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Lecture 1: Introduction

To the students, past, present and future, who have/are/will taken/taking/take this
course and to those interested parties who just read the notes and gave me feedback:
thank you for providing the background level of enthusiasm, pedantry and general con-
fusion needed to force me to improve these notes. All comments and corrections are very
welcome.

1.1 What is a representation?

Definition 1.1. A representation ρ of a group G on an n-dimensional vector space V over
a field k is an assignment of a k-linear map ρ(g) : V → V to each group element g such
that

• ρ(gh) = ρ(g)ρ(h)

• ρ(1G) = 1V .

Here are some equivalent definitions. A representation is...

1. ...an assignment of an n-by-n matrix ρ(g) to each group element g such that ρ(gh) =
ρ(g)ρ(h) (i.e. the matrices multiply together like the group elements they represent).
This is clearly the same as the previous definition once you have picked a basis of
V to identify linear maps with matrices;

2. ...a homomorphism ρ : G → GL(V ). The multiplicativity condition is now hiding
in the definition of homomorphism, which requires ρ(gh) = ρ(g)ρ(h);

3. ...an action of G on V by linear maps. In other words an action ρ̃ : G× V → V such
that, for each g ∈ G, the map ρ(g) : V → V defined by ρ(g)(v) = ρ̃(g, v) is linear.
The multiplicativity condition is now hiding in the definition of an action, which
requires ρ̃(gh, v) = ρ̃(g, ρ̃(h, v)).

You should internalise these points of view as being all the same: I will switch between
them. More confusingly still, I will sometimes say “let V be a representation of G” or
“consider the action ρ of G on V ”. This is the only warning you’ll get, so don’t be con-
fused.

1.2 Why do we care?

Why do we study representations? How do representations arise in the real world (of
mathematics)? Here is a motivating example.

Example 1.2 (Invariant theory for binary quadratic forms). For simplicity, let’s work over
C. A binary quadratic form is an expression ax2 + bxy + cy2 in two variables. One can add
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and subtract quadratic forms and rescale them by a real number, so they form a vector
space. Another way to write a quadratic form is:

ax2 + bxy + cy2 =
(
x y

)( a b/2
b/2 c

)(
x
y

)
=: xTMx

so we can think of the vector space of binary quadratic forms as the (3-dimensional)
vector space V of symmetric 2-by-2 matrices.

One very old question is: when can we make a linear change of coordinates to transform
one conic into another? Of course, the answer depends on what kinds of coordinate
changes we allow.

Let’s suppose that we can change coordinates by any matrix in SL(2,C), the group of
invertible 2-by-2 matrices. If S ∈ SL(2,C) then, changing basis by S we get

M 7→M ′ = STMS

This gives a 3-dimensional representation of SL(2,C) on V (the vector space of symmet-
ric 2-by-2 matrices). Note that det(M ′) = det(M) since det(STMS) = det(S)2 det(M) and,
by assumption det(S) = 1. We say that ∆ := det(M) = ac − b2/4 = −1

4
(b2 − 4ac) is an

invariant of the quadratic form. It is often called the discriminant.

We can diagonalise M . Thus we see that any quadratic form is equivalent to one with

M =

(
λ1 0
0 λ2

)
. We can also swap the eigendirections using S =

(
0 −1
1 0

)
which has

the effect of swapping λ1 and λ2.

We can then use the matrix S =

(
λ 0
0 λ

)
(λ 6= 0) to get

M =

(
λ2λ1 0

0 λ−2λ2

)
.

Since ∆ = λ1λ2 is an invariant, this leaves us with the following possibilities:(
0 0
0 0

)
,

(
∆ 0
0 1

)
.

The important thing to take away from this example is the existence of an invariant ∆ =
−1

4
(b2 − 4ac) and the fact that the invariant almost completely characterises quadratic

forms up to equivalence. Observe that this invariant is itself a quadratic polynomial in
the coefficients of M .

The relation to representation theory is the following: the quadratic polynomials in the
entries of M themselves form a 6-dimensional1 vector space Q whose general element is:

Aa2 +Bb2 + Cc2 +Dab+ Eac+ Fbc

16 coordinates A,B,C,D,E, F .
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When you act uing S on M you also act on the coefficients of such a polynomial, so we
get a 6-dimensional representationR : SL(2,C)→ GL(Q) of SL(2,C) on the vector space
Q. The vector ∆ := −1

4
(b2 − ac) (i.e. A = C = D = F = 0, B = −1

4
, E = 1

4
) is invariant

under this representation, that is it is fixed by R(g) for all g ∈ SL(2,C).

This motivates the key question:

Given a representation, when can we find invariant vectors/subspaces?

We will be interested in invariant subspaces of any dimension, not only one-dimensional
ones. Moreover, we will try to decompose an arbitrary representation into irreducible sub-
representations (which cannot be decomposed further).

Incredibly, this will turn out to have relevance for the structure of the hydrogen atom and
the classification of hadrons (protons, neutrons, kaons, etc.)

1.3 Smoothness

We saw above that representations are a special case of homomorphisms (they are homo-
morphisms G → GL(V )). The kind of thing we would like to be able to do is to classify
homomorphisms G→ GL(V ). Without further restriction, that’s nigh-on impossible.

Example 1.3. Let R be the group of real numbers under addition. What are the homo-
morphisms R → R? Certainly we have the linear maps Fλ : C → C, Fλ(x) = λx for
λ 6= 0. Suppose F : R → R is an additive homomorphism and set λ = F (1). Clearly
F (n) = nλ and qF (p/q) = F (p) = pλ so F (q/p) = pλ/q. Therefore F is just a rescaling by
λ on rational numbers Q. However, if we consider R as a vector space over Q and pick
a basis (invoking the Axiom of Choice) and rescale each basis element independently. In
other words, let A be a basis for R over Q so each r ∈ R can be written as

∑
a∈A caa,

ca ∈ Q (with only finitely many ca nonvanishing) and let λ : A → R be an arbitrary
function. Then

∑
a∈A caa 7→

∑
a∈A λ(a)caa defines a (pretty pathological) homomorphism

R→ R.

But R is more than just a group: it’s a Lie group. This means it has a coordinate on it
and one can ask for the homomorphism to be smooth with respect to this coordinate.
Differentiating the homomorphism condition:

F (s+ t) = F (s) + F (t)

with respect to t at t = 0 gives:
Ḟ (s) = 0 + Ḟ (0)

so that Ḟ is constant. Therefore smooth homomorphisms R→ R are just given by linear
maps x 7→ λx for some λ.

In this course we are going to focus on Lie groups (precise definition to be given later)
because then we have the whole gamut of tools from calculus at our disposal.
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Lecture 2: Examples and exponentials

2.1 The matrix exponential

The simplest Lie group is the group U(1) of unit complex numbers

U(1) = {z ∈ C : zz̄ = 1}.

Since Euler, we have known how to parametrise the elements of this group:

z ∈ U(1) ⇔ z = eiθ = cos(θ) + i sin(θ).

In other words, every element of the group can be written as the exponential of a purely
imaginary number. We would like to generalise this useful parametrisation to other
groups of matrices.

PICTURE

Definition 2.1. The exponential of a matrix A is defined to be

exp(A) = 1 +
1

2
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak.

Example 2.2. Let A =

(
0 −θ
θ 0

)
. Then A2 = −θ2

(
1 0
0 1

)
, so

exp

(
0 −θ
θ 0

)
=

(
1− θ2

2
+
θ4

4!
− · · ·

)(
1 0
0 1

)
+

+

(
θ − 1

3!
θ3 +

1

5!
θ5 − · · ·

)(
0 −1
1 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

2.2 Convergence

This power series definition makes sense in any ring provided you can make sense of the
infinite sum. We can make sense of convergence for sequences of n-by-n matrices using
the operator norm

‖A‖2 = inf{C ∈ R : |Av| ≤ C|v| ∀ v ∈ Rn}
(so a sequence of matrices Ak converges to A if ‖Ai − A‖ → 0 as i→∞).

Lemma 2.3. This power series converges absolutely, i.e. there exists K ∈ R such that

∀ε > 0 ∃N :

∣∣∣∣∣
N∑
n=0

1

n!
‖An‖ −K

∣∣∣∣∣ < ε.
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Proof. Note that ‖AB‖ ≤ ‖A‖‖B‖ because |ABv| ≤ ‖A‖|Bv| ≤ ‖A‖‖B‖|v| for all v. Therefore

N∑
n=0

1

n!
‖An‖ ≤

N∑
n=0

1

n!
‖A‖n ≤ exp ‖A‖

so this sequence of partial sums is a monotonic sequence bounded above and hence converges
(to some number, say K).

Corollary 2.4. * This power series converges (indeed any absolutely convergent series converges).

Proof. We need to show that
∑N
n=0

1
n!A

n is a Cauchy sequence in the space of matrices with the
operator norm, i.e. ∥∥∥∥∥

N∑
n=0

1

n!
An −

M∑
n=0

1

n!
An

∥∥∥∥∥ < ε

for sufficiently large M,N . But we can rewrite this difference as∥∥∥∥∥
N∑

n=M+1

1

n!
An

∥∥∥∥∥
which is bounded from above by

N∑
n=M+1

1

n!
‖An‖

(using Cauchy-Schwarz) and hence by
∑N
n=M+1

1
n!‖A‖

n. But
∑N
n=0

1
n!‖A‖

n is a Cauchy se-
quence (converging to exp(‖A‖)) and hence, for sufficiently large M,N

N∑
n=M+1

1

n!
‖A‖n < ε.

Now it is a theorem from Analysis 4 that a Cauchy sequence in a finite-dimensional normed
space converges (a finite-dimensional normed vector space is a Banach space).

Remark 2.5. In fact, the same proof (along with the Weierstrass M-test) implies that, for
any R, the sequence of functions FN(A) =

∑N
n=0

1
n!
An defined on {A ∈ gl(n,R) : ‖A‖ ≤

R} converges uniformly to a function exp(A) and the same is true of the partial deriva-
tives of FN and hence exp(A) is differentiable and can be differentiated term-by-term.

Corollary 2.6. The function t 7→ exp(tA) satisfies the differential equation

d

dt
exp(tA) = A exp(tA).

Proof. Differentiating exp(tA) =
∑∞
n=0

1
n! t

nAn term-by-term we get

∞∑
n=0

1

n!
ntn−1An =

∞∑
n=1

1

(n− 1)!
tn−1An = A

∞∑
m=0

1

m!
Am.

Corollary 2.7 (Cauchy product formula). We have

exp(A) exp(B) =
∞∑
k=0

∑
i+j=k

1

i!j!
AiBj.
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Proof. This always holds for the product of absolutely convergent series.

Corollary 2.8. We have

(a) exp(−A) exp(A) = 1 (so (exp(A))−1 = exp(−A)).

(b) If AB = BA then exp(A) exp(B) = exp(B) exp(A).

Proof. For (a), using the Cauchy product formula, we have

exp(−A) exp(A) =

∞∑
k=0

∑
n+m=k

1

n!m!
An(−A)m

=

∞∑
k=0

1

k!

∑
n+m=k

k!

n!m!
An(−A)m

=

∞∑
k=0

1

k!
(A−A)k

= 1.

For (b), using the Cauchy product formula, we have

exp(A) exp(B) =

∞∑
k=0

∑
i+j=k

1

i!j!
AiBj

=

∞∑
k=0

∑
i+j=k

1

i!j!
BjAi

= exp(B) exp(A)

where we use commutativity in the second line and to get to the third line we relabel i↔ j and
apply the Cauchy product formula again.

2.3 U(n)

We will take a simple example: unitary matrices U(n), the n-dimensional generalisation
of unit complex numbers. Let A† denote the Hermitian transpose of A. We say that
A ∈ U(n) if

AA† = 1.

Lemma 2.9. A matrix B is skew-Hermitian if and only if exp(tB) ∈ U(n) for all t ∈ R.

Proof. Since (exp(tB))
†

= exp(tB†) (taking † term by term in the power series), if B† = −B then
(exp(tB))

†
= exp(−tB) = (exp(tB))−1 so exp(tB) is unitary (for any t ∈ R).

