Sheet 3: Lie algebras and the exponential map

J. Evans

Question 1.

(a) Check that the commutator bracket [X, Y] = XY - YX on matrices satisfies the Jacobi identity¹

[[X,Y],C] + [[Y,C],X] + [[C,X],Y] = 0.

(b) Define ad_X to be the operator $\operatorname{ad}_X Y = [X, Y]$. Check that the Jacobi identity is equivalent to

$$\operatorname{ad}_{[X,Y]} Z = \operatorname{ad}_X \operatorname{ad}_Y Z - \operatorname{ad}_Y \operatorname{ad}_X Z.$$

(c) Expand the associativity relation

$$(\exp(A)\exp(B))\exp(C) = \exp(A)(\exp(B)\exp(C))$$

using the Baker-Campbell-Hausdorff formula keeping all *cubic* terms involving precisely one *A*, one *B* and one *C*. Show that the Jacobi identity follows.

Question 2.

- (a) Show that the tangent space to O(n) at 1 is the vector space $\mathfrak{so}(n)$ of antisymmetric matrices.
- (b) Using the Jacobi formula from Sheet 2, show that the tangent space to $SL(n, \mathbf{R})$ at 1 is the vector space $\mathfrak{sl}(n, \mathbf{R})$ of matrices with trace zero.
- (c) Let $g \in U(n)$ (so $g^{\dagger} = g^{-1}$). By Taylor expanding the map $F(A) = A^{\dagger}A$ around g, show that $d_gF(B) = B^{\dagger}g + g^{-1}B$ and deduce that the tangent space of U(n) at g is the space of matrices B such that $g^{-1}B$ is skew-Hermitian.

¹Not to be confused the the Jacobi formula on the previous sheet!

Question 3.

Recall the 2*n*-by-2*n* matrix *J* from lectures (all you need to remember about it is $J^2 = -1$, $J^T = -J$). Inside $GL(2n, \mathbf{R})$ we defined subgroups

- $Sp(2n, \mathbf{R}) = \{A : A^T J A = J\},\$
- $O(2n) = \{A : A^T A = 1\},\$
- $GL(n, \mathbf{C}) = \{A : AJ = JA\}.$

Prove that $Sp(2n, \mathbf{R}) \cap O(2n) = GL(n, \mathbf{C}) \cap O(2n) = GL(n, \mathbf{C}) \cap Sp(2n, \mathbf{R}) = U(n)$. (Recall that conjugate-transpose on $A \in GL(n, \mathbf{C})$ is just transpose on $A \in GL(2n, \mathbf{R})$)

Question 4.

- (a) (i) Show that $\exp \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \begin{pmatrix} e^a & be^a \\ 0 & e^a \end{pmatrix}$ and hence find (complex) logarithms for the matrices $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} (\lambda \neq 0).$
 - (ii) If $A \in GL(2, \mathbb{C})$ let $N = P^{-1}AP$ be its Jordan normal form. Prove that if $N = \exp(X)$ then A is in the image of the exponential map. Deduce that $\exp: \mathfrak{gl}(2, \mathbb{C}) \to GL(2, \mathbb{C})$ is surjective.
- (b) (i) Consider $B \in \mathfrak{sl}(2, \mathbb{R})$. Show that its Jordan normal form (considered as a complex matrix) is one of:

$$\left(\begin{array}{cc}\lambda & 0\\ 0 & -\lambda\end{array}\right), \ (\lambda \in \mathbf{R} \text{ or } i\mathbf{R}) \quad \left(\begin{array}{cc}0 & 1\\ 0 & 0\end{array}\right).$$

(ii) Deduce that there are three possibilities for the eigenvalues of exp(B): both are positive, both are unit complex numbers or both are equal to 1. By exhibiting a matrix in SL(2, R) whose eigenvalues satisfy none of these, deduce that exp: sl(2, R) → SL(2, R) is not surjective.

Question 5.

(a) Let *Q* be a matrix. Show that the tangent space of the matrix group

$$G = \{A \in GL(n, \mathbf{R}) : A^T Q A = Q\}$$

at the identity is $\mathfrak{g} = \{B : B^TQ + QB = 0\}.$

- (b) Check that if $B_i^T Q + Q B_i = 0$ for i = 1, 2 then $[B_1, B_2]^T Q + Q[B_1, B_2] = 0$.
- (c) Let n = 2, $Q = j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (so that $G = Sp(2, \mathbf{R})$ and $\mathfrak{g} = \mathfrak{sp}(2, \mathbf{R})$). Prove that $\mathfrak{sp}(2, \mathbf{R}) = \mathfrak{sl}(2, \mathbf{R})$ (where $\mathfrak{sl}(2, \mathbf{R})$ is the space of tracefree matrices).

Question 6.

Let *S* be a neighbourhood of $1 \in G$. Let $\langle S \rangle \subset G$ denote the subgroup generated by *S* (i.e. $\langle S \rangle$ consists of all $g \in G$ that can be written as a product $s_1 \cdots s_n$ with each $s_i \in S$).

- (a) Let $\gamma \colon [0,1] \to G$ be a path with $\gamma(0) = 1$. Prove that $\gamma(1) \in \langle S \rangle$.
- (b) Assuming that any two points in *S* can be connected by a path, show that any two points in $\langle S \rangle$ can be connected by a path.

Hint for (a): Consider the cover of [0, 1] by open sets $U_t = \{r \in [0, 1] : \gamma(r) = \gamma(t)s$ for some $s \in S\}_{t \in [0,1]}$. Take a finite subcover U_{t_i} , $0 = t_0 < t_1 < \cdots < t_N = 1$ and show inductively that $\gamma(t_i)$ can be written as a product of elements in S. It might help to draw a picture to illustrate what's going on.