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Chapter 2

The Arnol’d-Liouville
theorem

2.1 Hamilton’s equations in 2D

The simplest nontrivial case of Hamilton’s equations is

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
. (2.1)

where (p(t), q(t)) is a path in the plane and H(p, q) is a function of
p and q. Physically, we could think of q as being position, p as being
momentum and H as being energy1. Observe that

Ḣ =
∂H

∂p
ṗ+

∂H

∂q
q̇ = q̇ṗ− ṗq̇ = 0,

1If H = p2

2m
(the usual expression for kinetic energy) then Hamilton’s equa-

tions give the usual expression p = mq̇ for momentum.
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8 2.1. Hamilton’s equations in 2D

so energy is conserved.

Equation (2.1) is a machine for turning a function H(p, q) (the
Hamiltonian) into a one-parameter family of diffeomorphisms

φHt (p(0), q(0)) = (p(t), q(t))

(the Hamiltonian flow). The flow satisfies H(φHt (p, q)) = H(p, q).

Example 2.1.1. If H = 1
2 (p2 + q2) then ṗ = −q, q̇ = p, so(

p(t)
q(t)

)
=

(
cos t − sin t
sin t cos t

)(
p(0)
q(0)

)
. This corresponds to a

rotation of the plane with constant angular speed.

Example 2.1.2. If H =
√
p2 + q2 then ṗ = −q/H, q̇ = p/H, and

since Ḣ = 0 the solution is(
p(t)
q(t)

)
=

(
cos(t/H) − sin(t/H)
sin(t/H) cos(t/H)

)(
p(0)
q(0)

)
.

This flow has the same orbits (circles of radius H), but now the orbit
at radius H has period 2πH.

Theorem 2.1.3. If all level sets of H are circles, there exists a
diffeomorphism f : R → R such that for the Hamiltonian f ◦H all
orbits have period 2π.

Proof. Using f ◦ H, we have ṗ = −∂(f◦H)
∂q = −f ′(H)∂H∂q and q̇ =

∂(f◦H)
∂p = f ′(H)∂H∂p , so the effect of postcomposing H with f is

to rescale (ṗ, q̇) by f ′(H) (which is constant along orbits). If the
period of the orbit Ob := H−1(b) is T (b) then the new period of Ob
with Hamiltonian f ◦ H is therefore T (b)/f ′(b). If we use f(b) =
1

2π

∫ b
0
T (c)dc then the new periods are all equal to 2π.

Periods are usually hard to find explicitly; for example, elliptic func-
tions were invented to describe periods in Keplerian planetary mo-
tion. Similarly, the map f is difficult to write down explicitly in
examples.
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Theorem 2.1.4. In a 1-parameter family of closed orbits Ob, b ∈ R,
of a Hamiltonian system, the period of Ob is d

db

∫
Ob
pdq.

Remark 2.1.5. This means that f(b) = 1
2π

∫
Ob
pdq is another way of

writing the function we found in Theorem 2.1.3).

Proof. Assume for simplicity2 that we have coordinates (p, q), with
q ∈ R/2πZ, such that the orbits have the form Ob := {(pb(q), q) :
q ∈ R/2πZ} for some functions pb. Then

T (b) =

∫ 2π

0

dt

dq
dq =

∫ 2π

0

dq

q̇

=

∫ 2π

0

dq

∂H/∂pb
=

∫ 2π

0

∂pb
∂H

dq =
d

db

∫ 2π

0

pdq.

Our goal in this first lecture is to generalise these observations to
Hamiltonian systems in higher dimensions. It will be convenient to
introduce the language of symplectic geometry.

2.2 Symplectic geometry

Definition 2.2.1. Let X be a manifold and ω a 2-form. Define
a map3 [ : Γ(TX) → Γ(T ∗X) by [(V ) = ιV ω. We say that ω is
nondegenerate if [ is an isomorphism, in which case we write ] for
its inverse. A symplectic form is a closed, nondegenerate 2-form.

Definition 2.2.2. Given a smooth function H : X → R and a sym-
plectic form ω on X, we get a vector field VH := −](dH) (i.e.
ιVHω = −dH). We call such vector fields Hamiltonian. The flow
φHt along VH is called a Hamiltonian flow.

2One can always find coordinates (p, q) in which the orbits have this form.
3Γ(TX) denotes the space of vector fields and Γ(T ∗X) the space of 1-forms.
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Example 2.2.3. Let ω = dp∧dq on X = R2. Then, if (p(t), q(t)) =
φHt (p(0), q(0)), we have VH = (ṗ, q̇) and ιVHω = ṗdq − q̇dp =
−∂H∂p dp−

∂H
∂q dq so we recover Hamilton’s equations (2.1).

Lemma 2.2.4. A Hamiltonian flow φHt satisfies (φHt )∗ω = ω and
(φHt )∗H = H.

Proof. We first show that the Lie derivatives LVHω and LVHH van-
ish. For this, we use Cartan’s formula LV η = ιV dη + dιV η for the
Lie derivative of a differential form η along a vector field V . We
have

LVHω = dιVHω + ιVHdω = −ddH = 0,

as dω = 0 and ιVHω = −dH, and

LVHH = ιVHdH = −ω(VH , VH) = 0,

as ω is antisymmetric.

Now note that d
dt (φ

H
t )∗ω = (φHt )∗L(φHt )∗VHω and (φHt )∗VH = VH ,

so LVHω = 0 implies d
dt (φ

H
t )∗ω = 0, so (φHt )∗ω = ω. Similarly, the

fact that (φHt )∗H = H follows from the vanishing of LVHH.

Remark 2.2.5. Note that if H is also allowed to depend explicitly
on t (a non-autonomous Hamiltonian flow) then the previous argu-
ment for conservation of energy breaks down. Nonetheless, the flow
preserves the symplectic form.

Lemma 2.2.6. The Lie bracket of two Hamiltonian vector fields
VF and VG is the Hamiltonian vector field V{F,G}, where {F,G} =
ω(VF , VG).

Proof. We have ι[VF ,VG]ω = [LVF , ιVG ]ω. Since VF is symplectic,
the term ιVGLVFω vanishes. Expanding the remaining term using
Cartan’s formula, and remembering that dιVGω = −ddG = 0, we
get ι[VF ,VG]ω = dιVF ιVGω. Since ιVF ιVGω = −ω(VF , VG) this tells us
that [VF , VG] = Vω(VF ,VG) as required.
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Definition 2.2.7. The quantity {F,G} is called the Poisson bracket
of F and G. We say that F and G Poisson commute if {F,G} = 0.

Lemma 2.2.8 (Exercise). If F and G are smooth functions and we
define Ft(x) := F (φGt (x)) then Ḟt = {G,Ft}.

2.3 Integrable Hamiltonian systems

Suppose we have a symplectic manifold (X,ω) and a map H =
(H1, . . . ,Hn) : X → Rn for which the components H1, . . . ,Hn sat-
isfy {Hi, Hj} = 0 for all pairs i, j. In what follows, we will assume
that the vector fields VHi can be integrated for all time, so that the
flows φHit are defined for all t ∈ R. The flows φH1

t1 , . . . , φ
Hn
tn commute

with one another and hence define an action of the group Rn on X.
We call this a Hamiltonian Rn-action.

Example 2.3.1. Consider the R2-action on R2 where (s, t) acts by
(s, t) · (x0, y0) = (x0 +s, y0 + t) = φxt φ

y
s(x0, y0). Even though φxt and

φys define Hamiltonian R-actions which commute, this example is
not a Hamiltonian R2-action because the Poisson bracket {x, y} = 1
is not zero (i.e. they do not Poisson-commute).

More generally, for a Lie group G with Lie algebra g, a Hamilto-
nian G-action is a G-action in which every one-parameter subgroup

exp(tξ) acts as a Hamiltonian flow φ
Hξ
t , and the assignment ξ 7→ Hξ

is a Lie algebra map (i.e. H[ξ1,ξ2] = {Hξ1 , Hξ2}.

Definition 2.3.2. A submanifold L of a symplectic manifold (X,ω)
is called isotropic if ω vanishes on vectors tangent to L. If dimX =
2n then dimL ≤ n for an isotropic submanifold L (exercise) and we
say that L is Lagrangian if L is isotropic and dimL = n.

Lemma 2.3.3. The orbits of a Hamiltonian Rn-action on a sym-
plectic manifold (X,ω) are isotropic. As a consequence, if X con-
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tains a regular point4 of H then n ≤ 1
2 dimX.

Proof. The tangent space to an orbit is spanned by the vectors
VH1

, . . . , VHn , which satisfy ω(VHi , VHj ) = {Hi, Hj} = 0, so the
orbits are isotropic. If x ∈ X is a regular point then the differ-
entials dH1, . . . , dHn are linearly independent at x, so the vectors
VH1(x), . . . , VHn(x) span an n-dimensional isotropic space, which
can have dimension at most dimX/2.

Corollary 2.3.4. If dimX = 2n and H : X → Rn is a smooth map
with connected fibres whose components satisfy {Hi, Hj} = 0, then
the regular fibres are Lagrangian orbits of the Rn-action.

Proof. Since {Hi, Hj} = 0, Lemma 2.2.8 implies that Hj is constant
along the flow of VHi . In particular, this means that if x ∈ H−1(y)
then Orb(x) ⊂ H−1(y). Now let y be a regular value with fibre
H−1(y). The fibre is n-dimensional, and the orbit of each point
in the fibre is an open n-dimensional isotropic (i.e. Lagrangian)
submanifold, so the fibre is a union of open submanifolds. If the
fibre is connected then it cannot be a union of more than one open
submanifold, so the Rn-action is transitive on connected regular
fibres, as required.

Definition 2.3.5. Let (X,ω) be a 2n-dimensional symplectic man-
ifold. We say that a smooth map H : X → Rn is a complete com-
muting Hamiltonian system if the components H1, . . . ,Hn satisfy
{Hi, Hj} = 0 for all i, j. We say that a complete commuting Hamil-
tonian system H is an integrable Hamiltonian system if

• H(X) contains a dense open set of regular values,

4Recall if H : X → Y is a smooth map then a point x ∈ X is called regular
if dH is surjective at x and a point y ∈ Rn is called a regular value if the fibre
H−1(y) consists entirely of regular points; in this case we call H−1(y) a regular
fibre.
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• H is proper (preimages of compact sets are compact) and has
connected fibres.

The first assumption rules out trivial examples; the properness con-
dition ensures that the flows of the vector fields VH1 , . . . , VHn exist
for all time.

We write ΦHt := φH1
t1 · · ·φ

Hn
tn for this Rn-action and Orb(x) for its

orbit through x ∈ X. Each orbit is isotropic and the orbit of a
regular point is Lagrangian.

2.4 Liouville coordinates

Definition 2.4.1. A local Lagrangian section of an integrable Hamil-
tonian system H : X → Rn is a Lagrangian embedding σ : U → X
where U ⊂ H(X) is an open set and H ◦ σ(b) = b for all b ∈ U .

Lemma 2.4.2 (Exercise). There always exists a local Lagrangian
section through any regular point x.

Theorem 2.4.3 (Liouville coordinates). Let H : X → Rn be an
integrable Hamiltonian system and σ : U → X be a local Lagrangian
section. Define

Ψ: U ×Rn → X, Ψ(b, t) = ΦHt (σ(b)).

Then Ψ is both an immersion and a submersion and Ψ∗ω =
∑
dbi∧

dti, where (b1, . . . , bn) are the standard coordinates on U ⊂ Rn. This
means that (b1, . . . , bn, t1, . . . , tn) provide local symplectic coordinates
on a neighbourhood of σ(U); we call these Liouville coordinates.

Proof. • Ψ∗∂bi and Ψ∗∂bj are tangent to ΦHt (σ(U)), which is
the image of a Lagrangian under a series of Hamiltonian flows,
hence Lagrangian. Therefore ω(Ψ∗∂bi ,Ψ∗∂bj ) = 0.
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• Ψ∗∂ti = VHi , so

ω(Ψ∗∂ti ,Ψ∗∂tj ) = ω(VHi , VHj ) = {Hi, Hj} = 0.

• ω(Ψ∗∂bi ,Ψ∗∂tj ) = dHj(Ψ∗∂bi), and, since (Hj ◦ Ψ)(b, t) = bj
(as the flow along Ψt preserves the level sets of Hj) we have
dHj(Ψ∗(∂bi)) = dbj(∂bi) = δij . Therefore Ψ∗ω =

∑n
i=1 dbi ∧

dti = ω0.

Note that this implies that Ψ is both an immersion and a submersion
(if it failed to be an immersion or a submersion at some point then
Ψ∗ω would be degenerate there).

Definition 2.4.4. We call the subset Λ := Ψ−1(σ(U)) ⊂ U×Rn the
period lattice. It is a Lagrangian submanifold with respect to

∑
dbi∧

dti since Ψ is a local symplectomorphism and σ(U) is Lagrangian.
We say that the period lattice is standard if it is equal to U×(2πZ)n.

Example 2.4.5. The period lattice in Example 2.1.1 is standard,
while in Example 2.1.2 it is {(r, 2πr) : r > 0}, where U = R>0 is
the set of positive radii and σ(r) = r.

Example 2.4.6. Consider the Hamiltonian system on R2 whose
level sets are shown in the figure below. This Hamiltonian generates
an R-action whose orbits are: the fixed points; the two separatrices;
the closed loops. The separatrices have infinite period (it takes in-
finitely long to flow around them). If we take as Lagrangian section
the line segment indicated in red then the period lattice looks like
the figure on the right.
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The justification for the name period lattice comes from the following
theorem:

Lemma 2.4.7 (Exercise). For each b ∈ U , the intersection Λb =
Λ∩ ({b}×Rn) is a lattice in Rn, that is a discrete subgroup of Rn.
The rank of the lattice is lower semicontinuous as a function of b,
that is, b has a neighbourhood V such that rank(Λb′) ≥ rank(Λb)
for all b′ ∈ V .

Example 2.4.8. In Example 2.4.6, the period lattice for most orbits
is isomorphic to Z, but where U intersects the separatrix orbit the
period lattice is the zero lattice.

Recall the following result from differential topology.

Theorem 2.4.9. If Λ ⊂ Rn is a lattice then there is a basis e1, . . . , en
of Rn such that Λ is the Z-linear span of the vectors e1, . . . , ek for
some k ≤ n.

Our next goal is to find a local diffeomorphism G : U → Rn such
that G ◦H has standard period lattice.

2.5 The Arnol’d-Liouville theorem

Theorem 2.5.1 (Little Arnol’d-Liouville theorem). Let H : X →
Rn be an integrable Hamiltonian system and σ : U → X be a local
Lagrangian section. Each orbit Orb(σ) is diffeomorphic to

(
Rk/Zk

)
×

Rn−k for some k. In particular, if Orb(σ) is compact then it is a
torus.

Proof. The action of Rn defines a diffeomorphism Rn/Λσ → Orb(σ).
Since Λσ is a lattice, the result follows from the classification of lat-
tices in Theorem 2.4.9.

We now focus attention on a neighbourhood of a compact (torus)
orbit. By Lemma 2.4.7, all nearby orbits are also tori. We will
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shrink the domain U of our local Lagrangian section so that all
orbits through σ(U) are compact and, moreover, so that U is a disc.