Conversely, if exp(tB†) = exp(−tB) for all t we can differentiate this relation with respect to t
(at t = 0) and we get B† = −B.

Remark 2.10. We used differentiation in the proof. Note that we can’t just take logarithms:
just like for complex numbers there’s no globally-defined single-valued logarithm func-
tion.

Definition 2.11. If G ⊂ GL(n,R) is a subgroup, we define its Lie algebra g to be

g := {B ∈ gl(n,R) : exp(tB) ∈ G ∀ t ∈ R}.
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So we have just seen that u(n), the Lie algebra of U(n) is the space of skew-Hermitian
matrices B† = −B.

2.4 SU(2)

My favourite example is the group of unitary 2-by-2 matrices with determinant 1: SU(2).
This has Lie algebra su(2), the 3-dimensional space of skew-Hermitian matrices with
trace zero, whose general element is:

Mv :=

(
ix y + iz

−y + iz −ix

)
, v = (x, y, z) ∈ R3.

Lemma 2.12. A general element of SU(2) has the form(
a b
−b̄ ā

)
for a, b ∈ C with |a|2 + |b|2 = 1.

Proof. If A =

(
a b
c d

)
∈ SU(2) then A† = A−1 implies

(
ā c̄
b̄ d̄

)
=

(
d −b
−c a

)
(since det(A) = 1). Thus d = ā and c = −b̄. The det(A) = 1 condition now implies that
1 = aā− (−b̄b) = |a|2 + |b|2.

This means that SU(2) can be identified with the 3-dimensional sphere

S3 = {(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 = 1}

where a = x1 + ix2 and b = x3 + ix4.

In Question Sheet 1 we will show that if u = (x, y, z) ∈ R3 is a unit vector then

exp(θMu) = cos θ

(
1 0
0 1

)
+ sin θMu =

(
cos θ + ix sin θ y sin θ + iz sin θ
−y sin θ + iz sin θ cos θ − ix sin θ

)
.

It is easy to see that this matrix is in SU(2). In fact:

Lemma 2.13. Any matrix in SU(2) can be written as
(

cos θ + ix sin θ y sin θ + iz sin θ
−y sin θ + iz sin θ cos θ − ix sin θ

)
for some θ, x, y, z.

Proof. If a = x1 + ix2 and b = x3 + ix4 with |a|2 + |b|2 = 1 then take cos θ to be x1 so that sin2θ
equals x22 + x23 + x24. Set sin θ to be one of the square roots

√
x22 + x23 + x24 and define (x, y, z) =

(x2/ sin θ, x3/ sin θ, x4/ sin θ). Now θ is determined (modulo 2πZ) by cos θ and sin θ.

This tells us that the exponential map takes su(2) to SU(2) surjectively, but it is clearly
not injective. For example, exp(πMu) = −1 for all unit vectors u.
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Lecture 3: Local logarithm

The aim is to prove that in a neighbourhood of 0 ∈ U ′ ⊂ gl(n,R) and 1 ∈ V ′ ⊂ GL(n,R)
the exponential map exp: gl(n,R)→ GL(n,R) admits an inverse log : V ′ → U ′.

3.1 Calculus of several variables: review

Definition 3.1. Suppose that U ⊂ Rm and V ⊂ Rn are open sets, that (x1, . . . , xn) are
coordinates on U and that F : U → V is a map. We say that F is smooth if, for each
component Fi of F , all possible partial derivatives ∂kF

∂xi1 ···∂xik
exist and are continuous.

Definition 3.2. We write dpF for the matrix of partial derivatives at p ∈ U :

dpF =


∂F1

∂x1
(p) · · · ∂Fn

∂x1
(p)

... . . . ...
∂F1

∂xm
(p) · · · ∂Fn

∂xm
(p)

 .

We can think of this as a linear map Rm → Rn which is the best linear approximation to
F at p in the sense that

F (p+ v) = F (p) + dpF (v) + o(|v|).

Another way to think of dpF (v) is as the directional derivative

dpF (v) =
d

dt

∣∣∣∣
t=0

F (p+ tv)

of F at p in the v-direction.

Example 3.3. Consider the map F (x) = x2. We have

F (x+ t) = (x+ t)2 = x2 + 2xt+O(t2),

so dxF (t) = 2xt (which is linear in t).

Example 3.4. Let H be the space of Hermitian matrices {A ∈ gl(n,C) : A† = A} and
consider the map F : gl(n,C)→ H defined by F (A) = A†A. We have

F (A+B) = (A+B)†(A+B) = A†A+ (B†A+ A†B) +O(|B|2)

so dAF (B) = B†A+ A†B.

This is going to be the easiest way to compute derivatives in this course! If you think too
much about it you will realise you’re working with matrices whose entries are matrices
(whose entries might well be matrices!) and your mind will blow.

The biggest advantage to thinking of derivatives as linear maps is the following beautiful
form of the chain rule:
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Lemma 3.5. If Ui ⊂ Rni , i = 1, 2, 3, are open sets and U1
F1→ U2

F2→ U3 is a sequence of maps
with composite F3 = F2 ◦ F1 then

dxF3(v) = dF (x)F2(dxF1(v)),

that is dxF3 = dF (x)F2 ◦ dxF1 where ◦ denotes matrix product.

Calculus is all about approximating functions by linear maps and the local properties of
a function by properties of its linearisation. One of the best (and most useful) examples
of this is the inverse function theorem, which states that a smooth inverse function exists
if the linearisation is an invertible matrix.

Theorem 3.6. Let U and V be open subsets of Rn and F : U → V be a smooth map. If dpF is
an invertible matrix then there are neighbourhoods p ∈ U ′ ⊂ U and f(p) ∈ V ′ ⊂ V such that
F |U ′ : U ′ → V is a bijection with smooth inverse.

“Bijection with smooth inverse” is a bit of a mouthful which will come up again and
again, so we introduce a name for it.

Definition 3.7 (Diffeomorphism). Let U, V ⊂ Rm be open sets. A smooth map F : U → V
is a diffeomorphism if it is bijective with smooth inverse.

“Diffeomorphism” is still a bit of a mouthful, but it’s the word we use.

3.2 A local logarithm

In the last lecture we defined the matrix exponential

exp: gl(n,R)→ GL(n,R)

by

exp(A) = 1 +
1

2
A2 +

1

3!
A3 + · · · =

∞∑
k=0

1

k!
Ak.

The first thing we will prove here is that, near 0 ∈ gl(n,R), the matrix exponential is a
diffeomorphism: in other words there is a unique (smooth) logarithm function defined
on a neighbourhood of the identity with the property that log(expA) = A.

Theorem 3.8. There exists a neighbourhood U ′ of 0 ∈ gl(n,R) and a neighbourhood V ′ of 1 ∈
GL(n,R) such that exp |U ′ : U ′ → V ′ is a diffeomorphism.

Proof. We have exp(A) = 1 + A + O(‖A‖2) so d0 exp(A) = A. Therefore d0 exp = Id: gl(n,R) →
gl(n,R). The identity is certainly invertible, so the result follows from the inverse function
theorem.

Remark 3.9. More explicitly, the matrix entries Aij are coordinates, and in terms of these
we have

exp(A) =


1 + A11 A12 · · · A1n

A21 1 + A22 · · · A2n
...

... . . . ...
An1 An2 · · · 1 + Ann

+O(A2)
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so

∂ exp(A)

∂A11

(0) =


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0


and more generally ∂ exp(A)

∂Aij
(0) = Eij (where Eij is the matrix with a 1 in the ith row and

jth column). We should think of ∂ exp(A)/∂Aij(0) as the directional derivative d0 exp(Eij)
of exp at 0 ∈ gl(n,R) in the Eij direction. By taking linear combinations v =

∑
vijEij we

get d0 exp(v) = v so d0 exp is the identity.

Of course we give the name log to the local inverse to exp - we say “local” because it is not

globally defined (for example, exp

(
0 −2π

2π 0

)
=

(
cos 2π − sin 2π
sin 2π cos 2π

)
=

(
1 0
0 1

)
=

exp

(
0 0
0 0

)
, so exp is not globally a bijection).

3.3 The Baker-Campbell-Hausdorff formula

Lemma 3.10. log has a power series expansion around 1 ∈ GL(n,R):

log(1 +X) = X − 1

2
X2 +

1

3
X3 − · · ·

This power series has radius of convergence 1 (since log(1− 1) is ill-defined).

Proof of Lemma. We know that a local log(1 +X) exists for small X (with respect to the operator
norm) and that its first derivative is the identity so we can try to compute its power series. If

log(1 +X) = X + b2X
2 + b3X

3 + · · ·

and exp(X) = 1 +X + a2X
2 + a3X

3 + · · · then

X = log(1 +X + a2X
2 + · · · )

= X + a2X
2 + a3X

3 + · · ·
+ b2(X + a2X

2 + a3X
3 + · · · )2 + · · ·

= X + (a2 + b2)X2 + (a3 + 2b2a2)X3 + · · ·

which gives a sequence of recurrence relations for bi in terms of the known coefficients ai. These
relations are completely independent of whether X is a matrix or a number, hence the usual
logarithm Taylor coefficients solve this recurrence relation.

Since

exp(A) exp(B) =

(
1 + A+

1

2
A2 + · · ·

)(
1 +B +

1

2
B2 + · · ·

)
= 1 + A+B + AB +

1

2
(A2 +B2) + · · ·
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we get

log (exp(A) exp(B)) = A+B + AB +
1

2
(A2 +B2) + · · ·

− 1

2

(
A+B + AB +

1

2
(A2 +B2) + · · ·

)2

+ · · ·

= A+B + AB +
1

2
(A2 +B2)

− 1

2
(A2 + AB +BA+B2 + · · · )

= A+B +
1

2
(AB −BA) + · · ·

so:

• to first order in A and B we get the usual law of logarithms,

• to second order we get a correction term which involves the commutator [A,B] =
AB −BA.

Lemma 3.11. The next term is

1

12
([A, [A,B]]− [B, [A,B]]) .

Proof. See Question Sheet 2.

In general we have:

Theorem 3.12 (Baker-Campbell-Hausdorff). The higher order terms can also be expressed in
terms of iterated commutators. Explicitly, log(exp(A) exp(B)) is given by:∑

n>0

(−1)n−1

n

∑
ri+si>01≤i≤n

(
∑n

i=1(ri + si))
−1

r1!s1! · · · rn!sn!
adr1A ads1B · · · ad

rn−1

A ad
sn−1

B Krn,sn

where adX Y = [X, Y ] = XY − Y X and

Krn,sn =


adrnA B if sn = 1

A if rn = 1, sn = 0

0 otherwise
.

Remark 3.13. The explicit formula is not hugely important: the moral of the theorem is
that the anticommutator bracket on gl(n,R) determines the group law on GL(n,R). This
bracket is called the Lie bracket and the pair (gl(n,R), [, ]) is an example of a Lie algebra.

3.4 Lie algebras

We now abstract the important properties of the Lie bracket and define Lie algebras in
general.
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Definition 3.14 (Lie algebra). Let V be a K-vector space and let [ , ] : V × V → V be a
bilinear bracket satisfying

[X,X] = 0, [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

The structure (V, [ , ]) is called a Lie algebra over K. The three-term relation here is called
the Jacobi identity.

Remark 3.15. Note that if charK 6= 2 then [X,X] = 0 is equivalent to antisymmetry:
[X, Y ] = −[Y,X]. If we define adX Y = [X, Y ] then the Jacobi identity is equivalent to the
more natural-looking:

ad[X,Y ] = adX adY − adY adX .

More on the Jacobi identity later.

13



Lecture 4: Matrix groups

4.1 Definition

The operator norm on matrices turns GL(n,R) into a metric space and we can talk about
convergent sequences of matrices.

Definition 4.1. A subset G ⊂ GL(n,R) is closed if it has the following property: if An ∈ G
is a sequence and An converges to A ∈ GL(n,R) then A ∈ G.

Definition 4.2. A matrix group G is a subgroup G ⊂ GL(n,R) which is closed.

