger [5], Eliashberg-Polterovich [2]). . The Weinstein fram-
ing of a Lagrangian torus in C2 is Seifert. In other words the longitudes are null-
homologous in the complement of the torus.

We’ll need one hard theorem to prove this. The theorem is also used later to
prove that C2

k(L) is not symplectic. It is proved using holomorphic curves.

Theorem 8 (Gromov [4]). Let X be a symplectic manifold such that
• χ(X) = 0,
• there exists a compact subset C ⊂ X such that X \ C is symplectomorphic

to the complement of a ball in C2,
then X is symplectomorphic to C2.

Note that χ(C2
k(L)) by the additivity properties of the Euler characteristic.

Corollary 9. If L → C2 is Lagrangian and we do k-Luttinger surgery with the
Weinstein framing then the result is simply-connected.

4. Proofs

Proof of Luttinger’s theorem, assuming the Proposition. We’ll show that

π1(C2
k(L)) = 1

Note that the meridian of K in the upper-half space is a meridian for L, and that
the Seifert framing is given by: α equal to the Seifert pushoff of K in the upper-
half space and β equal to the S1-orbit of a point on α. Now the Luttinger surgery
reduces to Dehn surgery on each upper-half space and gluing in the line by van
Kampen theorem we get π1(C2

k(L)) ∼= R3
k(K). But a theorem of Culler- Gordon-

Luecke-Shalen in 3-manifold theory tells us that if K is nontrivial, only finitely
many of these surgeries can have trivial fundamental group. �
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Proof of Proposition. Let α and β be a Weinstein framing and do k-Luttinger
surgery along α. The Corollary to Gromov’s theorem implies that the Mayer-
Vietoris sequence for this new decomposition C2

k(L) ∼= C2 = (C2 \ νL) ∪ νL is

0→ H1(T ;Z)→ H1(C2 \ L;Z)⊕H1(L;Z)→ 0

Suppose that the Weinstein framing is given by α = (A, (1, 0)), β = (B, (0, 1)).
Then the matrix of this Mayer-Vietoris isomorphism is 1 0 k

0 1 0
A B 1


But for all k this is an isomorphism of Z-modules and hence its determinant

1 + kA

is equal to −1 for all k, hence A = 0. Doing Luttinger surgery along β gives
B = 0 similarly. Hence Weinstein pushoffs are Seifert (nullhomologous in the
complement)! �

One can think of the proposition itself as a form of rigidity. A Weinstein framing
must be Seifert, i.e. among maps T ∗L → C2 such that the restriction to the zero
section is Lagrangian, many are not isotopic to a symplectic embedding!

5. Conclusion

We have seen how to do Luttinger surgery on symplectic 4-manifolds. The moral
of this talk is that: surgery is not only about constructing new examples! Sometimes
you know that the examples are impossible to construct (in our case C2

k(L) 6∼= C2)
and this obstruction is translated by the surgery into another obstruction (in our
case the knot type of L). This seems to be something quite common in symplectic
geometry.
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