Theorem 2.5.2 (Action-angle coordinates). There is a local change
of coordinates G : U → Rn such that G ◦ H : H−1(U) → Rn gen-
erates a Hamiltonian torus action on H−1(U). In other words,
the period lattice Λ is standard, equal to U × (2πZ)n and the map
Ψ: U ×Rn → X defined in Theorem 2.4.3 descends to give a sym-
plectomorphism U × (R/2πZ)n → H−1(U).

Proof. The following proof is due to Duistermaat [5].

For each b ∈ U , let 2πW1(b), . . . , 2πWn(b) ∈ Rn be a collection
of vectors (smoothly varying in b) which span the lattice of periods
Λb. We wish to find functions G1(b1, . . . , bn), . . . , Gn(b1, . . . , bn) such
that ιWiω = −d(Gi ◦H). If Wi =

∑
αijVHj then this is equivalent

to requiring ∂Gi
∂bj

= αij . By the Poincaré lemma, we can find such

functions Gi provided
∂αij
∂bk

=
∂αik
∂bj

, (2.2)

so it remains to check this identity.

Let Ψ: U×Rn → X be the Liouville coordinates and Λ = Ψ−1(σ(U))
be the period lattice. Since Ψ is symplectic and σ(U) is Lagrangian,
Λ is Lagrangian. Moreover, Λ is a union of sheets, each traced
out by a single lattice point. For example, {(b,Wi(b)) : b ∈ U}
traces out a Lagrangian sheet for each i. In coordinates, this is
{(b1, . . . , bn, αi1(b), . . . , αin(b)) : b ∈ U}, which is Lagrangian if
and only if Equation (2.2) holds.

Definition 2.5.3. The Liouville coordinates associated to the new,
periodic Hamiltonian system are called action-angle coordinates. More
precisely, the new Hamiltonians G1 ◦H, . . . , Gn ◦H are called action
coordinates and the new 2π-periodic conjugate coordinates t1, . . . , tn
are called angle coordinates.
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Corollary 2.5.4 (Big Arnol’d-Liouville theorem). If H : M → Rn

is an integrable Hamiltonian system and Orb(p) is a compact or-
bit then Orb(p) is a torus and there is a neighbourhood of Orb(p)
symplectomorphic to U × Tn, where U ⊂ Rn is an open ball and
the symplectic form is given by

∑n
i=1 dbi ∧ dti. Under this symplec-

tomorphism, the orbits of the original system are sent to the tori
{b} × Tn.
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2.6 Exercises

Exercise 2.6.1. Let (p, q) be coordinates on R × S1 (with q ∈
R/2πZ) and let ω = dp ∧ dq. Consider the Hamiltonian H =
1
2p

2 + cos q. Find its critical points and the Hessian of H at the
critical points. Sketch the level sets of H and identify the orbits
of φHt . Physically, this Hamiltonian system corresponds to a pen-
dulum swinging in a uniform gravitational field; q is the angular
displacement from the downward vertical. What is the physical in-
terpretation of the orbits you identified? Around the critical point

(0, 0), make the small angle approximation cos q ≈ 1− q2

2 and solve
the resulting Hamiltonian system. Verify Galileo’s observation that
the period of a pendulum with small oscillation is independent of its
initial angular displacement. ** Find the period precisely in terms
of elliptic integrals.

Exercise 2.6.2. Show that in the local modelH : Rn×(R/2πZ)n →
Rn, H(p, q) = p, the action coordinates of the orbit Ob := H−1(b)

are
(

1
2π

∫
c1
λ0, . . . ,

1
2π

∫
cn
λ0

)
where λ0 =

∑n
k=1 pkdqk and ck is the

loop {p = 0, qi = 0 for i 6= k}. Verify that the same is true for any
λ satisfying dλ = ω.

Exercise 2.6.3. Consider the unit 2-sphere (S2, ω) where ω is the
area form. By comparing infinitesimal area elements, show that
the projection map from S2 to a circumscribed cylinder is area-
preserving5. Let H : S2 → R be the height function H(x, y, z) = z
(thinking of S2 embedded in the standard way in R3). Show that
H is an action coordinate.

Exercise 2.6.4. A symplectic vector space is a vector space X to-
gether with a nondegenerate alternating bilinear form ω (like the
tangent space of a symplectic manifold). A subspace Y ⊂ X is
called:

5If Cicero is to be believed, a diagram representing this theorem was engraved
on the tomb of Archimedes (who proved it).
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• symplectic if ω|Y is symplectic;

• isotropic if ω|Y = 0.

Given a subspace Y , define the symplectic orthogonal complement

Y ω := {v ∈ X : ω(v, w) = 0 for all w ∈ Y }.

A basis p1, q1, . . . , pn, qn for X is called symplectic if ω(pj , qk) = δjk
and ω(pj , pk) = ω(qj , qk) = 0 for all j, k. Show that: a) any sym-
plectic vector space admits a symplectic basis and hence has even
dimension. (Hint: Work inductively using symplectic orthogonal
complement.) b) if Y is isotropic then Y ⊂ Y ω. Deduce that
dimY ≤ n.

Exercise 2.6.5. If F and G are two functions on a symplectic man-
ifold, define Ft(x) = F (φGt (x)) and show that Ḟt = {G,Ft}.

Exercise 2.6.6. Recall that the flows along two vector fields com-
mute if and only if the Lie bracket of the vector fields vanishes.
Deduce that two Hamiltonian flows φFt and φGt commute if and only
if the Poisson bracket {F,G} is locally constant.

Exercise 2.6.7. Darboux’s theorem states that for any symplec-
tic 2n-manifold (X,ω) and any point x ∈ X, there are coordinates
(p1, q1, . . . , pn, qn) centred on x such that ω =

∑
dpi ∧ dqi in these

coordinates. We will prove this by induction. This proof is from
Arnol’d’s book [1, Section 43.B] (look there if you get stuck). As so
often in geometry proofs, we will tacitly pass to a smaller neighbour-
hood at various points in the proof. a) Pick a function p1 and let N
be a submanifold passing through x, transverse to the vector field
Vp1 in a neighbourhood of x. For points in a neighbourhood of x,
define q1 to be the unique number such that φp1−q1(x) ∈ N . Compute
the Lie derivative LVp1 q1 and show that {p1, q1} = 1. Deduce that
the flows φp1t and φq1t commute. Deduce Darboux’s theorem in the
case n = 1. b) Let M = {p1 = q1 = 0}. Why is TxM a symplectic
subspace of TxX? Why does this means that M is a symplectic
submanifold in a neighbourhood of x? c) By induction, M admits
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Darboux coordinates (a2, b2, . . . , an, bn) in a neighbourhood of x.
Any point x′ in a neighbourhood of x can be written uniquely as
x′ = φp1s φ

q1
t (m(x′)) with m(x′) ∈M , so defining pk(x′) = ak(m(x′))

and qk(x′) = bk(m(x′)) we get coordinates (p1, q1, . . . , pn, qn) on a
neighbourhood of x. Check that these are Darboux coordinates, in
other words: {pj , qk} = δjk, {pj , pk} = {qj , qk} = 0 for all j, k.

Exercise 2.6.8. There always exists a local Lagrangian section
through any regular point x of an integrable Hamiltonian system.

Exercise 2.6.9. Suppose thatH : X → R is a Hamiltonian function
and L ⊂ X is a Lagrangian submanifold such that L ⊂ H−1(c) for
some c ∈ R. Prove that φHt (x) ∈ L for all x ∈ L, t ∈ R, i.e. that L
is invariant under the Hamiltonian flow of H.

Exercise 2.6.10. Let (X,ω) be a symplectic 2n-manifold, B be an
n-manifold and let π : X → B be a proper submersion with con-
nected Lagrangian fibres. Let (b1, . . . , bn) be local coordinates on
B. Prove that b1 ◦ π, . . . , bn ◦ π Poisson commute, and deduce that
the fibres of π are Lagrangian tori. This is the reason the words La-
grangian torus fibration and integrable Hamiltonian system are often
conflated (Hint: Use Exercise 2.6.9.)

The final two questions use the fact that the Liouville map Ψ is a
local diffeomorphism.

Exercise 2.6.11. Let H : X → Rn be an integrable Hamiltonian
system and σ : U → X be a local Lagrangian section. Let Λ be
the associated period lattice. Prove that, for each point b ∈ U , the
intersection Λb := Λ ∩ ({b} ×Rn) is a sublattice of Rn (that is, a
discrete subgroup of Rn).

Exercise 2.6.12. Let H : X → Rn be an integrable Hamiltonian
system and σ : U → X be a local Lagrangian section. Show that the
function U → Z, b 7→ rank(Λb), is lower semi-continuous (in other
words, there is an open neighbourhood V of b such that, for b′ ∈ V ,
rank(Λb′) ≥ rank(Λb)).



Chapter 3

Hamiltonian torus
actions

3.1 Global action-angle coordinates

We saw in the last chapter that if H : X → Rn is a integrable Hamil-
tonian system and b is a regular value then we can postcompose with
a local change of coordinates G on a neighbourhood U of b to get
a new system G ◦ H such that G ◦ H generates a torus action on
H−1(U). The components G1 ◦H, . . . , Gn ◦H are called action co-
ordinates and the angular coordinates on the torus fibres are called
angle coordinates. The following lemma tells us that when we have
em globally defined action-angle coordinates on X, the whole Hamil-
tonian system can be recovered just from the image of X under the
action coordinates.

Lemma 3.1.1. Assume that F : X → Rn and G : Y → Rn are
integrable Hamiltonian systems such that U := F (X) and V :=

21
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G(Y ) consist only of regular values. Assume that F and G are action
coordinates in each case and that we are given global Lagrangian
sections σ : U → X and τ : V → Y . Suppose there is an integral
affine transformation A : Rn → Rn such that A(U) = V . There is
a symplectomorphism Φ: X → Y such that G ◦ Φ = A ◦ F ; we call
such a symplectomorphism fibred.

This is a wonderful compression of information: to reconstruct a
2n-dimensional space, all we need is a subset of Rn. For example,
if n = 2, 3, this brings 4- and 6-dimensional spaces into the range of
visualisation. The goal of the rest of this book is to exploit this in
increasing levels of generality.

• In this chapter, we will keep the assumption that there are
global action-angle coordinates, but allow for critical points.
This will lead us to the study of toric manifolds.

• In Chapter 4, we will drop the assumption that there are global
action-angle coordinates and see what remains. We will intro-
duce more general singularities (focus-focus singularities) and
study the asymptotics of action-angle coordinates in the neigh-
bourhood of a singular fibre.

• In Chapter 5, we will combine what we have done so far to
visualise a range of interesting 4- and 6-dimensional manifolds.

• In Chapter 6, we will explain a construction due to Ruan of
integrable Hamiltonian systems on projective varieties admit-
ting toric degenerations. The singularities of these examples
are still poorly-understood.

3.2 Hamiltonian group actions

One way of stating the Arnol’d-Liouville theorem is that, after a
suitable change of coordinates in the target, the Rn-action gener-
ated by the Hamiltonian vector fields VH1

, . . . , VHn actually factors



23

through a Tn-action. We now work backwards, assuming that we
have a globally-defined torus action, even on the non-regular fibres,
and see what kinds of singularities can occur.

Definition 3.2.1. Let H : X → Rn be an integrable Hamiltonian
system such that the Hamiltonian Rn-action ΦHt factors through a
Hamiltonian Tn-action, that is ΦHt = id for any t ∈ (2πZ)n. Then
we call H the moment map for the torus action; this is a synonym
for having globally defined action coordinates. We often write µ for
a moment map, to distinguish it from a system where the period
lattice is not standard.

We saw in Lemma 3.1.1 that the image of a moment map deter-
mines the Hamiltonian system completely up to fibred symplecto-
morphism, at least if there are no critical points and there is a global
Lagrangian section. We therefore concentrate on the image µ(X) of
the moment map, which we will call the moment image or moment
polytope. The Atiyah-Guillemin-Sternberg convexity theorem tells
us that µ(X) indeed a polytope. Before stating this theorem, we
recall some basic definitions.

Definition 3.2.2. A rational convex polytope P is a subset of Rn

defined as the intersection of a finite collection of half-spaces Sα,b =
{x ∈ Rn : α1x1 + · · · + αnxn ≤ b} with α1, . . . , αn ∈ Q and
b ∈ Rn. We say that P is a Delzant polytope if it is a convex
rational polytope such that every point on a k-dimensional facet has
a neighbourhood isomorphic (via an integral affine transformation)
to a neighbourhood of the origin in the polytope [0,∞)n−k ×Rk.

Example 3.2.3. The polygon below fails to be Delzant: there is
no integral affine transformation sending the marked vertex to the
origin and sending the two marked edges to the x- and y-axes, which
would be the Delzant condition for this vertex. Indeed, the primitive

integer vectors

(
−1
0

)
and

(
−1
−2

)
pointing along these edges

span a strict sublattice of the integer lattice Z2.
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•

Theorem 3.2.4 (Atiyah, Guillemin-Sternberg, Delzant). Let (X,ω)
be a symplectic 2n-manifold and µ : X → Rn a moment map for a
Hamiltonian Tn-action.

1. The image ∆ := µ(X) is a Delzant polytope.

2. If X is compact, then ∆ is the convex hull of {µ(x) : x ∈
Fix(X)}, where Fix(X) is the set of fixed points of the torus
action.

3. For any Delzant polytope ∆ ⊂ Rn there exists a symplectic 2n-
manifold X∆ and a map µ : X∆ → Rn with µ(X∆) = ∆ such
that µ generates a Hamiltonian Tn-action. Moreover, X∆ is
a projective variety. Such varieties are often called projective
toric varieties.

4. The moment polytope determines X,µ up to fibred symplecto-
morphism.

We will not prove this theorem, and will focus instead on extracting
geometric information about X from the moment polytope.

Example 3.2.5. Consider the n-torus action on Cn given by

(z1, . . . , zn) 7→ (eit1z1, . . . , e
itnzn).
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This is Hamiltonian, with moment map

µ(z1, . . . , zn) =

(
1

2
|z1|2, . . . ,

1

2
|zn|2

)
.

The image of the moment map is the nonnegative orthant. This is a
manifold with boundary and corners: the µ-preimage of a boundary
stratum of codimension k is an (n − k)-dimensional torus. For ex-
ample, the preimage of the vertex is a single fixed point (the origin),
the preimage of a point on the positive x1-axis is a circle with fixed
radius in the z1-plane, the preimage of a point on the interior of the
x1x2-plane is a 2-torus, and so forth.

C2 C3

Remark 3.2.6. The critical values of µ are precisely the boundary
points of the moment polytope. The boundary is stratified into
facets of dimension 0 (vertices), 1 (edges), 2 (faces), etc, so we can
classify the critical values according to the dimension of the stratum
to which they belong. By definition, any Delzant polytope is locally
isomorphic to Rk × [0,∞)n−k in a neighbourhood of a point in a k-
dimensional facet. In Example 3.2.5, we have found a system whose
moment image is [0,∞)n−k, so by Theorem 3.2.4(4), this means that
the integrable Hamiltonian system in a neighbourhood of a critical
point living over a k-dimensional facet is fibred-symplectomorphic
to the system

µ : Rk × (S1)k ×Cn−k → Rn,

µ(p, q, zk+1, . . . , zn) =

(
p,

1

2
|zk+1|2, . . . ,

1

2
|zn|2

)
.
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Such singularities are called toric1 and the set of all toric singularities
is often called the toric boundary of X. It is not a boundary in the
usual sense: it is a union of submanifolds of codimension 2. Instead,
considering X as a projective variety, it is the boundary in the sense
of algebraic geometry: it is a divisor, and is often called the toric
divisor.