Don’t get confused between “closed” in the group theory sense (i.e. g, h ∈ G implies
gh ∈ G) and “closed” in the topological sense above. The next lemma is (hopefully) the
only place where both will appear.

Lemma 4.3. Suppose that G ⊂ GL(n,R) is a subgroup. Then the topological closure G is also a
subgroup. (Recall that G = {g ∈ GL(n,R) : ∃gi ∈ G with gi → g}).
Proof. Suppose that g = limi→∞ gi and h = limi→∞ hi are two points in G. Since multiplication

depends continuously (in fact bilinearly) on matrix entries, gihi → gh. Hence gh ∈ G (so the
topological closure is closed as a group!). Also, the matrix entries of g−1i are rational functions
of the matrix entries of gi, in particular continuous functions. So x 7→ x−1 is continuous, hence
g−1i is a convergent sequence with limit c ∈ G. Since g−1i gi = 1 and multiplication is continuous,
we have cg = 1 and hence c = g−1. Thus g ∈ G implies g−1 ∈ G.

Remark 4.4. If G is abelian then so is G, because gihi → gh, higi → hg and gihi = higi for
sequences gi, hi ∈ G.

4.2 More examples

4.2.1 Stabilisers of quadratic forms

Here is a recipe for constructing many examples of matrix groups. Let Q be an n-by-n
matrix and define

G = {A ∈ GL(n,R) : ATQA = Q.}

Lemma 4.5. The group G is closed.

Proof. Let Ai be a sequence in G which converges to A ∈ GL(n,R). The map A 7→ ATQA is
continuous with respect to the operator norm:

‖(A+B)TQ(A+B)−ATQA‖ = ‖BTQA+ATQB +BTQB‖
≤ ‖B‖(2‖A‖+ ‖B‖)‖Q‖
< ε for ‖B‖ < min(‖A‖, ε/3‖Q‖‖A‖).

Since ATi QAi = 0, continuity implies ATQA = 0, so A ∈ G.

Example 4.6. • Q = 1: We get the orthogonal group O(n) (ATA = 1).
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• Q =


−1 0 · · · 0
0 1 0
... . . . ...
0 0 · · · 1

: We get the Lorentz group O(1, n − 1). The case O(1, 3) is

relevant for special relativity.

• IfQ is the 2n-by-2nmatrix J =



0 1 0 0 · · · · · ·
−1 0 0 0 · · · · · ·
0 0

. . .

0 0
. . .

...
... 0 1

...
... −1 0


: We get the symplectic

group Sp(2n,R).

We will see that the Lie algebra in these cases is the space of matrices B such that BTQ+
QB = 0.

Example 4.7. Consider the groupO(1, 1). We claimed above that its Lie algebra consisted
of matrices B such that

BT

(
−1 0
0 1

)
= −

(
−1 0
0 1

)
B.

If B =

(
a b
c d

)
then this implies a = d = 0 and b = c, so the Lie algebra is

o(1, 1) =

{(
0 b
b 0

)
: b ∈ R

}
.

The exponential of this matrix is (
cosh(b) sinh(b)
sinh(b) cosh(b)

)
.

4.2.2 GL(n,C) ⊂ GL(2n,R)

Note that GL(n,C) is isomorphic to G := {A ∈ GL(2n,R) : AJ = JA} for J as above.
The isomorphism simply replaces each complex matrix entry a + ib with the 2-by-2 real

matrix
(
a −b
b a

)
. If we write F : GL(n,C) → G for this isomorphism then it has the

property that
F (A†) = (F (A))T .
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4.3 The Lie algebra

Given a matrix group G, our goal is to understand the Lie algebra g, that is the set of all
matrices A such that exp(tA) ∈ G for all t ∈ R. This set will turn out to be the vector
subspace of gl(n,R) comprising vectors tangent to G.

We first prove a short technical lemma which will be useful.

Lemma 4.8. Let H be a matrix group. If hn is a sequence in gl(n,R) such that exp(hn) ∈ H ,
hn → 0 and hn

|hn| → v then exp(tv) ∈ H for all t ∈ R.

Proof. Fix t ∈ R. Let mn be the largest integer less than t/|hn| (since |hn| → 0, mn →∞). Then

t

|hn|
− 1 ≤ mn ≤

t

|hn|
+ 1

so
t− |hn| ≤ mn|hn| ≤ t+ |hn|

and hence mn|hn| → t. Therefore exp(mnhn)→ exp(tv). Since

exp(mnhn) = (exp(hn))mn ∈ H,

and H is a closed subset of GL(n,R), we deduce that exp(tv) = limn→∞ exp(mnhn) ∈ H .

Theorem 4.9. Let G ⊂ GL(n,R) be a matrix group. Define

g = {v ∈ gl(n,R) : exp(tv) ∈ G for all t ∈ R}.

Then g is a vector subspace of gl(n,R).

Proof. We need to check that we can:

1. rescale elements of g (i.e. w ∈ g, t ∈ R implies tw ∈ g) - this is obvious from the definition.

2. add elements of g (i.e. w1, w2 ∈ g implies w1 + w2 ∈ g).

So we need to prove that if w1 and w2 satisfy exp(tw1) ∈ G and exp(tw2) ∈ G for all t then
exp(t(w1 + w2)) ∈ G for all t.

First note that γ(t) = exp(tw1) exp(tw2) ∈ G and for sufficiently small t, γ(t) is contained in the
image of exp, so γ(t) = exp(f(t)) for some f(t) → 0 as t → 0. Since exp(twi) = 1 + twi +O(t2)
for i = 1, 2 we have

exp(f(t)) = 1 + f(t) + · · · = 1 + tḟ(0) +O(t2) = 1 + t(w1 + w2) +O(t2)

and hence limt→0
f(t)
t = w1 + w2. In particular, |f(t)| = t|w1 + w2| + O(t2), so limt→0

f(t)
|f(t)| =

limt→0
f(t)
t

t
t|w1+w2| = w1+w2

|w1+w2| =: v. So if we set hn = f(1/n) then Lemma 4.8 tells us that
exp(tv) ∈ H for all t and hence exp(t(w1 + w2)) ∈ H for all t.

Definition 4.10. Given a matrix group G ⊂ GL(n,R), the vector space

g = {v ∈ gl(n,R) : exp(tv) ∈ G for all t ∈ R} ⊂ gl(n,R)

is called the Lie algebra of G.
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Example 4.11. • G = U(n), we have seen that g = u(n), the space of skew-Hermitian
matrices.

• G = SL(n,R), we will see in Question Sheet 2 that g = sl(n,R), the space of trace-
free matrices.

• G = SU(n), we get g = su(n), the space of tracefree skew-Hermitian matrices.

• G = O(n), we will see in Question Sheet 2 that g = so(n), the space of antisymmetric
matrices.

• G = SO(n), we get again that g = so(n). This is because O(n) = SO(n) ∪ τSO(n)
where τ ∈ O(n) is a reflection matrix with determinant −1; the elements in τSO(n)
can never be in the image of the exponential map.

4.4 Exponential charts on matrix groups

So much of what we will say in this course involves working in local coordinates. The
exponential map allows us to define some very convenient coordinates on a matrix group
near the identity.

Definition 4.12. If G is a matrix group with Lie algebra g and 0 ∈ B ⊂ g, 1 ∈ C ⊂ G
are neighbourhoods such that exp: B → C is a bijection then we call exp: B → C an
exponential chart for G near 1.

Theorem 3.8 tells us precisely that there is an exponential chart exp: U ′ → V ′ forGL(n,R).
If G ⊂ GL(n,R), we would like to use this to define a coordinate chart U ′ ∩ g

exp→ V ′ ∩ G
on G, which identifies a neighbourhood of 1 ∈ G with a neighbourhood of 0 ∈ g. This
turns out to be slightly tricky.

Theorem 4.13. There exist neighbourhoods 0 ∈ U ′ ⊂ gl(n,R) and 1 ∈ V ′ ⊂ GL(n,R) such
that

exp |U ′∩g : U ′ ∩ g→ G ∩ V ′

is an exponential chart.

Proof. If U ′ and V ′ are given by Theorem 3.8 then certainly this map is injective (as exp |U ′ is injec-
tive). However, since we have restricted the domain it is not clear that it is surjective. Suppose
that the result were not true (we will find a contradiction); then for any U ′, V ′ we could find a
point g ∈ V ′ ∩ G not contained in exp(g). By letting the radius of V ′ shrink we can ensure that
there is a sequence gi ∈ G \ exp(g) such that gi → 1.

To rule out the existence of such a sequence we make use of the following lemma:

Lemma 4.14. Suppose that gl(n,R) = W1 ⊕W2 for a pair of complementary subspaces W1,W2 ⊂
gl(n,R). Then there are open neighbourhoods U ′ of 0 ∈ W1 ⊕W2 and V ′ of 1 ∈ GL(n,R) such that
the map

F : W1 ⊕W2 → GL(n,R), F (w1, w2) = exp(w1) exp(w2)

is a diffeomorphism F |U ′ : U ′ → V ′.

Proof. The proof is similar to Theorem 3.8. See Question Sheet 2.
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In our case, we take W1 = g and W2 is a complement. Our sequence gi eventually lies in the
image of F , and so gi = exp(w1,i) exp(w2,i) for some sequences w1,i ∈ g, 0 6= w2,i ∈ W2. Note
that gi and exp(−w1,i) are both in G, hence exp(w2,i) ∈ G even though w2,i is nonzero in the
complement of g.

The sequence w̃i = w2,i/‖w2,i‖ satisfies ‖w̃i‖ = 1 and therefore has a convergent subsequence
with limit w ∈ W2 satisfying ‖w‖ = 1. Lemma 4.8 now implies that exp(tw) ∈ G for all t ∈ R.
Therefore w ∈ g by definition. This contradicts the fact that w ∈W2.

Remark 4.15. One obtains an exponential chart near any g ∈ G using v 7→ g exp(v). The
proof is the same as for the chart near 1 ∈ G, except that in Lemma 4.14 you use the map

Fg : W1 ⊕W2 → GL(n,R), Fg(w1, w2) = g exp(w1) exp(w2).

4.5 Tangent spaces

There is a more geometric characterisation of g.

Definition 4.16. Let γ = (γ1, . . . , γn) : (−ε, ε) → Rn be a (continuously differentiable)
path. Recall that the tangent vector γ̇(t) to γ at γ(t) is the vector

γ̇(t) =

(
dγ1

dt
(t), . . . ,

dγn
dt

(t)

)
.

Note that by definition, limε→0
1
ε
(γ(ε)− γ(0))→ γ̇(0).

Definition 4.17. Let X ⊂ Rn be a subset and x ∈ X . If γ : (−ε, ε) → Rn is a path with
γ(−ε, ε) ⊂ X and γ(0) = x then we say γ̇(0) is a tangent vector to X at x. The tangent
cone of X at the point x ∈ X is the set of all tangent vectors to X at x. In the case when
this cone is actually a subspace we call it the tangent space.

Proposition 4.18. The vector space g is the tangent space of G at 1. More generally, the vector
space gg is the tangent space of G at g ∈ G.

Proof. Suppose that v ∈ g. Then g exp(tv) ∈ G for all t so γ(t) = g exp(tv) is a path in G with
γ(0) = g and γ̇(t) = gv exp(tv) so γ̇(0) = gv. Thus v is a tangent vector at g.

Conversely, suppose that gv is a tangent vector to G at g. Then there exists γ : (−ε, ε)→ G with
γ(0) = g and γ̇(0) = gv. The path g−1γ satisfies g−1γ(0) = 1 and g−1γ̇(0) = v. By Theorem 3.8,
for sufficiently small t, g−1γ(t) = exp(f(t)) for some f(t) ∈ g with f(0) = 0.

Define hn = f(1/n). Then hn = log(g−1γ(1/n)) = g−1γ(1/n) +O(1/n2) = g−1γ̇(0)/n+O(1/n2)
so |hn| = |g−1γ̇(0)|/n+O(1/n2). Therefore

lim
n→∞

1

|hn|
(exp(hn)− 1) = lim

n→∞

1

|g−1γ̇(0)|
g−1γ(1/n)− g−1γ(0)

1/n
=

˙g−1γ(0)

| ˙g−1γ(0)|
.