Our ultimate goal is to see features of the geometry laid bare via
the moment map. As an example of what we have in mind, here is a
nice way to understand the genus 1 Heegaard decomposition of the
3-sphere using the moment map for C2.

Example 3.2.7. Let µ : C2 → R2 be the moment map from Ex-
ample 3.2.5. The preimage of the (red) line segment x1 + x2 = 1

2 ,
x1, x2 ≥ 0, is the subset S := {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1},
that is the unit 3-sphere. The fibre T := µ−1

(
1
4 ,

1
4

)
is a torus with

T ⊂ S. We can see that T separates S into two pieces S1, S2, and
it is also easy to see that each piece is homeomorphic to a solid
torus S1 × D2: the “core circles” of these solid tori are the fibres
s1 = µ−1

(
1
2 , 0
)
, s2 = µ−1

(
0, 1

2

)
where the line segment intersects

the x1- and x2-axes.

S

S1

S2 •
T

•

•

s1

s2

si

T

Si

1In fact, it is a theorem of Eliasson [6] and Dufour–Molino [4] that toric sin-
gularities can be characterised purely in terms of the Hessian of the Hamiltonian
system at the singular point. They call such critical points elliptic.
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3.3 Examples

Example 3.3.1. We saw in Exercise 2.6.3 that the height function
on the unit 2-sphere in R3 generates a Hamiltonian circle action (i.e.
T 1-action). The image of the moment map is the interval [−1, 1].
One can form more examples by taking products: we get a Tn-action
on (S2)n, whose moment map is µ((x1, y1, z1), . . . , (xn, yn, zn)) =
(z1, . . . , zn), with image [−1, 1]n. For example, the moment image
for S2 × S2 is a square, for S2 × S2 × S2 it is a cube.

Example 3.3.2. If we take S2 with the area form λω (where ω is
the form giving area 4π) then the rescaled height function λz is a
moment map for the circle action which rotates around the z-axis
with period 2π. The moment image is [−λ, λ].

Definition 3.3.3 (Affine length). If ` : [0, L]→ Rn is a line segment

of the form `(t) = at + b with a =

(
a1

a2

)
∈ Z2, gcd(a1, a2) = 1

and b ∈ Rn then we say ` is a rational line segment and the affine
length of ` is defined to be L.

Example 3.3.4. In the polygon below, the vertical edge has affine
length 2 and the other two edges both have affine length 1.

Lemma 3.3.5. If ` : [0, L] → Rnis a rational line segment whose
image is an edge of the moment polytope then µ−1(`([0, L])) is a
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symplectic sphere of symplectic area 2πL.

Proof. By Theorem 3.2.4(4), the preimage of such an edge is pre-
cisely symplectomorphic to

(
S2, Lω2

)
with a rescaling of its height

function by L/2, by comparing with Example 3.3.2.

Example 3.3.6. Consider the complex projective n-space CPn,
with homogeneous coordinates [z1 : · · · : zn+1]. This has a torus
action [z1 : · · · : zn+1] 7→ [eit1z1 : · · · : eitnzn : zn+1] which is
Hamiltonian, for the Fubini-Study form ω, with moment map

µ([z1 : · · · : zn+1] =

(
1

2

|z1|2

|z|2
, . . . ,

1

2

|zn|2

|z|2

)
,

where |z|2 =
∑n+1
i=1 |zi|2. The moment image is the simplex

{(x1, . . . , xn) ∈ Rn : x1, . . . , xn ≥ 0, x1 + · · ·+ xn ≤ 1}.

For example, µ(CP2) and µ(CP3) are drawn below. In each case,
the hyperplane at infinity {[z1 : · · · : zn : 0]} projects via µ to the
facet x1 + · · ·+ xn = 1 of the simplex.

CP2 CP3

Example 3.3.7. The tautological bundle over CP1 is the variety

O(−1) := {(x, y, [a : b]) ∈ C2 ×CP1 : ay = bx}.

This has a holomorphic projection π : O(−1) → CP1, π(x, y, [a :
b]) = [a : b], which exhibits it as the total space of a holomorphic
line bundle over CP1. This is a fancy way of saying that π−1([a : b])
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is a complex line (specifically {(x, y) ∈ C2 : ay = bx} ⊂ C2) for
all [a : b] ∈ CP1. The symplectic form ωC2 ⊕ ωCP1 on C2 × CP1

pulls back to a symplectic form on O(−1), with respect to which the
following T 2-action is Hamiltonian:

(x, y, [a : b]) 7→ (eit1x, eit2y, [eit1a : eit2b]).

The moment map is

µ(x, y, [a : b]) =

(
1

2

(
|x|2 +

|a|2

|a|2 + |b|2

)
,

1

2

(
|y|2 +

|b|2

|a|2 + |b|2

))
.

The image of the moment map is the subset

∆O(−1) :=

{
(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 + x2 ≥

1

2

}
.

∆O(−1)

µ(CP1)

The zero-section CP1 = {x = y = 0} ⊂ O(−1) projects down to the
edge x1 + x2 = 1

2 . An alternative moment map can be obtained by

postcomposing with the integral affine transformation

(
x1

x2

)
7→(

1 0
1 1

)(
x1

x2

)
+

(
0
−1

)
, which sends the moment polytope to

{(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 − x2 ≥ −1}.
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µ(CP1)

edge parallel to

(
1
1

)

This is an important example because of the role played by O(−1)
in birational geometry. The projection $ : O(−1) → C2 given by
$(x, y, [a : b]) = (x, y) is the blow-down map: it is an isomorphism
away from (0, 0) ∈ C2, but it contracts the sphere {(0, 0, [a : b]) :
[a : b] ∈ CP1} (known as the exceptional sphere) to the origin. In
fact, if we take a toric variety X∆ and blow-up a fixed point of the
torus action (living over a vertex v ∈ ∆), we get a new toric variety
X∆′ whose moment polytope ∆′ differs from the previous one by
truncating at the vertex v. More precisely, we use an integral affine
transformation to put ∆ in such a position that v sits at the origin
and ∆ is locally isomorphic to [0,∞)n near v, then we truncate ∆
using the hyperplane x1 + · · ·+ xn = c for some positive c. Varying
the constant c will give different symplectic structures (in particular,
for n = 2, the symplectic area of the exceptional sphere will vary).

Example 3.3.8. The bundle O(−n) over CP1 is the variety2

O(−n) := {(x, y, [a : b]) ∈ C2 ×CP1 : any = bnx}

The Hamiltonians

H1 =
1

2

(
|x|2 +

|a|2

|a|2 + |b|2

)
, H2 =

1

2

(
|y|2 +

|b|2

|a|2 + |b|2

)
still generate circle actions, but the period lattice for the R2-action
generated by (H1, H2), while constant, is no longer standard: the
element φH1

2π/nφ
H2

2π/n now acts as the identity. This means that the

2The discerning reader will spot that this is the pullback of O(−1) along the
degree n holomorphic map CP1 → CP1, [a : b] 7→ [an : bn].
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period lattice is spanned by Z

(
2π/n
2π/n

)
⊕ Z

(
2π
0

)
. If we use

the combination µ =
(
H1,

H1+H2

n

)
then we get a standard period

lattice, so this is the correct moment map. To find the moment

image, we simply apply the affine transformation

(
1 0

1/n 1/n

)
to

∆O(−1) (we also translate it by

(
0
−1/n

)
so that the horizontal

edge µ(CP1) sits on the x1-axis).

µ(O(−n))

µ(CP1)

edge parallel to

(
n
1

)

Similarly, one can define the bundles O(n)→ CP1, n ≥ 0, and these
admit torus actions; the moment map now sends a neighbourhood
of the zero-section in O(n) to a region as shown below. For example,
a complex line in CP2 has normal bundle O(1), and in the moment
image of CP2 we see precisely the n = 1 neighbourhood surrounding
the x1-axis.

µ(O(n))

µ(CP1)

edge parallel to

(
−n
1

)

The following lemma now follows immediately from these examples
and Theorem 3.2.4(4).

Lemma 3.3.9. Let ∆ ⊂ R2 be a moment polygon and e ⊂ ∆ an
edge connecting two vertices P,Q. Assume that this edge is tra-
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versed from P to Q as you move anticlockwise around the bound-
ary of ∆. Let v, w be primitive integer vectors pointing along the
other edges emerging from P and Q respectively. Then a neighbour-
hood of µ−1(e) in X∆ is symplectomorphic to a neighbourhood of the
zero-section in O(n) where n = detM where M is the matrix with
columns v, w.

Proof. This is true for the local model discussed above, and any edge
is integral affine equivalent to one of these local models. Moreover,
the determinant is preserved by integral affine transformations which
preserve the orientation of the plane (and hence the anticlockwise
sense of traversing the boundary). An orientation-reversing trans-
formation will switch the sign of the determinant and also switch the
order of the columns because it switches anticlockwise to clockwise,
so these sign effects will cancel.

3.4 Visible Lagrangian submanifolds

The action-angle coordinates are usually difficult to find explicitly
as they involve performing integrals. Even some of the simplest
Hamiltonian systems (like the pendulum) have action-angle coordi-
nates which involve elliptic functions. For that reason, we would
like a way to see some of the affine geometry of the action coordi-
nates without having to find them explicitly. We will see now that
Lagrangian submanifolds which fibre in a nice way via the Hamilto-
nians of the system always project to an affine linear subspace in an
action coordinate patch.

Theorem 3.4.1 (Symington [10, Theorem ?]). Consider the in-
tegrable Hamiltonian system H : (Rn × Tn,

∑
dpi ∧ dqi) → Rn,

H(p, q) = p where q1, . . . , qn are taken modulo 2π. Let L ⊂ Rn×Tn
be a Lagrangian submanifold. Suppose that H|L : L → Rn factors
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as H|L = f ◦ g, where g : L → K is a bundle over a k-dimensional
manifold K, k < n, and f ◦K → Rn is an embedding. Then K is
an affine linear subspace of Rn which is rational with respect to the
lattice (2πZ)n.

Definition 3.4.2. We call such Lagrangian submanifolds visible.

Proof. Let s = (s1, . . . , sk) be local coordinates onK and (tk+1, . . . , tn)
be local coordinates on the fibre of g. By assumption, the inclusion
of L into Rn has the form (s, t) 7→ (p(s), q(s, t)) for some functions.
The vectors ∂si and ∂tj pushforward to (∂sip, ∂siq) and (0, ∂tjq).
The Lagrangian condition on L is equivalent to ∂sip · ∂tjq = 0 for
all i, j and ∂sip · ∂sjq = ∂sjp · ∂siq. The first of these conditions
implies that the tangent space of the fibre of g is orthogonal to the
k-dimensional subspace f∗(TK) spanned by ∂s1p, . . . , ∂skp. Since
the tangent space of the fibre of g is (n − k)-dimensional, it must
be precisely f∗(TK)⊥; in other words, for each s ∈ K, the fibre of
g over s is an integral submanifold of the distribution on Tn given
by f∗(TK)⊥. This distribution has an integral submanifold if and
only if f∗(TK) is a rational subspace with respect to the lattice
(2πZ)n. Since f∗(TK) varies smoothly in s, and must always be ra-
tional, it is necessarily constant. Therefore f(K) is a rational affine
subspace.

Remark 3.4.3. Note that the dependence of qi on the coordinates sj
can be nontrivial.

Example 3.4.4. Let (p1, p2, q1, q2) be coordinates on X = R2 ×
(S1)2 with symplectic form

∑
dpi∧dqi. The Lagrangian embedding

i : R×S1 → X, i(s, t) = (s, 0, 0, t) is visible for the projection (p, q 7→
p). The Lagrangian torus j : S1 × S1 → X, j(s, t) = (sin s, 0, s, t)
is also visible3, and projects to the line segment [−1, 1] × {0} (the
preimage of each point in (−1, 1)× {0} is a pair of circles).

3Technically, it is not visible itself because the projection map is not a bundle,
rather it is a union of two visible cylinders. We will tolerate this and related
abuses of terminology.
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3.4.1 Hitting a vertex

We now suppose that we have a Hamiltonian torus action (and
toric singularities) with moment map µ : X → Rn and address the
question of what visible Lagrangian surfaces look like when the lin-
ear subspace µ(L) intersects the boundary strata of the moment
polytope. For simplicity, we will focus on the case dimX = 4,
dimµ(L) = 1.

Example 3.4.5 (Exercise). Consider the Lagrangian plane L :=
{(z, z̄) : z ∈ C} ⊂ C2. The projection µ(L) is the diagonal ray
{(t, t) : t ∈ [0,∞)} ⊂ R2, so L is a visible Lagrangian surface. If
we look more generally over the ray {(mt, nt) : t ∈ [0,∞)} (blue
in the figure below), with m,n ∈ Z, gcd(m,n) = 1, we find the
Schoen-Wolfson cone4

(r, θ) 7→ 1√
m+ n

(
r
√
neiθ
√
m/n, ir

√
me−iθ

√
n/m

)
,

which is singular at the origin unless m = n = 1.

(m,n)

Modulo the freedom discussed in Remark 3.4.3 and Example 3.4.4,
this exhausts all possible local models for visible Lagrangians living
over a line which hits the corner of a Delzant moment polygon.

4Schoen and Wolfson [8, Theorem 7.1] showed that these are the only La-
grangian cones in C2 which are Hamiltonian stationary (i.e. critical points of
the volume functional restricted to Hamiltonian deformations).
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3.4.2 Hitting an edge

Example 3.4.6. We now consider visible Lagrangians whose pro-
jection hits an edge. For a local model, we take X = R×S1×C, with
coordinates (p, q, z = x+ iy) (q ∈ R/2πZ) and symplectic form dp∧
dq + dx ∧ dy. The moment map µ : X → R2, µ(p, q, z) =

(
p, 1

2 |z|
2
)
,

has image the closed upper half-plane {(x1, x2) ∈ R2 : x2 ≥ 0}.
Consider the ray Rm,n = {(ms, ns) : s ≥ 0}. The following map is
a Lagrangian immersion of the cylinder

i(s, t) =
(
ms,−nt,

√
2nseimt

)
, (s, t) ∈ [0∞)× S1

whose projection along µ is the ray Rm,n. This immersion is an em-
bedding away from s = 0, but it is n-to-1 along the circle s = 0 (the
points

(
0, t+ 2πk

n

)
, k = 0, . . . , n−1, all project to (0, t mod 2π, 0)).

Rm,n

The image of the immersion is a Lagrangian which looks like a col-
lection of n flanges meeting along a circle, twisting as they move
around the circle so that the link of the circle is an (m,n)-torus
knot. For example, when m = 1, n = 2, this is a Möbius strip. For
n ≥ 3 it is not a submanifold. We call the image of the immersion a
Lagrangian (n,m)-pinwheel core.

Any integral affine transformation preserving the upper half-plane
and fixing the origin acts on the set of rays Rm,n. These trans-

formations are precisely the affine shears

(
1 k
1 0

)
, which allow

us to change m by any multiple of n, so we can always assume
m ∈ {0, . . . , n− 1}.
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Again, modulo the freedom discussed in Remark 3.4.3 and Exam-
ple 3.4.4, these local models exhaust the visible Lagrangians inter-
secting an edge of a moment polygon.