Let us define v := γ̇(0)
|γ̇(0)| . We also have, by Taylor expanding exp, that limn→∞

1
|hn| (exp(hn)−1) =

limn→∞
hn
|hn| . Thus

lim
n→∞

hn
|hn|

= v

and the sequence hn satisfies the assumptions of Lemma 4.8. We deduce that exp(tv) ∈ G for all
t. Hence v ∈ g, hence γ̇(0) ∈ g.
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Here is a quick way to find tangent spaces; for a proof, see multivariable calculus.

Lemma 4.19. Let F : Rn → Rm be a smooth map with F (p) = q and F (p+ v) = q+ dpF (v) +
· · · . Here the linear map dpF is the one whose matrix is

∂F1

∂x1
(p) · · · ∂F1

∂xn
... . . . ...

∂Fm

∂x1
· · · ∂Fm

∂xn

 .

If dpF is surjective then the tangent space to F−1(q) at p is ker(dpF ).

Corollary 4.20. The tangent space of U(n) at 1 is the space of skew-Hermitian matrices

u(n) = {v ∈ gl(n,C) : v† = −v}.
Proof. Let H = {v ∈ gl(n,C) : v† = v} be the space of Hermitian matrices. Consider the map

F : gl(n,C)→ H, F (A) = A†A.

By definition, U(n) = F−1(1). We have

F (1 + tB) = (1 + tB)(1 + tB†) = 1 + tB + tB† +O(t2)

so d1F (B) = B+B†. This is surjective: ifC ∈ H thenC =
(
1
2C
)
+
(
1
2C
)†

= d1F (C/2). Therefore
the tangent space of U(n) at 1 is

ker d1F = {B ∈ gl(n,C) : B +B† = 0} = u(n).

4.6 The Lie bracket

Lemma 4.21. Given a matrix group G, the subspace g is preserved by the Lie bracket.

Proof. If X,Y ∈ g then Cs,t = [exp(sX), exp(tY )] = exp(sX) exp(tY ) exp(−sX) exp(−tY ) ∈ G. By
the part of the BCH formula we actually checked, we have

exp(sX) exp(tY ) = exp

(
sX + tY + st

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]]

)
,

so
Cs,t = exp(st[X,Y ] + st(O(s) +O(t))) ∈ G.

If we set γ(u) := C√u,
√
u then γ(u) = exp(u[X,Y ] +O(u3/2)) defines a path in G whose tangent

vector at γ(0) = 1 is [X,Y ]. Therefore [X,Y ] ∈ g.

Let us summarise everything we have learned in one theorem:

Theorem 4.22. If G is a matrix group, the set

g := {v ∈ gl(n,R) : exp(tv) ∈ G ∀ t ∈ R}

is a vector space, indeed it is the tangent space of G at the identity. Moreover it is closed under
the operation of Lie bracket, so inherits the structure of a Lie algebra. The exponential map carries
g to G and is a local diffeomorphism from a neighbourhood of 0 ∈ g to a neighbourhood of 1 ∈ G.
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Lecture 5: Smooth homomorphisms

5.1 Smoothness in exponential charts

Let G and H be matrix groups and suppose that φ : G → H is a homomorphism. We
wanted a smoothness condition on this homomorphism. A homomorphism is said to be
smooth if it is smooth when written in exponential charts:

Definition 5.1. Let G1 and G2 be Lie groups with Lie algebras g1 and g2 respectively. Let
F : G1 → G2 be a homomorphism. Let exp: Bi → Ci, Bi ⊂ gi, Ci ⊂ Gi be exponen-
tial charts with F (C1) = C2 (this can always be achieved by shrinking C1 and C2). A
homomorphism F : G1 → G2 is smooth if

f := exp−1 ◦F ◦ exp: B1 → C1 → C2 → B2

is smooth.

Remark 5.2. Note that by definition we have

exp(f(X)) = F (expX)

for any X in the domain of an exponential chart.

This may seem like a lot of effort to go to just to define a smooth map between matrix
groups, but we only know how to define smooth maps between open subsets of vector
spaces (like B1, B2) where we have Euclidean coordinates and can take partial deriva-
tives.

Example 5.3. Consider the homomorphism R : SU(2)→ SO(3) which sends exp(θMu) to
the rotation through 2θ around u = (x, y, z), studied in Question Sheet 1. We saw that if

Ku =

 0 −z y
z 0 −x
−y x 0

 ∈ so(3) then exp(2θKu) ∈ SO(3) also rotates around u by 2θ, so

R(exp(θMu)) = exp(2θKu).

This means that, in an exponential neighbourhood, defining r = exp−1 ◦R ◦ exp, we have

r

(
ix y + iz

−y + iz −ix

)
= 2

 0 −z y
z 0 −x
−y x 0

 .

In this example, the map R looks extremely simple in an exponential chart: it is linear!
We will see shortly that this is no coincidence: a smooth homomorphism of Lie groups is
linear in an exponential chart.
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5.2 One-parameter subgroups

The group R under addition can be realised as a closed subgroup of GL(2,R):

R ∼=
{(

1 x
0 1

)
: x ∈ R

}
,

(
1 x
0 1

)(
1 y
0 1

)
=

(
1 x+ y
0 1

)
.

Definition 5.4. A smooth homomorphism φ : R→ G is called a one-parameter subgroup.

Example 5.5. If X ∈ g then φ(t) = exp(tX) is a one-parameter subgroup, because

exp((s+ t)X) = exp(sX) exp(tX). (1)

This is manifestly clear for matrix exponentials because sX and tX commute.

Remark 5.6. Another way to see it is this, using the fact that φ̇(t) = Xφ(t):

• ψ(s) := φ(s+ t) solves dψ
ds

= Xψ(s) and ψ(0) = φ(t),

• θ(s) = φ(s)φ(t) solves dθ
ds

= Xθ(s) and θ(0) = φ(t),

• an ODE has a unique solution with given initial condition. Therefore θ = ψ and
Equation (1) holds, so φ is a homomorphism.

This is a powerful strategy of proof, crucially using calculus and the uniqueness of so-
lutions to ODEs with given initial conditions. Here we use it again, to prove that all
one-parameter subgroups arise as exp(tX) for some X ∈ g.

Proposition 5.7. Suppose that φ : R → G is a one-parameter subgroup. Then φ(t) = exp(tX)
for some X ∈ g.

Proof. Differentiate the homomorphism condition, φ(s + t) = φ(s)φ(t), with respect to s at s = 0.
This gives

φ̇(t) = φ̇(0)φ(t)

If we setX := φ̇(0) then we see that φ(t) satisfies the ODE φ̇(t) = Xφ(t) and the initial condition
φ(0) = 1. Thus φ(t) = exp(tX).

5.3 Linearity in exponential charts

Theorem 5.8. Suppose that F : G1 → G2 is a smooth homomorphism of matrix groups whose
Lie algebras are gi, let exp: Bi → Ci, i = 1, 2, be exponential charts and let f : B1 → B2 be the
map F viewed in exponential coordinates. Then f is a linear map.

Proof. For any X ∈ g1, exp(tX) is a one-parameter subgroup of G1 and, since F is a smooth ho-
momorphism, F (exp(tX)) is a one-parameter subgroup of G2. By Proposition 5.7, there exists
Y ∈ g2 such that F (exp(tX)) = exp(tY ).

Since exp(f(X)) = F (expX) for X ∈ B1 we have that exp(f(tX)) = F (exp(tX)) = exp(tY )
for all sufficiently small t. Taking logarithms (as we are in the image of an exponential chart)
we see that f(tX) = tY . Differentiating this at t = 0 we see that d0f(X) = Y . Therefore
f(tX) = d0f(tX). So f equals its own linearisation, d0f . In particular it is linear.
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Definition 5.9. If F : G1 → G2 is a homomorphism, denote by F∗ : g1 → g2 the linear map
d0f . We call this variously the linearisation of F at 1, the induced map on Lie algebras or the
differential of F at the identity. We make this change in notation because f is only defined
locally in an exponential chart.

Recall that by definition, exp(f(X)) = F (exp(X)) for all X ∈ B1 and hence F (exp(X)) =
exp(F∗X) for all X ∈ B1. In fact:

Lemma 5.10.
F (exp(X)) = exp(F∗(X))

for all X ∈ g1.

Proof. Since F (exp(tX)) is a one-parameter subgroup it has the form exp(tY ) and for sufficiently
small t, tX ∈ B1 so F (exp(tX)) = exp(tF∗(X)), therefore tF∗(X) = tY and Y = F∗(X). Now
setting t = 1 gives the result.

5.4 Lie algebra homomorphisms

So any smooth homomorphism F of matrix groups has the form F (expX) = exp(F∗(X))
for some linear map F∗ on Lie algebras. Which linear maps F∗ arise? Since F has to
preserve the group structure, there should be an algebraic structure on the Lie algebra
(hence the name) which is preserved by F∗. Given the BCH formula, it should be no
surprise that this turns out to be the Lie bracket.

Definition 5.11. A homomorphism of Lie algebras g, h is a linear map f : g→ h such that
[f(X), f(Y )] = f([X, Y ]) for all X, Y ∈ g.

Theorem 5.12. If F : G1 → G2 is a smooth homomorphism of matrix groups and F∗ : g1 → g2

is its linearisation then
F∗[X, Y ] = [F∗X,F∗Y ].

In other words, the linearisation of a smooth homomorphism of matrix groups is a Lie algebra
homomorphism.

Proof. Recall from the proof of Lemma 4.21 that

exp(tX) exp(tY ) exp(−tX) exp(−tY ) = exp(t2[X,Y ] + o(t2)) (2)

Applying F and using the fact it is a homomorphism we get

F (exp(tX))F (exp(tY ))F (exp(−tX))F (exp(−tY )) = F (exp(t2[X,Y ] + o(t2))).

Using the fact that F (exp(X)) = exp(F∗X) we get

exp(tF∗X) exp(tF∗Y ) exp(−tF∗X)) exp(−tF∗Y ) = exp(t2F∗[X,Y ] + o(t2)).

Applying Equation (2) in G2 to the left-hand side we get

exp(tF∗X) exp(tF∗Y ) exp(−tF∗X)) exp(−tF∗Y ) = exp(t2[F∗X,F∗Y ] + o(t2))

and comparing the two expressions for exp(tF∗X) exp(tF∗Y ) exp(−tF∗X)) exp(−tF∗Y ) we see
that

F∗[X,Y ] = [F∗X,F∗Y ].
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Lecture 6: Lie’s theorem

We have seen that linearisations of smooth homomorphisms are Lie algebra homomor-
phisms. Do all Lie algebra homomorphisms arise this way?

6.1 Example: U(1)

Example 6.1. Let F : U(1) → U(1) be a homomorphism. The Lie algebra is iR (skew-
Hermitian 1-by-1 matrices!) and the linear map F∗ : iR → iR is just x 7→ λx for some
λ ∈ R. The Lie bracket vanishes identically on iR since [ix, iy] = xy[i, i] = 0, so the Lie
algebra homomorphism condition is vacuous.

Since F (exp(ix)) = exp(F∗(ix)) = exp(iλx), we see that there is an extra condition that
has to be satisfied in order for this equation to make sense. This comes from the fact that
exp(i2π) = 1 and F (1) = 1, so exp(i2πλ) = 1. This means λ ∈ Z.

Any n ∈ Z does indeed define a homomorphism Fn : eix 7→ einx. So we have proved

Proposition 6.2. Given a smooth homomorphism F : U(1) → U(1) there exists an integer n
such that F = Fn.

6.2 Simply-connectedness

In this example it was not the case that every Lie algebra homomorphism exponenti-
ated to give a group homomorphism: there were R possible homomorphisms but only
a discrete set Z ⊂ R exponentiated successfully. The problem is actually to do with the
topology of the group U(1): loops in U(1) have a well-defined winding number around
the central hole. This problem disappears if we make an extra topological assumption
about the group:

Definition 6.3. A subset X ⊂ Rn is simply-connected if for any loop γ : [0, 1] → X with
γ(0) = γ(1) = x ∈ X there is a continuous map H : [0, 1]× [0, 1]→ X such that

• H(0, t) = H(1, t) = x,

• H(s, 0) = x, H(s, 1) = γ(s).