Example 3.4.7. Consider the Lagrangian RP2 which is the closure
of the visible disc {[z : z̄ : 1] : z ∈ C} ⊂ CP2. This projects to
the diagonal bisector in the moment triangle. If we use the integral

affine transformation

(
−1 0
−1 −1

)
to make the slanted edge of the

triangle horizontal then the projection of the visible Lagrangian ends

up pointing in the

(
1
2

)
-direction, which shows that the disc is

capped off with a Möbius strip to give an RP2.

3.5 Exercises

Exercise 3.5.1. Assume that F : X → Rn and G : Y → Rn are in-
tegrable Hamiltonian systems such that U := F (X) and V := G(Y )
consist only of regular values. Assume that F and G are action
coordinates in each case and that we are given global Lagrangian
sections σ : U → X and τ : V → Y . Suppose there is an integral
affine transformation A : Rn → Rn such that A(U) = V . Show that
there is a symplectomorphism Φ: X → Y such that G ◦ Φ = A ◦ F ;
we call such a symplectomorphism fibred. (Hint: The fibredness con-
dition means that you only need to specify Φ in the angle-directions;
it should also be integral affine in these directions.)

Exercise 3.5.2. Consider the group of nth roots of unity µn act-
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ing on C2 via (z1, z2) 7→ (µz1, µ
mz2) where gcd(m,n) = 1. Let

X = C2/µn be the quotient by this group action. This is a sym-
plectic orbifold: the origin is a singular point. Nonetheless, provided
they fix the origin, Hamiltonian flows still make perfect sense. Find
the lattice of periods for the R2-action on X generated by the Hamil-
tonians H1 = 1

2 |z1|2 and H2 = 1
2 |z2|2 and hence find the moment

polygon. Confirm that this fails to be Delzant at its vertex (corre-
sponding to the fact that X is non-smooth). These singularities are
called cyclic quotient singularities.

Exercise 3.5.3. The cyclic group action from Exercise 3.5.2 pre-
serves the unit sphere in C2, and the quotient S3/µn is the 3-
manifold known as the lens space L(n,m). Show that lens spaces
admit genus 1 Heegaard splittings. If ` is a curve segment in a mo-
ment polygon which connects two edges such that the edges point
in the directions v and w, find an expression in terms of v, w for the
numbers m,n such that the preimage µ−1(`) is diffeomorphic to the
lens space L(n,m).

v w`

Exercise 3.5.4. Verify that the Schoen-Wolfson cone, parametrised
by

(r, θ) 7→ 1√
m+ n

(
r
√
neiθ
√
m/n, ir

√
me−iθ

√
n/m

)
,

is Lagrangian (at least away from its cone point, where the La-
grangian condition makes sense). Check that its projection along
the moment map is the ray from the origin pointing in the (m,n)-
direction.

Exercise 3.5.5. Consider the Lagrangian antidiagonal sphere ∆̄ :=
{((x, y, z), (−x,−y,−z)) ∈ S2 × S2 : (x, y, z) ∈ S2}. Find the
projection µ(∆̄) ⊂ [−1, 1]× [−1, 1].

Exercise 3.5.6. The square below has vertices at (−2,−2), (−2, 2),



38 3.5. Exercises

(2,−2), (2, 2). There is a smooth, closed visible Lagrangian surface
L in the corresponding toric variety, living over the line segment
connecting (−1,−2) to (1, 2). To which topological surface is L
homeomorphic?

(−1,−2)

(1, 2)

Exercise 3.5.7. Consider the symplectic manifold CP1 ×C2 with
the symplectic form pr∗1ωCP1 + pr∗2ωC2 (prk denotes the projection
to the kth factor, ωCP1 is the Fubini-Study form on CP1 nor-
malised so that 1

2π

∫
CP1 ωCP1 = 1 and ωC2 is the standard sym-

plectic form). Sketch the moment image for the T 3-action coming
from the standard torus actions on each factor. Check that the 3-
sphere {([−z̄2 : z̄1], (z1, z2) : |z1|2 + |z2|2 = 1} ⊂ CP1 × C2 is
Lagrangian and sketch its projection under the moment map.

Exercise 3.5.8. Consider the map

F : (C∗)2 → CP3, F (x, y) = [xy : x : y : 1].

Show that the Zariski-closure of the image of F is a quadric surface
Q. Let µ : CP3 → R3 be the moment map for the standard T 3-
action. Find a subtorus T 2 ⊂ T 3 under which Q is invariant. Let
π : Lie(T 3)∗ → Lie(T 2)∗ be the linear map dual to the Lie algebra
inclusion for the subtorus. Sketch the image ofQ under π◦µ. Deduce
that Q is symplectomorphic to S2 × S2.

Exercise 3.5.9. More generally, let ∆ be a compact polytope in
Rn whose vertices are in the integer lattice. To each lattice point
pi = (p1

i , . . . , p
n
i ) ∈ ∆, i = 0, . . . , N , consider the monomial zpi =
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z
p1i
1 · · · z

pni
n . Let X∆ denote the Zariski-closure of the image of

F : (C∗)n → CPN , F (z1, . . . , zn) = [zp0 : · · · : zpN ].

Check that each point of the form [0 : · · · : 0 : 1 : 0 : · · · : 0] is in
X∆. Let π : RN → Rn be the projection whose matrix is

p1
0 p1

0 · · · p1
N

p2
0

. . . p2
N

...
. . .

...
pn0 · · · · · · pnN

 .

If µ : CPN → RN is the moment map for the standard TN -action,
show that the image of π ◦ µ is the polytope ∆. You may use the
fact that the moment polytope is the convex hull of its vertices.

Exercise 3.5.10. Apply the algorithm from Exercise 3.5.9 to the
polytope ∆ with vertices (0, 0), (0, 1), (2, 1) (this contains four lattice
points). Show that X∆ is a cone in CP3 on a smooth conic curve
in CP2. Identify which point in the polytope is the image of the
singular point. Identify which cyclic quotient singularity this is using
Exercise 3.5.2. Using Lemma 3.3.9, find the self-intersection of the
sphere living over the edge which avoids the singular point.
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Chapter 4

Focus-focus
singularities

In this chapter, we begin by discussing what happens when there
are no global action-angle coordinates. We will see that the image
of the Hamiltonian system inherits a natural integral affine structure
(different from the one it already has as a subset of Rn). We will
study this integral affine structure in the case where our Hamilto-
nian system exhibits a particular class of nondegenerate singularities
called focus-focus singularities.

4.1 Flux map

There is a more geometric way to characterise the action coordinates.
Let H : X → Rn be an integrable Hamiltonian system. We assume

41
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for simplicity1 that ω = dλ for some 1-form λ. Let B ⊂ H(X)
denote the set of regular values of H.

Consider the local system ξ → B whose fibre over b is the abelian
group H1(H−1(b); Z) ∼= Zn. Let p : B̃ → B be the universal cover
and let ξ̃ = p∗ξ. Since B̃ is simply-connected, ξ̃ is trivial. Let
c1, . . . , cn be a Z-basis of continuous sections of ξ̃ → B̃.

Definition 4.1.1 (Flux map). The flux map is defined to be the
map I : B̃ → Rn given by

I(b̃) = (I1(b̃), . . . , In(b̃)) :=

(
1

2π

∫
c1(b̃)

λ, . . . ,
1

2π

∫
cn(b̃)

λ

)
.

Lemma 4.1.2 (Flux map = action coordinates). Suppose that Ũ ⊂
B̃ and U ⊂ B are open subsets such that p|Ũ : Ũ → U is a diffeo-
morphism. Then I ◦ (p|Ũ )−1 : U → Rn gives action coordinates on
U .

Proof. By Corollary 2.5.4, it is sufficient to prove this for the local
model (U × Tn, ω0) =

∑
dbi ∧ dti). In that case, we can pick λ =∑

bidti and take c1, . . . , cn to be the standard basis of H1(Tn; Z).
Then we get Ii(b) = bi, which recovers the action coordinates.

Definition 4.1.3 (Fundamental action domain). We call I(Ũ) a
fundamental action domain for the Hamiltonian system.

Remark 4.1.4. If we pick a different λ′ such that dλ′ = dλ then
λ − λ′ is closed, so

∫
ci(b)

(λ − λ′) is constant (by Stokes’s theorem)

and the flux map changes by an additive constant. If we pick a
different Z-basis (c′1, . . . , c

′
n) then we can express the new integrals

as a Z-linear combination of I1, . . . , In. This means that the flux
map is determined up to a transformation of the form x 7→ Ax + c
where A ∈ GL(n,Z) and c ∈ Rn. Such transformations are called
integral affine transformations.

1You might like to think about how to remove this assumption using Stokes’s
theorem.
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Definition 4.1.5. An integral affine structure on an n-manifold
is an atlas whose transition functions are integral affine transfor-
mations, that is transformations of the form x 7→ Ax + b with
A ∈ GL(n,Z) and b ∈ Rn.

Corollary 4.1.6. The space B inherits a canonical integral affine
structure.

Proof. We can pull back the integral affine structure from Rn along
I to get an integral affine structure on B̃. Next, we show that this in-
tegral affine structure on B̃ descends to one on B, by showing that it
is invariant under the action2 of deck transformations. If g : B̃ → B̃
is a deck transformation of the cover p then c1(b̃), . . . , cn(b̃) and
c1(b̃g), . . . , cn(b̃g) are both Z-bases for the Z-moduleH1(H−1(p(b̃)); Z)
and therefore they are related by some change-of-basis matrixM(g) ∈
GL(n,Z). This implies that I(b̃g) = M(g)I(b̃). Since M(g) is an in-
tegral affine transformation, this shows that the integral affine struc-
ture descends to the quotient B.

Note that M(g1g2) = M(g1)M(g2) because we wrote the action of
the deck group on the right. Indeed, M : π1(B) → GL(n,Z) is the
monodromy of the local system ξ → A.

Definition 4.1.7. We call M : π1(B) → GL(n,Z) the affine mon-
odromy in what follows

Remark 4.1.8. The manifold B can be reconstructed in the usual
way as a quotient of a closed fundamental domain for the universal
cover B̃ → B where the identifications are made using deck transfor-
mations. If we wish to reconstruct the integral affine structure on B
then we use a fundamental action domain and the identifications are
made using the integral affine transformations M(g) corresponding
to deck transformations g.

Remark 4.1.9. Given any integral affine manifold B, there is a devel-
oping map, that is a (globally-defined) local diffeomorphism I : B̃ →

2We consider the deck group acting on the right.
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Rn from the universal cover into Euclidean space such that the in-
tegral affine structure inherited by B̃ from the covering map agrees
with the pullback of the integral affine structure along the developing
map. In our context, the flux map is the developing map.

Remark 4.1.10. Note that B already has an integral affine structure
as it is an open subset of Rn. This does not agree with the integral
affine structure constructed in Corollary 4.1.6 unless H1, . . . ,Hn are
already action coordinates.

Remark 4.1.11. Suppose that H has some toric singularities. It
is a result of Eliasson [6] and Dufour-Molino [4] that the integral
affine structure extends over the set H(D) where D is the locus of
toric singularities. The result is an integral affine manifold with
boundary and corners. This may not be a convex polytope, and we
will see examples where it is not, but the boundary components are
nonetheless rational affine linear subspaces and the boundary and
corners are Delzant (which is a local condition).

4.2 Focus-focus singularities

We now allow our Hamiltonian system to have singularities of a new
sort (focus-focus singularities) and compute the action coordinates
in a neighbourhood of a singular fibre. The affine monodromy will
turn out to be nontrivial.

Example 4.2.1 (Local model). Consider the following pair of Pois-
son commuting Hamiltonians on (R4, dp1 ∧ dq1 + dp2 ∧ dq2),

F1 = −p1q1 − p2q2, F2 = p2q1 − p1q2.

If we introduce complex coordinates3 p = p1 + ip2, q = q1 + iq2 then
F := F1 + iF2 = −p̄q. The Hamiltonian F1 generates the R-action

3These complex coordinates are not supposed to be compatible with ω, indeed
the p-plane and q-plane are both Lagrangian.
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(p, q) 7→ (etp, e−tq). The Hamiltonian F2 generates the circle action
(p, q) 7→ (eitp, eitq). The orbits of the resulting R × S1-action are:
the origin (fixed point); the Lagrangian cylinders P := {(p, 0) :
p 6= 0} and Q := {(0, q) : q 6= 0}; and the Lagrangian cylinders
{(p, q) : p̄q = c} for c ∈ C \ {0}.

The diagram below represents the projection of R4 to R2 via

(p1, p2, q1, q2) 7→ (|p|, |q|);

the projections of the φF1
t -flowlines are the red hyperbolae (φF2

t -
flowlines project to points). The Lagrangian cylinders P and Q are
shown in blue, the fixed point is marked in black.

|p|

|q|

P

Q

•

Definition 4.2.2. A focus-focus chart for an integrable Hamilto-
nian system H : X → R2 is a pair of embeddings E : U → X
and e : V → R2 where U ⊂ R4 is a neighbourhood of the origin,
V = F (U) (where F is the Hamiltonian system in Example 4.2.1),
E∗ω =

∑
dpi ∧ dqi and H ◦ E = e ◦ F . We say that H : X → R2

has a focus-focus singularity at x ∈ X if there is a focus-focus chart
(E, e) with E(0) = x.

Remark 4.2.3. This is not the standard definition of a focus-focus
singularity: usually you only specify that H has a critical point at
x and that the Hessian of H at x agrees with the Hessian of F at 0.
The fact that these two definitions are equivalent is a special case of
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Eliasson’s normal form theorem for non-degenerate singularities of
Hamiltonian systems. For a proof of this special case, see [3].

Lemma 4.2.4. Let H : X → R2 be an integrable Hamiltonian sys-
tem with a focus-focus singularity x over the origin and no other crit-
ical points. The fibre H−1(0) is homeomorphic to a pinched torus.

Proof. The fibre H−1(0) is a union of orbits O0 ∪ O1 ∪ · · · ∪ Om
of the R2-action. One of these orbits (say O0) is the fixed point
x. The complement H−1(0) \ {x} is a 2-manifold as x is the only
critical point of H; the other orbits O1, . . . , Om are codimension
zero submanifolds, homeomorphic to one of T 2, R×S1, or R2 if the
stabiliser is isomorphic to Z2, Z or the trivial group respectively.
Since these are codimension zero submanifolds without boundary,
they are open, so O1, . . . , Om are connected components of H−1(0).
The closure of Ok is therefore either Ok or Ok ∪ {x}. There are at
most two orbits whose closure contains x, as we see by looking in a
focus-focus chart (E, e) centred at x: the orbit containing E(P ) and
the orbit containing E(Q).

Let (E, e) be a focus-focus chart centred at x. Let O1 be the orbit
containing E(P ). For each (p, 0) ∈ P , we have limt→−∞ φH1

t (E(p, 0)) =
limt→−∞E(etp, 0) = x. Since the fibres of H are compact, the se-
quence φH1

t (E(p, 0)) has a convergent subsequence whose limit lies
in H−1(0). This limit point cannot be a regular point for H: a
regular point of H has a neighbourhood

then O1
∼= R × S1. If O1 also contains E(Q) then O0 ∪ O1 is a

pinched torus and there can be no further orbits as the fibre would
be disconnected. Otherwise, let O2

∼= R×S1 be the orbit containing
E(Q). Then the union O0 ∪O1 ∪O2 is homeomorphic to a union of
two planes, hence noncompact, and the further union O0 ∪ · · · ∪Om
is still noncompact, which is a contradiction. Therefore H−1(0) =
O0 ∪O1 where O1

∼= R× S1.