We say that H is a nullhomotopy of γ and we should imagine that H contracts γ(s) to
a point through a family of continuous loops γt(s) = H(s, t). Note that we could work
with smooth paths and smooth homotopies (just by approximating continuous maps by
smooth maps using the Stone-Weierstrass theorem in local coordinates).

This fails for X = U(1) ⊂ C because the loop γ(θ) = ei2πθ is not contractible: the winding
number does not change when you continuously deform γ but it equals 1 whereas the
winding number for the constant path equals 0.
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It turns out, amazingly, that this is the only obstruction to exponentiating homomor-
phisms

Theorem 6.4 (Lie’s theorem on homomorphisms). Let G1 and G2 be path-connected matrix
groups with Lie algebras g1 and g2. Suppose that G1 is simply-connected. If f : g1 → g2 is a
Lie algebra homomorphism then there exists a Lie group homomorphism F : G1 → G2 such that
F∗ = f .

We will see a proof of this theorem on Question Sheet 4.

So does the theorem have any content? Are there any simply-connected groups?

Example 6.5 (Topological aside). The 3-dimensional sphere is simply-connected: if γ is
a smooth loop in S3 then γ([0, 1]) cannot fill out the whole S3 as the image of γ is a
measure zero set. Take p ∈ S3 \ γ([0, 1]) and stereographically project γ to R3; any loop
in R3 is contractible to the origin (via radial rescaling) and projecting this nullhomotopy
stereographically back to S3 gives a nullhomotopy of the original loop γ. Since SU(2) is
topologically S3 this says that SU(2) is simply-connected. In fact if n > 1 the quotient
SU(n)/SU(n − 1) is a sphere of dimension 2n − 1 and hence simply-connected by the
same argument; one can use this to show inductively that SU(n) is simply-connected
(this argument uses the homotopy long exact sequence of the fibration SU(n − 1) →
SU(n)→ S2n−1).

Example 6.6. Given any matrix groupG one can take its simply-connected universal cover
G̃. This is again a group, locally isomorphic toG in the sense that there are neighbourhoods
1 ∈ C1 ⊂ G and 1 ∈ C2 ⊂ G̃ and a bijection F : C1 → C2 which satisfies F (gh) = F (g)F (h)
whenever gh ∈ C1. However, it is not necessarily a matrix group! For example, it turns
out that the universal cover of SL(2,R) is not a matrix group (it doesn’t embed homo-
morphically into any GL(n,R)). Nonetheless, the local geometry/algebra looks very
similar to that of a matrix group: one can define an exponential map and a Lie algebra.
This motivates the introduction of Lie groups: smooth manifolds with a group structure
where the multiplication and inversion maps are smooth. “Smooth manifold” just means
that there is a system of local coordinate charts (like the exponential charts we built)
which allow you to do calculus in local coordinates. In this general context, one can no
longer multiply Lie algebra elements with group elements or with one another directly
because they are no longer matrices. Instead one reinterprets all our constructions in
terms of manifolds, pushforward maps and flows of vector fields. We will not do this in
this course.

One benefit of working with Lie groups rather than matrix groups is:

Theorem 6.7 (The Lie correspondence). For any Lie algebra g there exists a path-connected,
simply-connected Lie group G with Lie algebra g.

One way to prove this is to first prove:

Theorem 6.8 (Another theorem of Lie). Suppose that g is the Lie algebra of G. For any Lie
subalgebra h ⊂ g there exists a Lie subgroup H ⊂ G with Lie algebra h.
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Theorem 6.9 (Ado-Hochschild). Any finite-dimensional Lie algebra occurs as a subalgebra of
gl(n,R) for some n.

Now take a matrix group with Lie algebra g and take its universal cover to get Lie’s
corresponding group.
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Lecture 7: Representations of Lie groups

7.1 Definitions and examples

Let K be a field. A K-representation of a group G comprises a K-vector space V and a
homomorphism

R : G→ GL(V ).

In other words, a representation is an assignment of a matrix to each group element such
that the matrices multiply like the group elements.

Example 7.1. Any group admits a zero representation R = 0: G → GL(0) on the 0-
dimensional vector space. In fact any group admits a trivial representation R : G→ GL(V )
on any vector space V such that R(g) = 1 for all g ∈ G.

Example 7.2. The inclusion U(n) → GL(n,C) is a C-representation of U(n) on Cn. The
inclusion SO(n) → GL(n,R) is a R-representation of SO(n) on Rn. These are called the
standard representations of U(n) and SO(n).

Example 7.3. Let G be a matrix group with Lie algebra g. We define the adjoint represen-
tation of G on g by

Ad: G→ GL(g), g 7→ Adg, Adg v = gvg−1.

We studied the adjoint representation of SU(2) extensively in Question Sheet 1. We saw
that it is a 2-to-1 homomorphism SU(2) → SO(3) ⊂ GL(3,R) (given by exp(θMu) 7→

exp(2θKu), where Mu =

(
ix y + iz

−y + iz −ix

)
and Ku =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

). The ad-

joint representation will turn out to be the most important representation of all; under-
standing it will allow us to classify all representations of a given group and even classify
semisimple groups.

We want to be able to compare different representations and to say when two are isomor-
phic.

Definition 7.4. LetR1 : G→ GL(V ) andR2 : G→ GL(W ) be representations. A morphism
of representations comprises a linear map L : V → W such that

L (R1(g)v) = R2(g)L(v)

for all g ∈ G and v ∈ V . A map of representations is called an isomorphism if L is an
isomorphism.

Example 7.5. Let V be the standard representation R3 of SO(3), in which exp(θKu) acts
like rotation by θ around a unit vector u. Let W be the adjoint representation of SO(3) on
so(3), the Lie algebra of antisymmetric matrices Kv. Let L : V → W be the map v 7→ Kv.
To check that this is an isomorphism of representations we need to prove

Adexp(θKu) Kv = Kexp(θKu)v, if |u|2 = 1.
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The left-hand side is exp(θKu)Kv exp(−θKu) and we also have

exp(θKu) = 1 +Ku sin θ + (1− cos θ)K2
u, [Ku, Kv] = Ku×v, KuKvKu = −(u · v)Ku.

Using these facts it’s easy (but tedious) to check that

exp(θKu)Kv exp(−θKu) = Kv cos θ +Ku×v sin θ + (1− cos θ)(u · v)Ku

which is then equal to Kexp(θKu)v by Rodrigues’s formula. Therefore the standard repre-
sentation of SO(3) is isomorphic to its adjoint representation.

This proof by calculation was so messy I that I didn’t write it out. Later we will see a
much easier way to prove that two representations of SU(2) are isomorphic - indeed we
will classify representations of SU(2).

7.2 Subrepresentations; irreducibility

A subrepresentation is a subspace W ⊂ V such that R(g)(w) ∈ W for all g ∈ G, w ∈ W .
This defines a homomorphism RestW R : G→ GL(W ) where

RestW R(g) = R(g)|W .

Example 7.6. The group U(n) acts on gl(n,C) by conjugation, which gives a representa-
tion

U(n)→ GL(gl(n,C).

Since the conjugate of an anti-Hermitian matrix by a unitary matrix is still anti-Hermitian,
the matrices in the image of this representation preserve the subspace u(n) ⊂ gl(n,C) so
this is a subrepresentation (indeed it is the adjoint representation of U(n)). Moreover,
since the conjugate of a tracefree matrix is tracefree these matrices also preserve the sub-
space su(n) ⊂ u(n) so this is another subrepresentation (both of gl(n,C) and of u(n)).

Example 7.7. If R : G→ GL(V ) is a representation of G then (a) R is a subrepresentation
ofR and (b) the zero representationG→ GL(0) is a subrepresentation (because the origin
in V is fixed by every element R(g)). A subrepresentation of R which is not equal to R or
0 is called a proper subrepresentation.

Definition 7.8. A representation is called irreducible if it admits no proper subrepresen-
tations.

7.3 New representations from old

7.3.1 Direct sums

Given two representations R1 : G → GL(V ) and R2 : G → GL(W ) we can construct a
third representation

R1 ⊕R2 : G→ GL(V ⊕W )
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by defining

(R1 ⊕R2)(g) =

(
R1(g) 0

0 R2(g)

)
,

that is (R1 ⊕ R2)(g)(v, w) = (R1(g)v,R2(g)w). It is easy to see that if R1 6= 0 and R2 6= 0
then R1 ⊕R2 is not irreducible: it contains R1 and R2 as proper subrepresentations.

7.3.2 Duals

If V is a finite-dimensional K-vector space then its K-dual is the space V ∗ of K-linear
functionals

f : V → K.

If R : G→ GL(V ) is a representation then we can define a representation

R∗ : G→ GL(V ∗)

by defining R∗(g)f to be the linear functional whose value on v is

(R∗(g)f)(v) = f(R(g−1)v).

It is an exercise to check that this defines a representation. Observe that (R∗(g)f)(R(g)v) =
f(v), so R∗(g)f is the function f viewed in the new frame of reference where vectors v
look like R(g)v.

If we pick a basis of V and identify it with column vectors in Kn then its dual V ∗ is iden-
tified with the space of row vectors: a row vector

(
x1 · · · xn

)
gives a linear functional

on V via  y1
...
yn

 7→ (
x1 · · · xn

) y1
...
yn

 =
n∑
i=1

xiyi.

If R(g) is an n-by-n matrix then we can let it act from the left on column vectors (giv-
ing a representation because R(gh)v = (R(g)R(h))v = R(g)(R(h)v)) or from the right
on row vectors (giving an “antirepresentation” because vTR(gh) = vT (R(g)R(h)) =
(vTR(g))R(h) instead of (vTR(h))R(g)). To get a representation we use g 7→ R(g)−1 be-
cause R(gh)−1 = R(h)−1R(g)−1.

7.3.3 Tensor products

Given two vector spaces V and W over K we can form the tensor product V ⊗ W as
follows. Let ei and fj be bases of V and W and take the vector space V ⊗W with a basis
given by the symbols {ei ⊗ fj}i∈I, j∈J .

Lemma 7.9. The bilinear map ψ : V ×W → V ⊗W :

ψ

(∑
i

viei,
∑
j

wjfj

)
=
∑
i,j

(viwj)(ei ⊗ fj)
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has the following universal property: any bilinear map h : V ×W → X factors uniquely as h′ ◦ψ
for a linear map h′ : V ⊗W → X :

V ×W V ⊗W

X

ψ

h
h

Proof. Let {gk}k∈K be a basis for X . Elementary linear algebra tells us that a linear map

h :

∑
i

viei,
∑
j

wjfj

 7→∑
k

Ak(v, w)gk

is bilinear if Ak(v, w) =
∑
i,j Aijkviwj (just expand the coefficient of wj as linear functions of

the vi). Thus

h

∑
i

viei,
∑
j

wjfj

 =
∑
i,j,k

Aijkviwjgk

factors as h′ ◦ ψ where
h′(ei ⊗ fj) =

∑
k

Aijkgk.

Uniqueness follows because if we used h′′(ei ⊗ fj) =
∑
k Bijkgk we would get different coeffi-

cients in our bilinear map (Bijk instead of Aijk) and these coefficients can be recovered as the
gk component of h(ei, fj).

Lemma 7.10. Suppose there were another vector space M and a map m : V ×W →M with the
universal property that any bilinear map g : V ×W → X factored uniquely as g′ ◦m for a linear
map g′ : M → X . Then M would be canonically isomorphic to V ⊗W .

Proof. Compare the diagrams

V ×W V ⊗W

M ]

V ⊗W

ψ

m

ψ

m′

ψ

Clearly ψ′ ◦m′ ◦ ψ is a factorisation of ψ but there is a unique such factorisation, namely id ◦ψ.
Therefore ψ′ ◦m′ = id and, by the same argument, m′ ◦ψ′ = id. Therefore m′ is an isomorphism
V ⊗W →M with inverse ψ′.