The figure below shows a pinched torus fibre containing a focus-focus
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singularity. The φH1
t -flowlines are shown in red, the φH2

t -flowlines in
blue, and the fixed point is shown in black.

•

Remark 4.2.5. The same argument generalises to show that ifH−1(0)
contains m > 1 focus-focus singularities then it will form a cyclic
chain of Lagrangian spheres, each intersecting the next transversely
at a single focus-focus point (or, if m = 2, two spheres intersecting
transversely at two points).

4.3 Action coordinates

Let H : X → R2 be an integrable Hamiltonian system with a focus-
focus singularity x over the origin and no other critical points. Let
E : U → X, e : V → R2 be a focus-focus chart centred at x and, by
shrinking U and V if necessary, assume that V = {b ∈ R2 : |b| < ε}
for some ε > 0; write B := V \{0} for the set of regular values of H.
By Corollary 4.1.6, B inherits an integral affine structure, coming
from action coordinates on the universal cover B̃. The next theorem
identifies these action coordinates.

Theorem 4.3.1 (San Vu Ngo.c). The action map B̃ → R2 has the
form (

1

2π
(Tb1 + S(b) + b2θ − b1(log r − 1)) , b2

)
,

where b = b1 + ib2 = reiθ is the local coordinate on B, S(b) is a
smooth function and T is a constant.
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Proof. Recall that F : U → V denotes the model Hamiltonian from
Example 4.2.1. Observe that σ1 : V → R4, σ1(b) = (−b̄, 1) is a
Lagrangian section of F which intersects the branch Q of F−1(0).
In the proof of Lemma 4.2.4, we saw that the branch E(P ) is part
of the same R2-orbit as the branch E(Q). Therefore, if we flow
E(σ1(0)) for sufficiently long using φH1

−t , we will reach a point in
E(P ). Indeed, by shrinking V , we can assume that E(σ1(V )) is
contained in E(U). This gives a Lagrangian section of H of the
form e ◦ σ2, where, σ2 : V → R4 is a Lagrangian section of F which
intersects the branch P of F−1(0) (Figure 4.1).

P

Q

σ1(V )

σ2(V )

φH1

T

Figure 4.1: For sufficiently small V there exists T ∈ R such that
φH1

−T (σ1(V )) is a section in the focus-focus chart, intersecting the
branch P of the singular fibre.

Suppose that σ2(b) = (−α(b), β(b)). Then, since b = F (−b̄, 1), we
have ᾱ(b)β(b) = F (−α(b), β(b)) = F (φH1

−T (−b̄, 1)) = F (−b̄, 1) = b.
Over B = V \ {0}, let us write α(b) = exp(S1(b) + iS2(b)) for some
functions S1, S2. Then β(b) = be−S1(b)+iS2(b). Note that

σ2(b) = φF1

S1(b)−ln |b|φ
F2

S2(b)+arg(b)(σ1(b)).

Since φF1

T (σ1(b)) = σ2(b) by definition, we have

σ1(b) = φH1

T+S1(b)−ln |b|φ
H2

S2(b)+arg(b)(σ1(b)),
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so φF1

T+S1(b)−ln |b|φ
F2

S2(b)+arg(b) = id on the complement of the fibre

H−1(0). Since φF2
2π = id, we see that the period lattice is

Λb = Z

(
T + S1(b)− ln |b|
S2(b) + arg(b)

)
⊕ Z

(
0

2π

)
.

To find the action coordinates (f1, f2), we need to solve(
∂f1
∂b1

∂f1
∂b2

∂f2
∂b1

∂f2
∂b2

)
=

(
1

2π (T + S1(b)− ln |b|) 1
2π (S2(b) + arg(b))

0 1

)
.

The integrability condition Equation (2.2) (which is equivalent to σ2

being a Lagrangian section) becomes

∂S1

∂b2
=
∂S2

∂b1
, (4.1)

which holds if and only if S1 = ∂S
∂b1

and S2 = ∂S
∂b2

for some function

S : R2 → R.

Provided the integrability condition is satisfied, the solution is given
by f1(b) = 1

2π (Tb1 + S(b) + θb2 − b1(log r − 1)), f2(b) = b2, where
b = b1 + ib2 = reiθ.

Remark 4.3.2. In fact, any such S arises as we will show in the
next section. Moreover, Ngo.c [11] showed4 that the germ of S near
the origin is unchanged by any symplectomorphism of the system
preserving the foliation by fibres of π. We will write (S)∞ for the
Ngo.c invariant of a focus-focus singularity.

4There is a subtlety here: the germ of S can depend on the choice of focus-
focus chart. This is a finite ambiguity, overlooked in Ngo.c’s original paper, and
is discussed in [9, Section 4.3]: the actual Ngo.c invariant is an equivalence class
of germs under an action of the Klein 4-group.
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Remark 4.3.3. The action map does not descend to B: it depends
explicitly on the multivalued function θ. In fact, if one moves once
around the focus-focus singularity in the base of the Lagrangian
bundle then the action map is changed by the application of the
matrix

(
1 1
0 1

)
.

As discussed in the proof of Corollary 4.1.6, this is therefore the
monodromy of the period lattice.

Remark 4.3.4. The action map has a well-defined limit point as
r → 0. We call this limit point the base node of the focus-focus
singularity.

We conclude this section with some fundamental action domains for
different choices of fundamental domain for the covering map B̃ → B
(for the choice S ≡ 0). We include the images under the action map
of contours of constant r (in blue) and constant θ (in red).
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Figure 4.2: In left-hand figure, we see the the image of the fundamen-
tal domain {θ ∈ [−π, π)}, in the right the image of the fundamental
domain {θ ∈ [−5π/7, 9π/7)}. The fact that the plot on the right
does not “close up” is because of the monodromy: the image of the
radius θ = −5π/7 and the image of the radius θ = 9π/7 are related
by the monodromy matrix. The fact that the first plot does “close
up” is because the line θ = π is an eigendirection for the monodromy
matrix.

Figure 4.3: In the third figure, we see the image of two fundamental
domains {θ ∈ [−5π/2, 3π/2)}, related to one another by the action
of the monodromy matrix5.

5Anyone who has compulsively traced out the spiral of a raffia mat cannot
fail to be moved by this image.
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4.4 Model neighbourhoods

We now present a construction due to Ngo.c which, given a function
S : R2 → R, produces a Hamiltonian system HS : XS → R2 with a
focus-focus singularity whose Ngo.c invariant is (S)∞. We will write
Si = ∂S

∂bi
, i = 1, 2.

Take the subset X := {(p, q) ∈ R4 : |p̄q| < ε} equipped with the
Hamiltonian system F from Example 4.2.1. We will construct two
Liouville coordinate systems on different regions of this space.

We use the Lagrangian section σ1(b) = (−b̄, 1) and the coordinates
(b1, b2) on R2 to construct Liouville coordinates in a neighbourhood
of the subset {(p, q) ∈ R4 : |q| = 1}. In other words, we use the
symplectic embedding Ψ1 : (b1, b2, t1, t2) 7→ φF1

t1 φ
F2
t2 (σ1(b)), 0 ≤ t1 <

δ, t2 ∈ [0, 2π). That is

p = et1+it2 b̄, q = e−t1+it2 .

We use the Lagrangian section σ2(b) = (−eS1(b)+iS2(b), be−S1(b)+iS2(b))
and the coordinates (b1, b2) on R2 to construct Liouville coordi-
nates in a neighbourhood of the subset {(p, q) : |p| = eS1(p̄q)}. In
other words, we use the symplectic embedding Ψ2 : (b1, b2, t1, t2) 7→
φF1
t1 φ

F2
t2 (σ2(b)), 0 ≤ t1 < δ, t2 ∈ [0, 2π).

Let X ′ = {(p, q) ∈ R4 : |p̄q| < ε, |q| ≤ 1, |p| ≤ eS1(p̄q)} and let XS

be the quotient XS := X ′/ ∼, where ∼ identifies Ψ1(b, t) ∼ Ψ2(b, t).
Since the domains of Ψ1 and Ψ2 are identical and since Ψ1,Ψ2 are
symplectomorphisms, the symplectic form on X descends to this
quotient. By construction, the map H : X → R2, π(p, q) = p̄q
descends to the quotient and produces the Hamiltonian system HS

we want. Also by construction, the Ngo.c invariant is (S)∞.

Remark 4.4.1. In our earlier exposition, we flowed using φH1

−T to
relate the Lagrangian sections σ1 and σ2; in this model, we have
T = 0. Note that T can always be absorbed into a Tb1 term in S.
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4.5 The Auroux system

Like many people, I first learned of the following example from the
wonderful expository article [2] on mirror symmetry for Fano vari-
eties by D. Auroux, where it serves to illustrate the wall-crossing
phenomenon for discs.

Example 4.5.1 (Auroux system). Fix a real number c > 0. Con-
sider the Hamiltonians (H1, H2) : C2 → R2 defined by H1(z1, z2) =
1
2 |z1z2 − c|2 and H2(z1, z2) = 1

2

(
|z1|2 − |z2|2

)
. The flow of H2 is

φH2
t (z1, z2) = (eitz1, e

−itz2). This shows that {H1, H2} = 0, be-
cause H1 is constant along the flow of H2 (see Lemma 2.2.8). The
flow of H1 is harder to compute. We can nonetheless understand
the orbits of this system geometrically.

Consider the holomorphic map π : C2 → C, π(z1, z2) = z1z2. This is
a conic fibration: the fibres π−1(p) are smooth conics except π−1(0)
which is a singular conic (union of the z1- and z2-axes).

Cr

C

0 c •

The Hamiltonian H1 measures the squared distance in C from z1z2

to some fixed point c. The level set H−1
1 (r) is therefore the union

of all conics living over a circle Cr of radius
√

2r centred at c (the
red circles in the figure). The restriction of H2 to each conic can
be visualised as a “height function” whose level sets are circles as
shown below. The level set H−1(r1, r2) is therefore the union of all
circles of height r2 in conics living over the circle Cr. These level
sets are clearly tori, except for the level set

(
1
2 |c|

2, 0
)
, which is a
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pinched torus.

Cr1

H−1(r1, r2)

r2

•

C|c|2/2

H−1(|c|2/2, 0)

•

It is an exercise to check that this system has a focus-focus singular-
ity at (0, 0). It also has toric singularities along the conic z1z2 = c.

4.5.1 Fundamental action domain

Lemma 4.5.2. There is a fundamental action domain for this sys-
tem of the form

{(x1, x2) : 0 ≤ x1 ≤ f(x2)} \ {(x1, 0) : x1 ≥ m}

for some function f : R → (0,∞) and some number m > 0 (see
Figure 4.4). The affine monodromy, on crossing the branch cut

{(x1, 0) : x1 ≥ m}, is

(
1 1
0 1

)
.

Remark 4.5.3. Finding f and m precisely along with the actual map
from Ũ to this domain is a nontrivial task. Technically, we should
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×

Figure 4.4: The fundamental action domain from Lemma 4.5.2.

also specify whether the monodromy is to be applied when we cross
the branch cut clockwise or anticlockwise around the singularity; in
this case we can always postcompose with a reflection x2 7→ −x2 to
switch these two, so it is not important.

Proof of Lemma 4.5.2. The image H(C2) is the closed right half-
plane: H1 is always positive and H2 can take on any value. The
vertical boundary of the half-plane is the image of the toric boundary
(the conic z1z2 = c). The point p =

(
1
2 |c|

2, 0
)

is the image of the
focus-focus singularity (0, 0) and B = H(C2) \ {p}.

The Hamiltonian H2 gives a 2π-periodic flow, so the change of coor-
dinates of R2 which gives action coordinates has the form (x1, x2) 7→
(G1(x1, x2), x2)) for some (multiply-valued) function G1. In par-
ticular, the monodromy of the integral affine structure around the
focus-focus singularity simply shifts amongst the branches of G1,

so has the form

(
1 1
0 1

)
. We may make a branch cut along the

line R =
{

(x1, 0) : x1 >
1
2 |c|

2
}

to get a simply-connected open set

U = B \ R and pick a fundamental domain Ũ lying over U in the
universal cover p : B̃ → B.

We first compute the image {(G1(0, x2), x2) : x2 ∈ R} of the line
0 × R under the action coordinates. We know by Remark 4.1.11
that this will be a straight line S with rational slope. Moreover,
there is a visible Lagrangian disc {(z, z̄) : |z|2 ≤ c} with boundary
on z1z2 = c; this visible disc lives over the horizontal line segment
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{(x1, 0) : x1 ≤ |c|2/2} under the map H and hence over a horizontal
line segment {(G1(x1, 0), 0) : x1 ≤ |c|2/2} in the image of action
coordinates. Since this is a disc, not a pinwheel core, comparison
with the local models from Example 3.4.6 shows that the line S must
slope 1/n for some integer n. In particular, postcomposing action

coordinates with an integral affine shear

(
1 −n
0 1

)
, we get that S

is vertical (we always have the freedom to postcompose our action
coordinates with an integral affine transformation). Now it is clear
that the fundamental action domain has the required form, where
f(x2) = supx1∈[0,∞)G1(x1, x2) and m = G1(p).

4.5.2 Different branch cuts

We can always pick a different simply-connected domain U ⊂ B
to get well-defined action coordinates, as illustrated in Figure 4.2.
This will not in general “close-up”, and there will be two branch cuts
related by the affine monodromy. We plot some of the associated
pictures below as the branch cut under goes a full rotation. It is
important to emphasise that all of these are fundamental action do-
mains for the same Hamiltonian system on the same manifold; they
differ only in the choice of a fundamental domain for the covering
space B̃ → B.

× × × × ×

Figure 4.5: The Auroux system seen with different branch cuts; as
we move from left to right in the figure, we see the branch cut rotate
by 360 degrees. The final picture is related to the first by the affine
monodromy.
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Remark 4.5.4. In some of these pictures, the toric boundary ap-
pears “broken”. This is an artefact of the fact that it intersects the
branch cut: the two segments of the toric boundary are related by
the affine monodromy and therefore form one straight line in the
integral affine structure. If you want to check this, I have chosen

the affine monodromy to be

(
1 −1
0 1

)
as you cross the branch cut

anticlockwise, so, for example in the fourth picture from the left, the

tangent vector

(
0
−1

)
to the line above the branch cut gets sent

to

(
1 −1
0 1

)(
0
−1

)
=

(
1
−1

)
below the branch cut, which is

tangent to the continuation of the boundary.

Moreover, we can apply an integral affine transformation to any

of these diagrams. Applying the matrix

(
1 0
1 1

)
to the fourth

diagram from the left yields Figure 4.6 which will be important in
the next chapter. The point is that away from the branch cut,
the affine manifold looks like the standard Delzant corner. We will
see that this means we can always “implant” this local Hamiltonian
system whenever we have a polygon with a standard Delzant corner,
an operation known as a nodal trade.

×

Figure 4.6: Another fundamental action domain for the Auroux sys-
tem.



58 4.6. Symington’s theorem

4.5.3 Visible Lagrangians

In our analysis of the Auroux system, the visible Lagrangian disc
{(z, z̄) : |z|2 ≤ c} played an important role. The following re-
sult tells us that we can always find such a disc near a focus-focus
singularity.