Remark 7.11. It is vitally important that you don’t go away thinking every element of
V ⊗W is of the form v ⊗ w. Such elements are called pure tensors. But for example, e1 ⊗
f1 + e2⊗ f2 is a perfectly good element which is not a pure tensor. The pure tensors don’t
even span a vector subspace, instead they form a subvariety cut out by equations called
the Plücker relations (see Sheet 5). Nonetheless, we will usually define linear maps on
V ⊗W by defining them on a basis of pure tensors and extending linearly. For example...
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Definition 7.12. If R1 : G → GL(V ) and R2 : G → GL(W ) are also representations of G
then we get a representation R1 ⊗R2 : G→ GL(V ⊗W ) by defining

(R1 ⊗R2)(g)v ⊗ w = R1(g)v ⊗R2(g)w

and extending K-linearly to V ⊗W .

7.3.4 Hom spaces

Let Hom(V,W ) denote the space of linear maps from V to W . If R : G → GL(V ) and
S : G→ GL(W ) are representations then one can define a representation

T : G→ GL(Hom(V,W ))

by
(T (g)F )(v) = S(g)F (R(g−1)v), F ∈ Hom(V,W ), v ∈ V.

We will see in Sheet 5 that this is isomorphic to the representation V ∗ ⊗W .

7.3.5 Symmetric powers

In this section we will work over a field K of characteristic zero.

Definition 7.13. Consider the action of Sn on V ⊗n which is defined on pure tensors by

σ(v1 ⊗ · · · ⊗ vn) = vσ(1) ⊗ · · · ⊗ vσ(n), σ ∈ Sn.

The nth symmetric power of V is the subspace Symn(V ) ⊂ V ⊗n consisting of tensors
which are fixed by every σ ∈ Sn under this action.

Example 7.14. Suppose that V = K〈e1, e2〉. The tensor e1 ⊗ e2 + e2 ⊗ e1 is an element of
Sym2(V ) but the tensor e1 ⊗ e2 is not.

Definition 7.15. We define the averaging map

Av: V ⊗n → V ⊗n, Av(v) =
1

n!

∑
σ∈Sn

σ(v).

Note that Av is a projection onto its image Symn(V ) ⊂ V ⊗n.

Example 7.16. If V = K〈e1, e2〉, Av(e1 ⊗ e2) = 1
2
(e1 ⊗ e2 + e2 ⊗ e1).

Proposition 7.17. If R : G → GL(V ) is a representation then Symn(V ) is a subrepresentation
of V ⊗n.

Remark 7.18. This implies that tensor products are never irreducible: they always admit
subrepresentations.
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Proof. We will prove that Av is a morphism of representations V ⊗n → V ⊗n. On Sheet 5 we will
see that the image of a morphism of representations V1 → V2 is a subrepresentation of V2,
concluding the proof.

To check that it is a morphism, we need to prove that

Av(R⊗n(g)v) = R⊗n(g) Av(v).

It suffices to check this on pure tensors v = v1 ⊗ · · · ⊗ vn. Expanding out the right-hand side
gives

1

n!

∑
σ∈Sn

σ(R(g)v1 ⊗ · · · ⊗R(g)vn)

or, because σ simply permutes the factors,

1

n!

∑
σ∈Sn

R(g)vσ(1) ⊗ · · · ⊗R(g)vσ(n).

The left-hand side is
R⊗n(g)

1

n!

∑
σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n)

which, by linearity and definition of R⊗n(g) equals

1

n!

∑
σ∈Sn

R(g)vσ(1) ⊗ · · · ⊗R(g)vσ(n).

This proves that Av is a morphism.

We introduce some new notation for symmetric powers which will be convenient

v1 · · · vn = Av(v1 ⊗ · · · ⊗ vn).

For example xy = 1
2
(x ⊗ y + y ⊗ x). This allows us to think of the nth symmetric power

of V as being homogeneous polynomials in the elements of V . For example, elements
of V ∗ are linear functions on V and elements of Symn(V ∗) are homogeneous polynomial
functions on V .

7.3.6 Exterior powers

Definition 7.19. Consider the action of Sn on V ⊗n which is defined on pure tensors by

σ(v1 ⊗ · · · ⊗ vn) = (−1)|σ|vσ(1) ⊗ · · · ⊗ vσ(n), σ ∈ Sn
where |σ| is the sign of the permutation. The nth exterior power of V is the subspace
Λn(V ) ⊂ V ⊗n consisting of tensors which are fixed by every σ ∈ Sn under this action.

Example 7.20. Suppose that V = K〈e1, e2〉. The tensor e1 ⊗ e2 − e2 ⊗ e1 is an element of
Λ2(V ) but the tensor e1 ⊗ e2 is not.

Definition 7.21. We define the alternating map

Alt : V ⊗n → V ⊗n, Alt(v) =
1

n!

∑
σ∈Sn

(−1)|σ|σ(v).

Note that Alt is a projection onto its image Λn(V ) ⊂ V ⊗n.
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Example 7.22. If V = K〈e1, e2〉, Alt(e1 ⊗ e2) = 1
2
(e1 ⊗ e2 − e2 ⊗ e1).

Proposition 7.23. If R : G → GL(V ) is a representation then Λn(V ) is a subrepresentation of
V ⊗n.

The proof is the same as for symmetric powers.

We introduce some new notation for exterior powers which will be convenient

v1 ∧ · · · ∧ vn = Alt(v1 ⊗ · · · ⊗ vn).

For example x ∧ y = 1
2
(x⊗ y − y ⊗ x).

Lemma 7.24. If dimK V = n then dimK ΛmV =
(
n
m

)
. In particular, ΛmV = 0 if m > n.

Proof. Suppose that e1, . . . , en is a basis for V . A basis for ΛmV is given by

ei1 ∧ · · · ∧ eim

where i1 < . . . < im. There are
(
n
m

)
of these basis vectors.

Remark 7.25. The exterior powers of the dual, ΛnV ∗, are called alternating forms. These
play a key role in differential geometry and topology. In the same way that vectors are the
“infinitesimal version” of vector fields, alternating forms are the “infinitesimal version”
of the ubiquitous differential forms.

7.4 Representations which are not irreducible

The direct sum of two nonzero representations is not irreducible. Is this the only way to
construct representations which are not irreducible?

Definition 7.26. A representation R : G → GL(V ) is completely reducible if there exist
irreducible subrepresentations V1, . . . , Vk such that V =

⊕k
i=1 Vi.

There exist groups which admit representations which are not completely reducible.

Example 7.27. Consider the group C under addition. This admits a representation on
C2:

z 7→
(

1 z
0 1

)
.

This admits a trivial one-dimensional subrepresentation: the subspace

A =

{(
a
0

)
: a ∈ C

}
is preserved and C acts trivially on it. IfB is a complementary subrepresentation, spanned

by a vector
(
b1

b2

)
, (b2 6= 0) then

(
1 z
0 1

)(
b1

b2

)
=

(
b1 + zb2

b2

)
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If this is a subrepresentation then for each z ∈ C there exists a λ(z) such that(
b1 + zb2

b2

)
= λ(z)

(
b1

b2

)
Since b2 = λ(z)b2, this implies λ(z) = 1. Therefore b1 + zb2 = b1 for all z, which is a
contradiction.

In Section 7.5 we will see that representations of compact Lie groups are always com-
pletely reducible.

7.5 Unitarity

7.5.1 Unitary representations

Recall that a Hermitian inner product on a complex vector space V is a map 〈, 〉 : V ×V →
C such that

〈u, λv + µw〉 = λ〈u, v〉+ µ〈u,w〉, 〈w, v〉 = 〈v, w〉

for all λ, µ ∈ C, u, v, w ∈ V . There is a further requirement of positive-definiteness: note
that 〈v, v〉 = 〈v, v〉. Positive-definiteness is the requirement that

〈v, v〉 ≥ 0

with equality if and only if v = 0.

Definition 7.28. A unitary representation of a Lie groupG is a homomorphismG→ U(n)
for some n. Equivalently, a unitary representation is a representation R : G → GL(n,C)
for which there exists a Hermitian inner product 〈, 〉 such that R(g) preserves 〈, 〉 for each
g ∈ G. This is called an invariant Hermitian inner product.

Lemma 7.29. For any representation of a finite group R : G→ GL(n,C) there exists an invari-
ant Hermitian inner product.

Proof. Let 〈, 〉′ be a Hermitian inner product on Cn (not invariant). Define

〈v, w〉 =
∑
g∈G
〈R(g)v,R(g)w〉′

It is easy to check that this is a Hermitian inner product. Invariance is proved by considering

〈hv, hw〉 =
∑
g∈G
〈R(gh)v,R(gh)w〉′

and if we relabel gh = k then as g runs over G so does k so this sum is equal to∑
k∈G

〈R(k)v,R(k)w〉′

which equals 〈v, w〉.
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We cannot play such tricks with Lie groups because there are usually infinitely many
elements. But for a certain class of Lie groups we can replace the sum by an integral; this
is the class of compact Lie groups.

Definition 7.30. A manifold X is called compact if every collection {Ui}i∈I of open sets
which cover X admits a finite subcollection {Ui}i∈J⊂I which also cover X .

Example 7.31. R is not compact. For matrix groups, being compact is the same as being
a bounded subset of GL(n,R).

Proposition 7.32 (Weyl’s unitarian trick). For any representation of a compact Lie group
R : G→ GL(n,C) there exists an invariant Hermitian inner product.

Proof. Starting from an arbitrary Hermitian inner product 〈, 〉′ we can define

〈v, w〉 =

∫
g∈G〈R(g)v,R(g)w〉′dg∫

g∈G dg

provided we can define the integral
∫
g∈G f(g)dg of a function f : G → C in such a way that∫

g∈G dg is finite. Moreover, for the relabelling trick to work to prove invariance, we need∫
g∈G

f(gh)dg =

∫
g∈G

f(g)dg

for any h ∈ G. An integral with these properties exists and is called the Haar integral. We won’t
prove the existence of the Haar integral. The idea of the proof is to use a volume form on the Lie
algebra and translate it around the group via left multiplication; for details see Section 4.11 of
Warner’s Foundations of differentiable manifolds and Lie groups.

Remark 7.33. Actually, one of the most important cases of the Haar integral is also the
easiest to define: the Haar integral on U(1) is just

∫ 2π

0
f(θ)dθ. Since the action of eiφ ∈ U(1)

sends eiθ to ei(θ+φ) we just need to observe that d(θ + φ) = dθ which is clear for fixed φ
by the usual change of variables formula for integrals. Another important easy case is
SU(2), where the usual volume element on S3 is invariant.

7.5.2 Complete reducibility

Recall that a representation R : G → GL(n,C) is called completely reducible if it can be
written as a direct sum of irreducible subrepresentations.

Proposition 7.34. Let G be a compact Lie group. Then any finite-dimensional complex represen-
tation of G is completely reducible.

Proof. We prove this by induction on dimension. The base case n = 1 is trivial: if R is a 1-
dimensional representation then any subrepresentation has dimension 0 or 1 and is therefore
either the zero representation or R, hence R is irreducible.

Suppose R : G → GL(V ) is an n-dimensional complex representation and suppose the propo-
sition is true for all representations of dimension strictly less than n. By Proposition 7.32 we
know there exists an invariant Hermitian inner product 〈, 〉 on V . If V is irreducible then we
are already done. If not, then there exists a proper subrepresentation W ⊂ V . Take the 〈, 〉-
orthogonal complement W⊥. Since G preserves the inner product, it preserves the subset W⊥
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and therefore this is a complementary subrepresentation. Therefore V = W ⊕W⊥ and W and
W⊥ have dimension lower than n so we are done by induction.
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Lecture 8: Representations of Lie algebras

8.1 Basics

Let V be a K-vector space. Just as a K-representation of a Lie group is a homomorphism
R : G → GL(V ), a representation of a Lie algebra is a homomorphism ρ : g → gl(V ).
Remember that a homomorphism of Lie algebras is a linear map of the underlying vector
spaces which preserves the Lie bracket, i.e.