Lemma 4.5.5. Let H : X → R2 be an integrable Hamiltonian sys-
tem with a focus-focus singularity at x ∈ X, let B be the set of
regular values and B̃ its universal cover, and let I : B̃ → R2 be the
developing map for the integral affine structure on B coming from
action coordinates. Let p ∈ R2 be the base node of x. Suppose
that ` is a straight ray in R2 emanating from b and that ` points in
an eigendirection for the affine monodromy around the singularity.
Then there is a visible Lagrangian disc living over `.

Proof. In the focus-focus chart we can simply use the Lagrangian
disc q = p, which satisfies F (p, p) = −p̄p, so this lives over the
negative x1-axis (x2 = 0). By Theorem 4.3.1, passing to action
coordinates preserves this line, which is an eigenray of the affine
monodromy.

Definition 4.5.6. By analogy with the (slightly different6) situation
in Picard-Lefschetz theory, this visible Lagrangian disc is called the
vanishing thimble for the focus-focus singularity, and its intersection
with any fibre over the ray ` is a loop called the vanishing cycle.

4.6 Symington’s theorem

We now present an argument of Symington [?] which tells us that,
although the Ngo.c models HS0 : XS0 → R2, HS1 : XS1 → R2 with

6In Picard-Lefschetz theory, we have a holomorphic fibration instead of a
Lagrangian fibration, but the thimble is still a Lagrangian disc.
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(S0)∞ 6= (S1)∞ are not symplectomorphic via a fibred symplecto-
morphism, there is nonetheless a symplectomorphism XS0

→ XS1

which is fibred outside a compact set.

Theorem 4.6.1 (Symington). Let S0 : R2 → R and S1 : R2 → R be
smooth functions which coincide on the complement of a small disc
D centred at the origin and let HS0

: XS0
→ R2 and HS1

: XS1
→ R2

be the corresponding Ngo. c models. Then there is a symplectomor-
phism ϕ : XS0 → XS1 which restricts to a fibred symplectomorphism
H−1
S0

(R2 \D)→ H−1
S1

(R2 \D).

Proof. Pick a family St interpolating between S0 and S1 such that
St|R2\D = S0|R2\D. Consider the family of symplectic manifolds

XSt ; the subsets H−1
St

(R2 \ D) are canonically symplectomorphic.
There is a diffeomorphism ϕt : XS0

→ XSt which extends this canon-
ical symplectomorphism, so we obtain a family of symplectic forms
ϕ∗tωSt on XS0 . These are all exact forms and the derivative d

dtϕ
∗
tωSt

vanishes outside H−1
S0

(R2 \D). Therefore, by Moser’s trick (see ex-
ercises), there are diffeomorphisms φt : XS0

→ XS0
, equal to the

identity outside H−1
S0

(R2 \D), such that φ∗tϕ
∗
tωSt = ωS0 . The sym-

plectomorphism we want is ϕ := ϕ1 ◦ φ1 : XS0 → XS1 .

4.7 Exercises

Exercise 4.7.1. Verify that the flows of the Hamiltonians F1, F2

from Example 4.2.1 are as claimed, and that the Hamiltonians Poisson-
commute.

Exercise 4.7.2. Check that σ2(b) = (eS1(b)+iS2(b), be−S1(b)+iS2(b))
is a Lagrangian section of the focus-focus system if and only if ∂S1

∂b2
=

∂S2

∂b1
.

Exercise 4.7.3. Check that the Hessian of H1 at the origin in the
Auroux system at the agrees (up to a symplectic change of basis)
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with that of F1 from Example 4.2.1. Together with Remark 4.2.3,
this shows that the Auroux system has a focus-focus singularity at
the origin.

Exercise 4.7.4. In this exercise, we use the notation from Sec-
tion 4.1, but we will allow [ω] 6= 0 ∈ H2(X; R) and attempt to
define flux coordinates. Pick a point b̃ ∈ B̃. For every b̃′ ∈ B̃, pick
a path γ from b̃ to b̃′. For each i = 1, . . . , n, let Ci be a cylinder
living over so that Ci ∩ H−1(p(γ(t))) is a circle in the homology
class ci(γ(t)). Let Ii(b̃

′) =
∫
Ci
ω. Show that the resulting map

I = (I1, . . . , In) : B̃ → Rn is well-defined independently of choices
and that it agrees with the flux map in Definition 4.1.1 when ω is
exact.

Exercise 4.7.5. Moser’s trick...

Exercise 4.7.6. Take the wedge in R2 spanned by the rays (0, 1)
and (p, q) and let X be the associated (singular) toric manifold. By
Exercise 3.5.3, we know that the preimage of the line {(x, 1) : x ∈
[0, p/q]} is a lens space L(p, q). By applying suitable integral affine
transformations to this wedge, prove that the lens space L(p, q+np)
is diffeomorphic to L(p, q) for all integers n. Now reflect the wedge in

the vertical axis, find a matrix M ∈ SL(2,Z) such that M

(
p
q

)
=(

0
1

)
and hence show that L(p, q) is diffeomorphic to L(p, q̄) where

qq̄ = −1 mod p.

Exercise 4.7.7. Let p(z) be a polynomial of degree n + 1 with
n + 1 distinct roots. Let An = {(x, y, z) ∈ C3 : xy + p(z) = 0}.
By considering the conic fibration π : An → C, π(x, y, z) = z, find
integrable Hamiltonian systems H : An → R2 with the following
properties:

1. When p(z) = zn+1− 1, a line of toric singularities and a single
fibre with n+ 1 focus-focus singularities.
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2. When p(z) = (z − 1)(z − 2) · · · (z − (n + 1)), a line of toric
singularities and n + 1 focus-focus singularities whose affine
monodromies are the same.

In each case, sketch a fundamental action domain for the system.
Using your solution to Exercise 3.5.3, show that the noncompact
end of An is modelled on the lens space L(n+ 1, n).

Exercise 4.7.8. Let p, q be coprime positive integers, 1 ≤ q <
p. Consider the action of the group µp of pth roots of unity on
the variety Ap−1 = {xy + zp = 1} from Exercise 4.7.7 given by
µ · (x, y, z) = (µx, µ−1y, µqz), µ ∈ µp. Check that this action is free
and that π(µ · (x, y, z)) = µπ(x, y, z). Deduce that the Hamiltonian
system H from Exercise 4.7.7 descends to a system H̄ : Bp,q → R2

on the quotient space Bp,q := Ap−1/µp with a single focus-focus
singularity and H(Ap−1) = H̄(Bp,q). By mimicking Exercise 3.5.2,
find a fundamental action domain for H̄ and show that Bp,q contains
a Lagrangian (p, q)-pinwheel, that is a 2-dimensional CW complex
obtained by capping off a Lagrangian (p, q)-pinwheel core with a
Lagrangian disc.

Exercise 4.7.9. Generalise Exercise 4.7.8 to the case where µp acts
(by the same formula) on {xy + (zp − 1)(zp − 4) · · · (zp − d2) = 0}.

Exercise 4.7.10. Consider the variety X ⊂ CP2 ×CP2, given in
homogeneous coordinates ([a1 : a2 : a3], [b1 : b2 : b3]) by

∑
aibi = 0

(this is the flag 3-fold). Let Y ⊂ X be the subvariety a1b1 = a3b3.
Consider the holomorphic map

π : X \ Y → C, π(a, b) =
a2b2

a3b3 − a1b1
.

The general fibre of this map is biholomorphic to (C×)2, but there
are singular fibres over −1, 0, 1. Let c < −1 be a real number. Show
that the function H : X \ Y → R3 defined by

H(a, b) =

(
1

2

(
|a1|2

|a|2
− |b1|

2

|b|2

)
,

1

2

(
|a3|2

|a|2
− |b3|

2

|b|2

)
,

1

2
|π(a, b)− c|2

)
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is a Lagrangian torus fibration. The singularities comprise a plane of
toric singularities and three lines of focus-focus singularities7. Sketch
the image of H. Check that the maps

L±(θ, φ, y) =
([
eiθ
√

1± y : eiφ
√

2y :
√

1∓ y
]
,[

−e−iθ
√

1± y : ±e−iφ
√

2y :
√

1∓ y
])

define two Lagrangian 3-spheres in X \ Y and sketch their images
under H. Here, we are thinking of the 3-sphere as a family of 2-tori
(each having coordinates (θ, φ)) parametrised by y ∈ [0, 1] such that
the φ-circle collapses as y → 0 and the θ-circle collapses as y → 1.

Remark 4.7.11. These examples all come from smoothings of singu-
larities. If we write 1

n (1,m) for the cyclic quotient singularity from
Exercise 3.5.2 then:

• the An space from Exercise 4.7.7 is a smoothing of the An-
singularity 1

n+1 (1, n);

• the Bp,q space from Exercise 4.7.8 is a smoothing of the Wahl
singularity 1

p2 (1, pq,−1);

• the space from Exercise 4.7.9 is a smoothing of the singu-
larity 1

dp2 (1, dpq − 1). These form an important class of T-

singularities (surface singularities which admit a Q-Gorenstein
smoothing, see [7]);

• the space from Exercise 4.7.10 is a smoothing of the 3-fold
singularity obtained by taking a cone on the surface Y , which
is itself a 3-point blow-up of CP2.

In the first three cases, note that the fundamental action domain can
be obtained from the moment polygon we found in Exercise 3.5.2 by
making some (collinear) branch cuts.

7For 6-dimensional Hamiltonian systems, with local coordinates
(p1, p2, p3, q1, q2, q3), this means that the local model is F1 = −p1q2 − p2q2,
F2 = p2q1 − p1q2, F3 = p3.
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Almost toric manifolds

5.1 Lagrangian torus fibrations

It will be convenient to allow our integrable Hamiltonian systems to
have targets other than Rn, so we introduce some new terminology.

Definition 5.1.1. Recall that a stratification of a topological space
B is a filtration

∅ =: B−1 ⊂ B0 ⊂ · · · ⊂ Bd ⊂ Bd+1 ⊂ · · · ⊂ B,

where each Bd is a closed subset such that, for each d, the d-stratum
Sd(B) := Bd \ Bd−1 is a smooth d-dimensional manifold (possibly
empty) and B =

⋃
d≥0Bd. We say that B is finite-dimensional if

the d-stratum is empty for sufficiently large d, and we say that B is
n-dimensional if B is finite-dimensional and n is maximal such that
Sn(B) is nonempty (in this case we call Sn(B) the top stratum).

We adopt the following working definition of a Lagrangian torus
fibration.

63
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Definition 5.1.2. Let (X,ω) be a 2n-dimensional symplectic mani-
fold and B be an n-dimensional stratified space. A Lagrangian torus
fibration H : X → B is a proper continuous map such that H is a
smooth submersion over the top stratum with Lagrangian fibres and
the other fibres are themselves stratified spaces with isotropic strata.
We call Sn(B) the regular locus of H and B\Sn(B) the discriminant
locus.

In Exercise 2.6.10, we saw the following result:

Theorem 5.1.3. Let H : X → B be a Lagrangian torus fibration
and let b ∈ B be a point in the top stratum. Let U ⊂ B be an
open neighbourhood of b with local coordinates (b1, . . . , bn). Then the
functions Hi := bi ◦ H : X → Rn form an integrable Hamiltonian
system. In particular, H−1(b) is a Lagrangian torus by the Arnol’d-
Liouville theorem.

Definition 5.1.4. An almost toric fibration is a Lagrangian torus
fibration H : X → B on a 4-dimensional symplectic manifold such
that the discriminant locus comprises a collection of 0- and 1-dimensional
strata such that the smooth structure on B extends over these strata,
H is smooth with respect to this extended smooth structure and has
either toric or focus-focus singularities there.

5.2 Operations

5.2.1 Nodal trade

Recall from Figure 4.6 that there is an almost toric structure on
C2 which admits a fundamental action domain as drawn on the left
in Figure 5.1 below. The red region in the figure is integral affine
equivalent to the green region in the figure on the right, which is
a subset of the moment polygon for the standard torus action on
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C2. This means that the preimages of these two regions are fibred-
symplectomorphic.

×

Figure 5.1: Left: A fundamental action domain for the Auroux sys-
tem on C2; a subset is marked in red. Right: The moment image
for the standard torus action on C2; the subset marked in green is
clearly integral affine equivalent to the red subset on the right.

In particular, whenever we see a Delzant corner, we can excise it and
glue in a copy of the Auroux system, using this fibred symplectomor-
phism to make identifications. Since the identifications are fibred,
this operation yields a new Lagrangian torus fibration on the same
manifold1. In fact, there are many different operations, one for each
Ngo.c model, but the results are all (non-fibred) symplectomorphic
to one another by Symington’s Theorem 4.6.1. We call an operation
like this a nodal trade.

Remark 5.2.1. The toric boundary near a Delzant corner comprises
two symplectic discs meeting transversally at the vertex. When you
perform a nodal trade, the toric boundary becomes a symplectic
annulus which is a smoothing of this pair of discs. For example, in
the Auroux system this is the smoothing from z1z2 = 0 to z1z2 = c.

Example 5.2.2. Here are some Lagrangian torus fibrations on CP2:

1To see that the manifold does not change, observe that we are exciting a
symplectic ball and gluing in another symplectic ball with the same boundary
(a contact 3-sphere). Any contactomorphism of the boundary sphere extends
over the ball, because the contactomorphism group of the 3-sphere is connected
[?].



66 5.2. Operations

×

×

×

×

××

The nodal trade in the lower left corner should look familiar; we call
this a standard Delzant corner. To find the eigendirection for any
Delzant corner p, if A is the unique integral affine transformation
which maps the standard Delzant corner to p then then the eigendi-

rection at p is A

(
1
1

)
. For example, the top left corner is the

image of the standard Delzant corner under

(
0 1
−1 −1

)
, so the

eigendirection is (1,−2), as shown.

As noted in Remark 4.5.4, although the toric boundary looks like
three line segments, every time it crosses a branch cut you have to
apply the affine monodromy to its tangent vector, so the apparent
breaks in the line when it crosses a branch cut are just an illusion:
it is really an uninterrupted straight line in the affine structure. In
the three examples above, the toric boundary comprises:

• a conic and a line (two spheres intersecting transversely at two
points, one having twice the symplectic area of the other),

• a nodal cubic curve (pinched torus having symplectic area
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three),

• a smooth cubic curve (torus having symplectic area three).

This should make sense: the toric boundary for the usual toric pic-
ture of CP2 comprises three lines and these configurations above
are obtained by smoothing one or more intersections between these
lines. Although I have used the terminology “line”, “conic”, and
“cubic” from algebraic geometry, it is not clear for these new inte-
grable Hamiltonian systems whether the toric boundary is actually
a subvariety for the standard complex structure. It is, at least, a
symplectic submanifold (immersed, where there are double points),
and it is known that low-degree symplectic surfaces in CP2 are iso-
topic amongst symplectic surfaces to subvarieties, hence the abuse
of terminology.

The figures on the next three pages show the image of the developing
map for the integral affine structure in these three cases.
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Figure 5.2: The image of the developing map for an almost toric
structure on CP2 obtained from the standard moment triangle by
a single nodal trade in the lower left corner.
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Figure 5.3: The image of the developing map for an almost toric
structure on CP2 obtained from the standard moment triangle by
a nodal trade in the lower left corner and a nodal trade in the lower
right corner.
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Figure 5.4: The image of the developing map for an almost toric
structure on CP2 obtained from the standard moment triangle by
nodal trades in all three corners.