ρ([X, Y ]) = [ρ(X), ρ(Y )].

In gl(V ) the Lie bracket is just the commutator, so a representation satisfies

ρ([X, Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X).

Example 8.1. Often, g is defined as a subalgebra of gl(V ). For instance the Lie algebras
sl(V ), su(n) or so(n). In this instance the inclusion of g into gl(V ) gives a representation
of g on V , called the standard representation.

Example 8.2. The most important example is the adjoint representation of a Lie algebra
on itself, given by

X 7→ adX , adX Y = [X, Y ].

It is an exercise on Sheet 3 to prove that this is a representation, in other words

ad[X,Y ] = adX adY − adY adX

Example 8.3. If R : G→ GL(V ) is a representation of a matrix group G then its linearisa-
tion is a representation R∗ of its Lie algebra g. This was proved in Theorem 5.12. Recall
that the linearisation F∗ of F satisfies exp(F∗X) = F (expX) so one can compute it using

d

dt

∣∣∣∣
t=0

F (exp(tX)) = F∗X.

Observe that if we differentiate

d

dt

∣∣∣∣
t=0

Adexp(tX) Y =
d

dt

∣∣∣∣
t=0

exp(tX)Y exp(−tX)

then we get
XY − Y X = [X, Y ] = adX Y.

Hence ad = Ad∗.
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8.2 New representations from old

Just like for Lie groups, we can form direct sums, duals, tensor products and symmetric
and exterior powers of representations. If R : G → GL(V ) and ρ : g → gl(V ) are related
by

R(exp(X)) = exp(ρ(X))

and V is a (direct sum/dual/tensor product/symmetric power/exterior power) of G-
representations then we would like ρ to be the corresponding (direct sum/dual/tensor
product/symmetric power/exterior power) of g-representations. This suggests the fol-
lowing definitions:

8.2.1 Direct sum

Suppose that exp(tX) is a one-parameter family in the Lie group G and

R = R1 ⊕R2 : G→ GL(V1 ⊕ V2)

is a direct sum. Then

R(exp(tX))(v1 ⊕ v2) = exp(tρ(X))(v1 ⊕ v2).

The action of ρ(X) can therefore be found by differentiating with respect to t at t = 0:

d

dt

∣∣∣∣
t=0

R(exp(tX))(v1 ⊕ v2) =
d

dt

∣∣∣∣
t=0

(R1(exp(tX))v1 ⊕R2(exp(tX))v2)

= ρ1(X)v1 ⊕ ρ2(X)v2.

Definition 8.4. If ρ1 : g→ gl(V1) and ρ2 : g→ gl(V2) are representations then

ρ1 ⊕ ρ2 : g→ gl(V1 ⊕ V2)

defined by (ρ1⊕ ρ2)(X)(v1⊕ v2) = ρ1(X)v1⊕ ρ2(X)v2 is a representation called the direct
sum of ρ1 and ρ2.

8.2.2 Duals

We have
(R∗(exp(tX))f) (v) = (exp(ρ∗(tX))f) (v)

and
(R∗(exp(tX))f) (v) = f (R(exp(−tX))v)

which (upon differentiating at t = 0) gives

(ρ∗(X)f) v = −f(ρ(X)v).

Definition 8.5. If ρ : g → gl(V ) is a representation of g then the representation ρ∗ : g →
gl(V ∗) defined by

(ρ∗(X)f)v = −f(ρ(X)v)

is called the dual representation to ρ.
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8.2.3 Tensor products

Here we must differentiate

R(exp(tX))(v ⊗ w) = R1(exp(tX))v ⊗R2(exp(tX))w

at t = 0, which gives
ρ1(X)v ⊗ w + v ⊗ ρ2(X)w

by Leibniz’s rule.

Definition 8.6. If ρi : g→ gl(Vi) are representations of g for i = 1, 2 then the representation

ρ1 ⊗ ρ2 : g→ gl(V1 ⊗ V2)

defined by
(ρ1 ⊗ ρ2)(X)(v ⊗ w) = (ρ1(X)v)⊗ w + v ⊗ (ρ2(X)w)

is the tensor product of the representations ρ1 and ρ2.

8.2.4 Symmetric and exterior powers

The definition is entirely analogous to the case of group representations now that we
know the definition of tensor product of representations of Lie algebras. Instead of going
into detail, let’s do an example.

Example 8.7. Consider the standard representation of sl(2,C) on C2. The Lie algebra
sl(2,C) has generators H,X, Y which are the matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Let e1, e2 be a basis of C2 (the one we used to write these matrices!), in other words

He1 = e1, He2 = −e2, Xe1 = 0 = Y e2, Xe2 = e1, Y e1 = e2.

A basis for the symmetric square Sym2 C2 is

e1 ⊗ e1,
1

2
(e1 ⊗ e2 + e2 ⊗ e1), e2 ⊗ e2

and the action of H is

Sym2(H)(e1 ⊗ e1) = (He1)⊗ e1 + e1 ⊗ (He1)

= 2e1 ⊗ e1

Sym2(H)(e2 ⊗ e2) = −2e2 ⊗ e2

Sym2(H)
1

2
(e1 ⊗ e2 + e2 ⊗ e1) =

1

2
((He1)⊗ e2 + e1 ⊗ (He2) + (He2)⊗ e1 + e2 ⊗ (He1))

= 0
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because He1 = e1 and He2 = −e2.

The action of Sym2(X) is

Sym2(X)(e1 ⊗ e1) = 0

Sym2(X)
1

2
(e1 ⊗ e2 + e2 ⊗ e1) =

1

2
(e1 ⊗ e1 + e1 ⊗ e1)

= e1 ⊗ e1

Sym2(X)(e2 ⊗ e2) = e1 ⊗ e2 + e2 ⊗ e1

= 2
1

2
(e1 ⊗ e2 + e2 ⊗ e1)

and of Sym2(Y ) is

Sym2(Y )(e1 ⊗ e1) = e1 ⊗ e2 + e2 ⊗ e1

= 2
1

2
(e1 ⊗ e2 + e2 ⊗ e1)

Sym2(Y )
1

2
(e1 ⊗ e2 + e2 ⊗ e1) =

1

2
(e2 ⊗ e2 + e2 ⊗ e2)

= e2 ⊗ e2

Sym2(X)(e2 ⊗ e2) = 0.

You should do the symmetric cube Sym3 just to make sure you understand.

Example 8.8. The exterior square of the standard representation of sl(2,C) is spanned by

e1 ∧ e2 =
1

2
(e1 ⊗ e2 − e2 ⊗ e1) .

We see that
H(e1 ∧ e2) = (He1) ∧ e2 + e1 ∧ (He2) = 0

and
X(e1 ∧ e2) = (Xe1) ∧ e2 + e1 ∧ (Xe2) = e1 ∧ e1 = 0

and similarly for Y .

8.3 Complexification

Suppose that g is a Lie algebra over R. In particular it is a real vector space, so we can
complexify it:

gC = g⊗C

by considering the vector space g ⊕ g as a vector space over C where we think of (v, w)
as v + iw and let C act accordingly. The Lie bracket extends in a complex linear way:

[v1 + iw1, v2 + iw2] = [v1, v2]− [w1, w2] + i([v1, w2] + [w1, v2]).
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Example 8.9. We have

u(n)C = gl(n,C), su(n)C = sl(n,C).

This is because i times a skew-Hermitian matrix is Hermitian and any matrix A can be
written as a sum

1

2

(
A+ A†

)
+

1

2

(
A− A†

)
of its Hermitian and skew-Hermitian parts. More obviously, we have

gl(n,R)C = gl(n,C), sl(n,R)C = sl(n,C).

This shows that different Lie algebras can have the same complexification. We say that
sl(n,R) and su(n) are different real forms of the complex Lie algebra sl(n,C). We will see
below (Lemma 8.10) that the complex representations of a Lie algebra are determined by
the complex representations of its complexification - this means that different real forms
have the same complex representation theory. This will prove a useful point of view in
the following chapters.

Suppose g is a real Lie algebra. A complex representation of g is a real-linear Lie alge-
bra homomorphism g → gl(n,C). A complex linear complex representation of gC is a
complex-linear Lie algebra homomomorphism gC → gl(n,C).

Lemma 8.10. There is a one-to-one correspondence between complex representations of g and
complex linear complex representations of gC.

Proof. If ρ : g → gl(n,C) is a real-linear Lie algebra homomorphism, we can define ρC : gC →
gl(n,C) by

ρC(X + iY ) = ρ(X) + iρ(Y ).

Conversely, if σ : gC → gl(n,C) is a complex linear map then σ(X + iY ) = σ(X) + iσ(Y ) so
setting ρ = σ|g we gert ρC = σ.

For example, this means that the complex representations of su(n) and the complex rep-
resentations of sl(n,R) are in one-to-one correspondence with one another and also with
the complex linear complex representations of sl(n,C) ∼= su(n)C ∼= sl(n,R)C.
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Lecture 9: Representations of tori

Definition 9.1. The n-dimensional torus is the group U(1)n.

9.1 Representations of U(1)

Define the homomorphism Fn : U(1) → U(1) by Fn(eiθ) = einθ. Recall that we showed
(Example 6.1) that the only smooth homomorphisms U(1) → U(1) are Fn. We call n the
weight of the representation.

Lemma 9.2 (Schur’s Lemma). If R : U(1)→ GL(V ) is an irreducible finite-dimensional com-
plex representation and L ∈ GL(V ) is a matrix which commutes with every element in R(U(1))
then L is just λ times the identity matrix for some λ ∈ C.

Proof. Let λ be an eigenvalue of L. The (nonzero) eigenspace Eλ = {v ∈ V : Lv = λv} is a
subrepresentation of R: to see this, if v ∈ Eλ then

L(R(g)v) = R(g)Lv = R(g)λv = λR(g)v

so R(g)v ∈ Eλ. Therefore Eλ = V by irreducibility of V , so Lv = λv for all v ∈ V .

Corollary 9.3. If R : U(1)→ GL(V ) is an irreducible complex representation of U(1) then V is
one-dimensional.

Proof. Consider R(eiθ) and R(eiφ). As U(1) is abelian and R is a homomorphism, these commute
for all θ, φ. Therefore by Schur’s lemma, R(eiθ)v = λv for some λ ∈ C∗. If v ∈ V \ {0}
then the subspace Cv is a one-dimensional subrepresentation and hence, since V is irreducible,
V = Cv.

Lemma 9.4. Let R : U(1) → GL(1,C) be a one-dimensional complex representation of U(1).
Then R(eiθ) = einθ for some n ∈ Z.

Proof. Let 〈, 〉 be an invariant Hermitian form on C for the representation R. The group of g ∈
GL(1,C) preserving this form is U(1): 〈v, w〉 = 〈gv, gw〉 = g†g〈v, w〉 implies g† = g−1. Therefore
R defines a homomorphism U(1)→ U(1), which must be of the form Fn for some n.

The set of isomorphism classes of irreducibleU(1)-representations is therefore in bijection
with the integers (◦ denotes 0):

· · · • • • ◦ • • • · · ·

Since U(1) is compact, any finite-dimensional representation is completely reducible and
so we can write it as a direct sum of irreducible representations. Let R : G → GL(V ) be
a representation and suppose that the representation Fn occurs mn times as a summand
in R. We call this the multiplicity of Fn in R and we can encode R by writing the number
mn on the nth dot; R can then be reconstructed as

⊕
n∈Z F

⊕mn
n . For example

· · · •1 • •2 ◦6 • •9 •1 · · ·

corresponds to F−3 ⊕ F⊕2
−1 ⊕ F⊕6

0 ⊕ F⊕9
2 ⊕ F3
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The vector space V underlying the representation breaks up, correspondingly, into sub-
representations

V =
⊕
n∈Z

Vn, Vn = {v ∈ V : R(eiφ)v = einφv}

of dimension mn. These are called the weight spaces of the representation. One can also
think of them as the einφ-eigenspaces of R(eiφ).

9.2 Representations of tori

For an n-tuple of integers (k1, . . . , kn), consider the representation F(k1,...,kn) : U(1)n →
GL(1,C) given by F(k1,...,kn)(e

iθ1 , . . . , eiθn) = (eik1θ1 , . . . , eiknθn).