5.2.2 Remark on monodromy

Recall from Remark 4.5.4 that the diagram below has affine mon-

odromy

(
1 −1
0 1

)
as we go anticlockwise around the branch cut
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in order for the broken line to be “straight” in the integral affine
structure.

×

Suppose that we have a nodal trade related to this one by an integral

affine transformationA; then its affine monodromy isA

(
1 −1
0 1

)
A−1.

Example 5.2.3. Consider this diagram:

×

This is related to the previous one by the matrix A =

(
0 1
−1 −1

)
,

so the affine monodromy is

(
2 −1
1 0

)
.

More generally, if the eigenray points in the direction

(
p
q

)
then the

matrix

(
1 + pq −p2

q2 1− pq

)
(or its inverse) is the affine monodromy.

5.2.3 Mutation

When finding a fundamental action domain, we have the freedom to
choose a fundamental domain for the action of the deck group on the
universal cover. Often, we choose a fundamental domain by making
a branch cut from a base node out in the eigendirection of its affine
monodromy. If v is an eigenvector then there are two choices: a ray
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in the positive v-direction and a ray in the negative v-direction. We
can switch between the two by rotating the branch cut through 180
degrees, as we did in Figure 4.5; this operation is called a mutation
(in fact, in that figure, we rotated by 360 degrees, performing two
mutations).

Under a mutation, the fundamental action domain transforms in
the following way: it is sliced in two by the eigenray, and the affine
monodromy (or its inverse2) is applied to one of the two pieces.

Example 5.2.4. Take a Lagrangian torus fibration on CP2 (ob-
tained by a nodal trade from the moment triangle) whose funda-
mental action domain is as shown in the following picture.

×
•

•

•

•

•

•

The affine monodromy is

(
2 −1
1 0

)
as we go anticlockwise around

the base node. If we perform a mutation, rotating the branch cut
anticlockwise through 180 degrees, then the result is:

2Assume that the affine monodromy is M as we move anticlockwise around
the base node. Then, if we are rotating the branch cut anticlockwise then we
apply M , while if we are rotating clockwise then we apply M−1.
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×

•

•

•

•

•

•

We superimpose the two pictures for easier comparison.

×

•

•

•

•

•

•

•

•

5.2.4 Nodal slide

Note that there is a free parameter c > 0 in the Auroux system.
As this parameter varies, we obtain a family of Lagrangian torus
fibrations in which the focus-focus singularity moves in the direction
of the eigenvector for its affine monodromy (see Figure 5.5). Such a
family of fibrations is called a nodal slide.



74 5.3. Examples

×

×

Figure 5.5: A nodal slide.

5.3 Examples

5.3.1 CP2 and Markov triples

By combining mutations and nodal trades, we can construct in-
finitely many inequivalent Lagrangian torus fibrations on the same
manifold. The simplest example of this is CP2, where the construc-
tion was exploited by Vianna [?] to construct infinitely many distinct
Hamiltonian isotopy classes of monotone Lagrangian tori.

Start with the moment triangle and make three nodal trades:

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

×

××

Pick one of the nodes, and slide it towards the opposite edge.

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

×

×
×

Once it has gone beyond the barycentre of the triangle, perform a
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mutation.

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

×

×

×

Now one can repeat this process ad infinitum, picking a different
node each time.

To see that you get a different torus fibration in the example above,
you can argue as follows. In the first picture, take the eigenray
from the lower right node pointing towards the left edge. There
is a visible Lagrangian RP2 over this ray whose centre is at the
focus-focus singularity and meets the toric boundary along the core
circle of a Möbius strip. In the final picture, this node has moved to
the bottom left, and the same eigenray now points towards the top
right edge; the visible Lagrangian is no longer an RP2, as the visible
Lagrangian Möbius strip has been replaced by a visible Lagrangian
(5, 1)-pinwheel core. This difference in topology distinguishes the
torus fibrations.

Remark 5.3.1. It is important to remember that it is the nodal slide
which is changing the torus fibration, not the mutation (which only
changes the way it is represented).

Remark 5.3.2. Note that all the eigenrays meet at the barycentre
of the triangle, which is why we need to nodally slide beyond the
barycentre.

Remark 5.3.3. Visible Lagrangians obtained by capping a (p, q)-
pinwheel core with a disc are quite common in this context, and
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we call them Lagrangian (p, q)-pinwheels.

Theorem 5.3.4 (Vianna [?, ?]). The polygons you obtain by iter-
ated mutation and sliding are in bijection with the Markov triples,
that is positive integers a, b, c such that a2 + b2 + c2 = 3abc. If we
write T (a, b, c) for the barycentric fibre of the polygon associated to
a, b, c then T (a, b, c) is a monotone Lagrangian torus and the tori as-
sociated to distinct Markov triples are not related by a Hamiltonian
isotopy.

Remark 5.3.5. Each polygon looks like a triangle with three nodes,
where each node is connected to a vertex by a branch cut. Over the
branch cuts we find visible Lagrangian pinwheels La,qa , Lb,qb , Lc,qc
for some numbers qa, qb, qc. These pinwheels are clearly disjoint
from T (a, b, c) as the branch cuts avoid the barycentre. For exam-
ple T (1, 1, 2) (the Chekanov torus) is disjoint from the Lagrangian
L2,1

∼= RP2.

Remark 5.3.6. In all of these Lagrangian torus fibrations, the toric
boundary is a symplectic torus in the homology class of a smooth
cubic curve. Sikorav [?] has shown that such symplectic tori are all
Hamiltonian isotopic to a fixed smooth cubic curve C, so using this
Hamiltonian isotopy, we can ensure that the Vianna tori live in the
complement of C.

Remark 5.3.7. One can play a similar game with many rational
surfaces beyond CP2, see [?].

5.3.2 Blow-up

Theorem 5.3.8. Let X be a symplectic 4-manifold with a Lagrangian
torus fibration H : X → B. Suppose that x ∈ X is a point on the
toric boundary. Then there is a Lagrangian torus fibration on the
symplectic blow-up of X at x; the fundamental action domain is
obtained from the domain before the blow-up by an operation on sin-
gular integral affine manifolds affine-isomorphic to that shown in the
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diagram below.

×

Remark 5.3.9. The observant reader will note that we should specify
the size of the symplectic ball we are blowing up. One can read this
from the affine geometry: the affine area of the triangular segment
we are excising will be proportional to the volume of the symplec-
tic ball we are blowing up. By affine area, I mean that the trian-
gular segment is affine-isomorphic to the triangle with vertices at
(0, 0), (1, 0), (0, 1), and its affine area is defined to be square of the
determinant of the linear part of this affine isomorphism.

Remark 5.3.10. The affine monodromy is

(
1 1
0 1

)
, so the image

of the toric boundary for the blow-up forms a straight line in the
integral affine structure. The toric boundary in the blow-up is the
proper transform of the original toric boundary.

Proof. It suffices to find a Lagrangian torus fibration on the holo-
morphic blow-up of R× S1 ×C at the point (0, 1, 0) such that the
fundamental action domain is the subset shown on the right-hand
side of the figure in the statement of the theorem.

We have seen that O(−1) is toric with moment polygon:
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Make a nodal trade at the bottom left corner and a nodal slide so
that if you drop a vertical from the node it hits the slanted edge:

×

Sweep the branch cut around clockwise until we obtain the following
diagram:

×

If we excise the horizontal part of the toric boundary and apply the

affine shear

(
1 0
−1 1

)
to the diagram then we obtain something

which locally resembles the right-hand figure in the statement of the
theorem. It remains to show that the space we have just constructed
is Bl(0,1,0)(R× S1 ×C).

Note that if we identify R× S1 with C∗ then Bl(0,1,0)(R× S1 ×C)
can be written as the variety

{(x, y, [a : b]) ∈ C∗ ×C×CP1 : ay = b(x− 1).

This can be embedded holomorphically into O(−1) = {(z1, z2, [a :
b]) : az2 = bz1} via (x, y, [a : b]) 7→ (x+1, y, [a : b]); the complement
of the image of this embedding is the section {z1 = 1} ⊂ O(−1).
This is the graph of a meromorphic section of O(−1) with a pole at
[1 : 0].
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The part of the toric boundary we excised was a symplectic 2-plane
which, I claim, is symplectically isotopic to this graph, which com-
pletes the proof. To see this, note that the toric boundary before the
nodal trade comprised the zero-section and two fibres of the bundle
O(−1) → CP1. When we performed a nodal trade, the new toric
boundary became (up to symplectic isotopy) a union of two 2-planes,
one isotopic to a fibre and one isotopic to the connected sum of a
fibre with the zero-section. If we think of the union of a fibre and the
zero-section as the “graph” of a section modelled on a δ-function,
then the connected sum of a fibre with the zero-section is the graph
of a section with a pole.

Remark 5.3.11. We can see a symplectic sphere E with E2 = −1 if
we look at the fundamental action domain for the blow-up. It lives
over the vertical branch cut, and intersects each torus fibre in an
orbit of H2 (where H2 is the composition of the action coordinates
with the projection to the vertical axis). This is precisely the loop
in the torus fibre which collapses at the focus-focus singularity, and
which collapses to a point at the toric boundary, so over all we get
a sphere. It is easy to check that it is symplectic (to get a visible
Lagrangian we would need to take an orbit of H1 over each point
in this line). The fact that it has square −1 is simply because it
defines a primitive class in the homology of O(−1) (for example
it has intersection number 1 with the toric boundary considered
as a cycle in relative homology) and H2(O(−1); Z) is Z · E where
E2 = −1.

Remark 5.3.12. By rotating the branch cut, we obtain another fun-
damental action domain for this space, shown below.

×
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5.3.3 Rational elliptic surface, K3 surface

Let P,Q be two homogeneous cubic polynomials in three variables
and let λP+µQ be a family of cubics parametrised by [λ : µ] ∈ CP1.
This gives a pencil of plane cubic curves:

C[λ:µ] = {[x : y : z] : λP (x, y, z) + µQ(x, y, z) = 0} ⊂ CP2.

These curves all intersect at the points {[x : y : z] : P (x, y, z) =
Q(x, y, z) = 0}; this set is called the base locus of the pencil. For a
generic choice of P,Q, the base locus comprises nine distinct points
and there are twelve cubics in the pencil which are singular (having
one node each).

If we blow-up the nine basepoints then we get a surface X with a
well-defined map X → CP1 whose generic fibres are elliptic curves.
This is called a rational elliptic surface (the map is called an elliptic
fibration). Figure 5.6 depicts a Lagrangian torus fibration on X,
with twelve focus-focus singularities, such that the toric boundary
is (symplectically isotopic to) a fibre of the elliptic fibration.

If we take a pair of basis vectors and transport them around a loop
very close to the boundary in this fundamental action domain, the
total monodromy is trivial. This means that a neighbourhood of the
boundary in the integral affine base is isomorphic to a neighbourhood
of S1 × {0} in the integral affine manifold S1 × [0,∞), so the toric
boundary of X is a symplectic torus with self-intersection zero.

There is an operation, called fibre sum or Gompf sum, which, given
two symplectic 4-manifolds containing a torus of square zero, pro-
duces a new symplectic 4-manifold by cutting out neighbourhoods
of these tori and identifying the common boundaries. In our case,
the Lagrangian torus fibration clearly extends over the fibre sum;
the integral affine base in a neighbourhood of the fibre sum surgery
changes from S1× (−∞, 0]∪ [0,∞) to S1×R, so the toric boundary
disappears after fibre sum. The fibre sum of two rational elliptic sur-
faces along an elliptic fibre is called a K3 surface. We have therefore
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constructed a Lagrangian torus fibration on a K3 surface with 24
focus-focus singularities and no toric boundary. The integral affine
base is a 2-sphere with 24 base nodes.

× × ×

×

×

× ×

×

×

×

×

×

Figure 5.6: A Lagrangian torus fibration on a rational elliptic sur-
face. There are six visible Lagrangian spheres living over the six
blue arcs; if we blew up differently-sized balls these spheres would
not exist.
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5.4 Exercises

×

××

Exercise 5.4.1. Consider the Lagrangian torus fibration on CP2

obtained from the standard moment triangle by making three nodal
trades (see diagram above, ignoring the blue lines for now). What
are the affine monodromies for the three focus-focus singularities?
Check that the toric boundary is a straight line closed loop in the
affine structure on the base.

Exercise 5.4.2. The blue lines in the diagram above are visible La-
grangian discs with boundary on the barycentric torus fibre. Sketch
the boundaries of these discs in the torus fibre (easiest if you repre-
sent the torus as a square with opposite sides identified).

Exercise 5.4.3. The diagram below shows a Lagrangian torus fi-
bration on CP2 obtained from the standard moment triangle by two
nodal trades and one mutation. Show that the visible Lagrangian
over the red line is a Lagrangian pinwheel L5,1. Perform another
mutation by switching the branch-cut that points in the direction
of this red edge and find a Lagrangian L13,2 in the result. ** Prove
that CP2 contains Lagrangian pinwheels of the form LF2n+1,F2n−3

for
all n, where F1, F2, F3, F4, F5, F6, F7, . . . ,= 1, 1, 2, 3, 5, 8, 13, . . . are
the Fibonacci numbers. (More generally, allowing mutations from
all three focus-focus singularities, we obtain triples of pairwise dis-
joint visible Lagrangian pinwheels in bijection with Markov triples:
triples of positive integers a, b, c satisfying a2 + b2 + c2 = 3abc.)
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×

×

Exercise 5.4.4. Suppose that X has a Lagrangian torus fibration
where the singular fibres are only of focus-focus type. Find the Euler
characteristic of X. What is the Euler characteristic of a K3 surface?

Exercise 5.4.5. Nemirovski and Shevchishin proved, independently
and in very different ways, that there is no embedded Lagrangian
Klein bottle in CP2. Why is the following picture not a counterex-
ample to their theorem? ** If it’s not an embedded Lagrangian
Klein bottle, what is it?
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Exercise 5.4.6. Draw some Lagrangian torus fibrations on the 3-
point blow-up of CP2 by nodal-trading and mutating away from the
standard moment hexagon:



Chapter 6

Ruan’s construction

In this final lecture, we ask the question: where do Lagrangian torus
fibrations come from? We have seen that one important source of
Lagrangian torus fibrations is toric varieties. We will now present
an idea, due to Ruan, which constructs Lagrangian torus fibrations
on projective varieties which admit a toric degeneration.

6.1 Symplectic parallel transport

Definition 6.1.1 (Degeneration). A degeneration is a surjective
holomorphic map π : X → S where X is a variety and S is a complex
curve. The fibres of the degeneration we will write as Xz := π−1(z)
for z ∈ S. A toric degeneration is a degeneration in which one of
the fibres is a union of (possibly singular) irreducible toric varieties
where the union is taken along toric subvarieties.

We tend to think of a degeneration as a family of varieties interpo-
lating between a smooth fibre and another specific (usually singular)

85
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fibre. For those who are versed in the language of algebraic geom-
etry, if π is moreover an algebraic map then it is a flat family of
varieties (by [?, III, Proposition 9.7]).

Example 6.1.2. The map π : Cn → C, π(z1, . . . , zn) = z1 · · · zn is
a toric degeneration; the singular fibre is z1 · · · zn = 0, which is a
union of hyperplanes, intersecting along linear subspaces.

Example 6.1.3. Let P,Q are homogeneous polynomials of degree
d in n+ 1 variables, let X = {(z, [λ : µ]) ∈ CPN ×CP1 : λP (z) +
µQ(z) = 0} and consider the projection π : X → CP1. This is
a degeneration. If P (z1, . . . , zn+1) = z1 · · · zn+1 then it is a toric
degeneration (where the specific singular fibre is π−1([1 : 0])) and
the smooth fibres are Calabi-Yau varieties of dimension n− 1.

Definition 6.1.4. Suppose we are given a degeneration π : X → S,
a Kähler manifold (Y, ω) and a holomorphic map F : X → Y such
that F |Xz : Xz → Y is an embedding for all z ∈ S. Let Ω = F ∗ω and
write ωz for the pullback of Ω to Xz. Although Ω is closed, it could
fail to be nondegenerate. However, for each z ∈ S, ωz is a symplectic
form on the smooth locus of Xz because F is holomorphic. Write V
for the vertical distribution on X \ crit(π), that is the distribution
with Vx = Txπ

−1(π(x)). A symplectic connection on the regular
locus of π is a distribution ξ on X \ crit(π) such that:

• ξ is complementary to the vertical distribution, i.e. TxX =
ξx ⊕ Vx.

• given a path γ in S which avoids the critical values, the parallel
transport map P : Xγ(0) → Xγ(1) satisfies P ∗ωγ(1) = ωγ(0).

Lemma 6.1.5. Suppose we are given a degeneration π : X → S,
a Kähler manifold (Y, ω) and a holomorphic map F : X → Y such
that F |Xz : Xz → Y is an embedding for all z ∈ S. Then there is a
canonical symplectic connection, given by

ξx = {v ∈ TxX : Ω(v, w) = 0 for all w ∈ Txπ−1(π(x))}.
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Proof. First note that ξx is complementary to the vertical distribu-
tion: since Vx is symplectic, it has zero intersection with ξx, and
since ξx is isomorphic to the annihilator of Vx, it is a complement.

To see that the parallel transport map Pt : Xγ(0) → Xγ(t) is sym-
plectic, we need to check that Ω((Pt)∗v1, (Pt)∗v2) is constant in t for
any vertical vectors v1, v2. This amounts to checking that the Lie
derivative L˜̇γ(t)Ω vanishes on pairs of vertical vectors, where ˜̇γ(t)

denotes the horizontal lift of the tangent vector γ̇(t). Since Ω is
closed, Cartan’s formula tells us that this Lie derivative is equal to
dι˜̇γ(t)Ω. Since η := ι˜̇γ(t)Ω vanishes on vertical vectors (by definition

of the connection), its differential also vanishes on vertical vectors.
To see this, note that the vertical distribution is integrable (with
integral submanifolds the fibres!) so

dη(v1, v2) = v1η(v2)− v2η(v1)− η([v1, v2]),

which vanishes because η annihilates vertical vectors and v1, v2, [v1, v2]
are all vertical.

Example 6.1.6. Consider the variety X = Cn+1 and the map
π(z) =

∑n+1
i=1 z

2
i }. This is a degeneration whose fibres are com-

plex n-dimensional quadrics, precisely one of which is singular, X0.
Note that dπ(v1, . . . , vn+1) = 2

∑n+1
i=1 xivi. We use the symplectic

form Ω = i
2

∑
dzj∧dz̄j . Since the vertical distribution is annihilated

by dπ, it follows that

 z̄1

...
z̄n+1

 is a horizontal vector field and that

v
2|z|2

 z̄1

...
z̄n+1

 is a horizontal vector at z which projects (via dπ) to
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the vector v ∈ C. In particular, the vector field

−1

2|z|2

 z̄1

...
z̄n+1


is a horizontal lift of the vector field which points in the negative real
direction in C. Parallel transport along the path γ(s) = 1− s (from
X1 to X0) can be understood by solving the differential equations

ż1 = −z1

...

żn+1 = −zn+1

λ̇ = −2|z|2

(where λ(0) = 1 and λ(t) is the projection of (z1(t), . . . , zn+1(t)) at
time t). The solution starting from λ(0) = 1 is

zk(t) = ak(t) + ibk(t)

λ(t) = 1 +
∑(

ak(0)2(e−2t − 1)− bk(0)2(e2t − 1)
)

where ak(t) = ak(0)e−t and bk(t) = bk(0)et. The real part of the
quadric therefore converges to the singular point 0 ∈ X0 as t → ∞,
while λ(t) → 0 for points on the real locus in X1. The real part of
the quadric is an n-sphere, which we call the vanishing cycle of the
degeneration.

6.2 Lagrangian torus fibrations

Suppose we are given a degeneration π : X → S, two points 0, z ∈ S
such that X0 is a singular fibre and Xz is smooth, and a path γ
from z to 0 which avoids the critical values except γ(1) = 0. A
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priori, the parallel transport map P : Xz → X0 is only well-defined
away from some subset of Xz, but if we understand the local model
for π near X0 well enough then we can extend P continuously to
the whole of Xz. For example, if X0 has an ordinary double point
then the local model from Example 6.1.6 tells us that, although the
parallel transport map is not defined along the vanishing cycle, we
can extend it continuously by sending all the points in the vanishing
cycle to the singularity.

Ruan’s idea for constructing Lagrangian torus fibrations is to take
a toric degeneration (where X0 is a union of toric varieties glued
along toric strata) and compose the parallel transport map P with
the moment maps for X0. The main technical difficulties in this
approach arise from trying to understand the local models for what
vanishes in such toric degenerations.

We will start by examining the simplest local model of all, namely
Example 6.1.2, where the total space is smooth and X0 has normal
crossing singularities. We begin with a lemma.

Lemma 6.2.1. Suppose that H is a Hamiltonian function on (X ,Ω)
and suppose that H has Hamiltonian flow φHt and that π(φHt (x)) =
π(x) for all x ∈ X , t ∈ R then H is preserved by symplectic parallel
transport, that is

H(Pt(x)) = H(x)

for all x ∈ X , t ∈ R, where Pt is the time-t parallel transport
symplectomorphism along γ.

Remark 6.2.2. We are not assuming that Ω is symplectic, only
closed, so it is not immediate that the Hamiltonian vector field vH
exists. Hence the wording “suppose that H has a Hamiltonian flow”
in the statement of the lemma.

Proof of Lemma 6.2.1. Let ˜̇γ(t) be the horizontal lift of γ̇(t). We
want to show that

L˜̇γ(t)H = 0.
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We have

L˜̇γ(t)H = i˜̇γ(t)dH = −Ω(v, ˜̇γ(t)).

Differentiating π(φHt (x)) = π(x) with respect to t, we get π∗v = 0,
so v is tangent to the fibres of π. Therefore v is Ω-orthogonal to the
horizontal distribution, so Ω(v, ˜̇γ(t)) = 0, as required.

Theorem 6.2.3. Let X = Cn+1 and let π : X → C be the map
π(z0, . . . , zn) = z0 · · · zn. Let Pt : : X1 → X1−t be the parallel trans-
port map for the symplectic connection associated to the standard
symplectic form Ω on Cn+1. Let µ : X0 → Rn be the moment map
µ(z0, z1, . . . , zn) =

(
1
2

(
|z1|2 − |z0|2

)
, . . . , 1

2

(
|zn|2 − |z0|2

))
which re-

stricts to a moment map for the standard Tn-action on each irre-
ducible component of X0. Then the composition µ ◦ P is a smooth
Lagrangian torus fibration with no singular fibres on X1. Indeed, if

we identify X1 =
{

(z0, . . . , zn) : z0 = 1
z1···zn

}
with (C∗)n then the

fibres of µ ◦P are precisely the product tori S1
r1 × · · · × S

1
rn ⊂ (C∗)n

where S1
r ⊂ C∗ denotes a circle of radius r centred at 0.

Proof. The map µ is the restriction to X0 of the map µ : X → Rn

defined by the same formula. The restriction of µ to X1 gives the
Lagrangian torus fibration |zk|2 − 1

|z1···zn|2 = 2µk, k = 1, . . . , n,

which is precisely a system of simultaneous equations fixing the
radii |zk| in terms of the numbers µk. Therefore it suffices to show
that µ(P (x)) = µ(x). This follows from Lemma 6.2.1 because each
component µk generates a Hamiltonian circle action on X given by
(e−itz0, z1, · · · , zk−1, e

itzk, zk+1, · · · , zn), which preserves the fibres
of π.
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•

Figure 6.1: The parallel transport for the fibration (z0, z1) 7→ z0z1

preserves the level sets of the function µ1 = 1
2

(
|z1|2 − |z0|2

)
.

µ({z0 = 0})

µ({z2 = 0})

µ({z1 = 0})

Figure 6.2: The image of µ : X0 → Rn for the case n = 2.

6.3 Quartic pencil

We now try a more ambitious construction. Consider the variety
X =

{
([x, y, z, w], λ) ∈ CP3 ×C : xyzw + λ(x4 + y4 + z4 + w4) = 0

}
and the map π : X → C, π([x, y, z, w], λ) = λ, where the smooth
fibre X1 is a quartic (K3) surface and the singular fibre X0 is a union
of four copies of CP2 in a “tetrahedron” configuration, like you find
at the toric boundary for the standard torus action on CP3:
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We wish to use Ruan’s idea to construct a Lagrangian torus fibration
on the smooth K3 surface, but we know that we need to introduce
24 focus-focus singularities to achieve that, and in Theorem 6.2.3
we did not introduce any singular fibres. Nonetheless, X0 is a nor-
mal crossing variety (i.e. locally modelled on the singular fibre in
Theorem 6.2.3. What is going on?

Although X0 is normal crossing, the total space X has singularities
in the locus λ = 0. Indeed, the singularities lie at the points where

0 = xyzw + λ(x4 + y4 + z4 + w4)

0 =
∂

∂λ

(
xyzw + λ(x4 + y4 + z4 + w4)

)
= x4 + y4 + z4 + w4,

0 =
∂

∂x

(
xyzw + λ(x4 + y4 + z4 + w4)

)
= yzw + 4λx3

...

0 =
∂

∂w

(
xyzw + λ(x4 + y4 + z4 + w4)

)
= xyz + 4λw3.

The first two equations imply xyzw = 0 so at least one of x, y, z, w
must vanish. The final four equations imply that if one of x, y, z, w
vanish then λ = 0 and actually two of x, y, z, w must vanish. This
implies that the singular locus of X is contained in λ = 0 and is the
intersection of x4 + y4 + z4 + w4 = 0 with the six lines x = y = 0,
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x = z = 0, x = w = 0, y = z = 0, y = w = 0, z = w = 0. This is
precisely 24 points, four on each of the six lines.

The singularities of X are ordinary double point singularities, so we
need to analyse the local model for a degeneration of surfaces when
the total space has an ordinary double point.

Example 6.3.1. Consider the space X = {(x, y, z, λ) ∈ C2 ×C∗ ×
C : xy = λ(z−1)}. This has an ordinary double point at (0, 0, 1, 0).
The projection π : X → C, π(x, y, z, λ) = λ, is a degeneration which
gives a local model for the quartic pencil we are considering. The
smooth fibre xy = z − 1, z ∈ C∗, has a Lagrangian torus fibration
with a focus-focus singularity

(
1
2 (|x|2 − |y|2), 1

2 |xy + 1|2
)

which is
essentially the Auroux system minus its toric boundary.

Here is how we can reconstruct this fibration using Ruan’s idea.
When λ = 0, the fibre X0 is the space {x = 0} ∪ {y = 0}, which is a
union of two copies of C×C∗ along a C∗. We birationally modify X
by making a small resolution at the ordinary double point. In other
words, we consider the space

X̃ := {(x, y, z, λ, [a : b]) : ax = bλ, a(z − 1) = by} ,

in which the preimage of the singular point (0, 0, 1, 0) under the
projection to (x, y, z, λ) is the sphere {(0, 0, 1, 0)} × CP1. We get
a new degeneration π̃ : X̃ → C whose fibre X̃z over z is the proper
transform of Xz. Since the small resolution only affects the fibre X0,
we need to find the proper transform of X0 = {x = 0}∪{y = 0}. The
proper transform of the subvariety {x = 0} is {(0, y, z, 0, [a : b]) :
a(z−1) = by}, which is isomorphic to Bl(0,1)(Cy×C∗z). The proper
transform of the subvariety {y = 0} is the subvariety {(x, 0, z, [0 :
1])}, which is isomorphic to C∗×C. Overall, X̃0 admits a Lagrangian
torus fibration, which is given by Theorem 5.3.8 (Remark 5.3.12) on
the proper transform of {x = 0}, and which is toric on the proper
transform of {y = 0}. This has one focus-focus singularity, and a
line of toric singularities which disappear once we pass to the smooth
fibre because these singularities are handled by Theorem 6.2.3.
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{x = 0}

{y = 0}

X0

˜{x = 0}

{y = 0}

X̃0

×

Remark 6.3.2. There is a choice when making the small resolution:
the variety

X̃ ′ := {(x, y, z, λ, [a : b]) : ay = bλ, a(z − 1) = bx}

would do just as well, and would result in the other irreducible com-
ponent of X0 being blown-up.

Finally, returning to the quartic pencil, we make a small resolution
at each of the 24 singular points. This involves 24 choices, and
we make the most symmetric possible, in which each plane in our
tetrahedron gets blown-up six times (twice on each edge). Here are
two pictures (related by changes of branch cuts) which show what
each plane looks like after this modification:
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× ×

×

×

×

×

× ×

×

×

×

×

A Lagrangian torus fibration is obtained on the smoothing the union
of these blown-up planes using Theorem 6.2.3 (which is applicable
now as the total space is now smooth). The result is a Lagrangian
torus fibration over the sphere with 24 focus-focus singularities.

Remark 6.3.3. It is a theorem of Mumford that any degeneration can
be modified (by possibly pulling back along a branched cover of the
base and making birational modifications to the total space) so that
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the total space is smooth and the singular fibre is a reduced normal
crossing variety. The local model from Theorem 6.2.3 applies in this
case provided we can find suitable Lagrangian torus fibrations on
the irreducible components.

6.4 Exercises

Exercise 6.4.1. Consider the degeneration π : C2 → C, π(z1, z2) =
z1z2, and let Ω = dx1 ∧ dy1 + dx2 ∧ dy2 (with zk = xk + iyk). Check
that the horizontal lift (for the canonical symplectic connection) of

the vector v ∈ C at (z1, z2) is ṽ = v
|z|2

(
z̄2

z̄1

)
where |z|2 = |z1|2 +

|z2|2. Let γ(t) = e2πit be a parametrisation of the unit circle in C
and write z1(t) = r(t)eiθ(t), z2(t) = e2πit−θ(t)/r for the path traced
out by (z1(0), z2(0)) under symplectic parallel transport. Show that
ṙ = 0 and θ̇ = 1

r4+1 . Hence find the parallel transport at time 1.
Plot the image of the line θ = 0 under the parallel transport map.
You just showed that the time 1 parallel transport is a Dehn twist.

Exercise 6.4.2. Show that the map H : C3 → R3, H(x, y, z) =(
1
2 (|x|2 − |y|2), 1

2 (|x|2 − |z|2), 1
2 |xyz − c|

)
is a Lagrangian torus fi-

bration. What are the singular fibres? Show that the set of singular
fibres forms a Y-graph in R3.
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