Lemma 9.5. Any irreducible representation of U(1)n is isomorphic to F(k1,...,kn) for some n-tuple
(k1, . . . , kn).

Proof. If V is an irreducible representation of U(1)n then we can consider it as a representation
R|U(1)k of U(1)k = {(1, . . . , 1)} × U(1) × {(1, . . . , 1)} (the U(1) appearing in the kth factor).
Let V =

⊕
j∈Z Vj denote the weight space decomposition of R|U(1)1 , i.e. if v ∈ Vj and h =

(eiφ, 1, . . . , 1) ∈ U(1)1 then R(h)v = eijφv.

SinceU(1)n is abelian, elements ofU(1)1 andU(1)k commute. Therefore if v ∈ Vj , g ∈ U(1)k and
h = (eiφ, 1, . . . , 1) ∈ U(1)1 then we have R(h)R(g)v = R(g)R(h)v = R(g)eijφv = eijφR(g)v so
R(g)v ∈ Vj . This means that Vj is a subrepresentation of V ; in particular, since V is irreducible,
there is only one nonzero summand in the U(1)1-weight space decomposition of V , say j = k1.

Now decompose V = Vk1 into weight spaces of R|U(1)2 . We have

Vk1 =
⊕
j∈Z

Vk1,j

where Vk2,j is the eijφ-eigenspace of R(1, eiφ, 1, . . . , 1). By the same argument, each Vk1,j is a
subrepresentation, so by irreducibility, j can only take on one value, say k2. Continuing in this
manner, we see that V = Vk1,...,kn is simultaneously an eigenspace for

(eiφ, 1, . . . , 1), (1, eiφ, 1, . . . , 1), . . . , (1, . . . , 1, eiφ),

with eigenvalues eik1φ, eik2φ, . . . , eiknφ respectively. Any vector v in this space is just rescaled
by ei(k1φ1+···+knφn) and hence spans an invariant subspace (a subrepresentation). This means
that V is one-dimensional and isomorphic to Fk1,...,kn .

The set of isomorphism classes of irreducible U(1)n-representations is therefore in bijec-
tion with the lattice Zn. Since U(1)n is compact, any finite-dimensional representation
is completely reducible and so we can write it as a direct sum of irreducible representa-
tions. LetR : G→ GL(V ) be a representation and suppose that the representation Fk1,...,kn
occurs mk1,...,kn times as a summand in R. We call this the multiplicity of Fk1,...,kn in R and
we can encode R by writing the number mk1,...,kn on the (k1, . . . , kn) lattice point; R can
then be reconstructed as

⊕
(k1,...,kn)∈Zn F

⊕mk1,...,kn

k1,...,kn
.

The vector space V underlying the representation breaks up, correspondingly, into sub-
representations

V =
⊕

(k1,...,kn)∈Zn

Vk1,...,kn , Vk1,...,kn = {v ∈ V : R(eiφ1 , . . . , eiφn)v = ei(k1φ1+···+knφn)v}
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of dimension mk1,...,kn . These are called the weight spaces of the representation. One can
also think of them as the simultaneous eikjφ-eigenspaces of R(U(1)j).

9.3 Lattice of weights

Our notation is clearly out of control. Let t denote the (complexified, for simplicity) Lie
algebra ofU(1)n and t∗ denote its dual space; an element λ ∈ t∗ is a linear map sending Lie
algebra elements in t to complex numbers. Consider the vectors uk = (0, . . . , 0, i, 0, . . . , 0),
with the i in the kth place. We have exp(ukt) = (1, . . . , 1, eit, 1, . . . , 1). Given a complex
representation R : U(1)n → GL(V ), the weight spaces are the subspaces

Vk1,...,kn = {v ∈ V : R(exp(u1t1 + · · ·+ untn))v = exp(ik1t1 + · · ·+ ikntn)v}.

Equivalently, if ρ is the corresponding Lie algebra representation (satisfyingR(exp(X)) =
exp(ρ(X))) we see that ρ(u1t1 + · · · + untn) = ik1t1 + · · · + ikntn. Clearly the weights
(k1, . . . , kn) can be encoded as an element λ ∈ t∗, namely the linear map

λ(u1t1 + · · ·+ untn) = ik1t1 + · · ·+ ikntn.

How do we remember the fact that the kjs are integers in this new notation? The points∑
uiti ∈ t with ti ∈ 2πZ are sent to the identity by exp. Under λ they are sent to elements

of 2πiZ. If we write ker exp = {X ∈ t : exp(X) = 1} then we define the weight lattice:

t∗Z = {λ ∈ t∗ : λ(X) ∈ 2πiZ ∀ X ∈ ker exp}.

Our weight space decomposition can now be written much more succinctly as

V =
⊕
λ∈t∗Z

Vλ, Vλ = {v ∈ V : R(exp(X))v = exp(λ(X))v, ∀ X ∈ t}

or equivalently
Vλ = {v ∈ V : ρ(X)v = λ(X)v ∀ X ∈ t}.

Usually we will only write V =
⊕

α∈A Vα where A ⊂ t∗Z is the finite subset of weights
with nonzero multiplicities in the representation.

9.4 Tensor products

To find the weights of a tensor product in general one can use the following lemma.

Lemma 9.6. Let T be a torus with Lie algebra t. If R : T → GL(V ) and S : T → GL(W ) are
two representations of T with weight space decompositions V =

⊕
α∈A Vα, W =

⊕
β∈BWβ for

some subsets A ⊂ t∗Z, B ⊂ t∗Z then the tensor product representation of T on V ⊗W has weight
space decomposition

⊕
(V ⊗W )γ with

(V ⊗W )γ =
⊕

α∈A, β∈B, γ=α+β

Vα ⊗Wβ.
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Proof. We have

V ⊗W =

(⊕
α∈A

Vα

)
⊗

⊕
β∈B

Wβ

 =
⊕

(α,β)∈A×B

Vα ⊗Wβ .

We will show that Vα ⊗Wβ ⊂ (V ⊗W )α+β , which will prove the lemma.

v ∈ Vα ⇒ R(etθ)v = eα(t)v for all t ∈ t

w ∈Wβ ⇒ S(etθ)v = eβ(t)v for all t ∈ t

(R⊗ S)(v ⊗ w) = R(v)⊗ S(w)

= eα(t)eβ(t)v ⊗ w
= e(α+β)(t)v ⊗ w.

so Vα ⊗Wβ ⊂ (V ⊗W )α+β .
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Lecture 10: Representations: SU(2) and SO(3)

10.1 Representations of SU(2)

10.1.1 su(2) and sl(2,C)

The Lie algebra su(2) consists of tracefree skew-Hermitian complex two-by-two matrices.
A basis is:

σ1 =

(
i 0
0 −i

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
0 i
i 0

)
,

Remember that if we think of σ1,σ2,σ3 as an oriented basis of R3 then the Lie bracket is
just twice the vector cross-product.

Remark 10.1. Note that the complexification of su(2) is sl(2,C), the Lie algebra of tracefree
complex two-by-two matrices. Remember (Lemma 8.10) that complex representations of
a Lie algebra and of its complexification are in one-to-one correspondence, so we will
switch between the two pictures when convenient. It will be convenient to consider the
following basis of sl(2,C):

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
,

These basis elements have Lie brackets:

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

Note that
H = −iσ1, X =

1

2
(σ2 − iσ3) , Y = −1

2
(σ2 + iσ3) .

10.1.2 Diagonalising σ1 and H

Suppose that ρ : su(2)→ gl(V ) is a finite-dimensional complex representation of su(2).

Lemma 10.2. V decomposes as a direct sum
⊕

λ Vλ where

Vλ = {v ∈ V : ρ(σ1)v = λv}.

The collection of eigenvalues λ ∈ C which occur in the decomposition of a given representation V
are called the weights of V and the corresponding eigenspaces are called weight spaces. In fact,
the weights are imaginary integers.

Proof. By Lie’s theorem, exponentiating ρ gives a representation R of SU(2) such that

R(exp(tσ1))v = exp(ρ(tσ1))v.
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Since the subgroup {exp(tσ1) : t ∈ [0, 2π)} ⊂ SU(2) is isomorphic to U(1) we obtain a repre-
sentation of U(1) by restricting to this subgroup. Therefore V (by complete reducibility and the
classification of U(1)-representations) splits as a direct sum of U(1)-representations

V =
⊕
m∈M

Vm

for some subset M ⊂ Z, where exp(tσ1) acts as scalar multiplication by eimt on Vm.

Since R(exp tσ1)v = exp(ρ(tσ1))v, this means that exp(ρ(tσ1)) = eimt, so

ρ(σ1)v = imv.

Note that a complex representation ρ of su(2) extends (complex linearly) to a complex
representation ρ of sl(2,C). SinceH = −iσ1, we know that in this complex representation
of sl(2,C),

ρ(H)v = mv

for some integer m. In fact, any complex representation of sl(2,C) restricts to a complex
representation to su(2). By the above argument, this representation splits into eigenspaces
of ρ(σ1) with imaginary integer eigenvalues, so we obtain:

Corollary 10.3. If ρ : sl(2,C) → gl(V ) is a finite-dimensional complex representation then V
admits a weight space decomposition

V =
⊕
λ

Vλ

where the weights λ are integers and

Vλ = {v ∈ V : ρ(H)v = λv}.

Notice that we cannot directly apply the argument that proved Lemma 10.2 to obtain this
corollary! This is because SL(2,C) is not compact and {exp(tH) : t ∈ R} is actually a
subgroup isomorphic to R, not to U(1).

10.1.3 The action of X and Y

We now consider the actions of ρ(X) and ρ(Y ). The key bracket relations to remember
are:

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

These imply:

Lemma 10.4. If ρ : sl(2,C) → gl(V ) is a finite-dimensional complex representation of sl(2,C)
and V =

⊕
λ∈Λ Vλ is the weight space decomposition,

Vλ = {v ∈ V : ρ(H)v = λv}

for some collection Λ ⊂ Z of weights then:
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• v ∈ Vλ implies ρ(X)v ∈ Vλ+2

• v ∈ Vλ implies ρ(Y )v ∈ Vλ−2

Proof. For ease of notation I will omit the ρ and simply write the action of X on v as Xv.

If v ∈ Vλ then Hv = λv, so we have

HXv = [H,X]v +XHv

= 2Xv +Xλv

= (λ+ 2)Xv

so Xv ∈ Vλ+2.

Similarly

HY v = [H,Y ]v + Y Hv

= −2Y v + Y λv

= (λ− 2)Y v

so Y v ∈ Vλ−2.

We can visualise the representation as a chain of weight spaces where H preserves each
weight space, X shifts to the right (increasing the weight) and Y shifts to the left (de-
creasing the weight):

Vλ Vλ+2Vλ−2· · · · · ·
X

Y

H

Y

H
X

H

10.1.4 Classification of irreducible representations

With the weight space decomposition and the action of X and Y in hand, we can now
classify all irreducible representations of sl(2,C) (equivalently su(2) or SU(2)).

Theorem 10.5. Suppose that ρ : sl(2,C) → gl(V ) is an irreducible finite-dimensional com-
plex representation. Then the weight spaces Vλ are one-dimensional and the weights live in an
uninterrupted chain

−m, −m+ 2, · · · , m− 2, m

from −m to m for some m ∈ Z.

Proof. Suppose thatm is the biggest integer for which Vm 6= 0 (this exists because the representation
is finite-dimensional). Since XVm ⊂ Vm+2, we know that Xv = 0 for all v ∈ Vm. We call such
a v a highest-weight vector. Pick a highest-weight vector v. The theorem follows if we can show
that v, Y v, Y 2v, . . . , Y mv is a basis for the representation.

Consider the sequence v, Y v, Y 2v, . . . , Y kv where k is maximal such that Y k+1v = 0. The sub-
space W spanned by this sequence is clearly preserved by the action of Y and by the action of
H (because Y nv is an m− 2n-eigenvector of H).
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The subspace W is also preserved by the action of X : indeed I claim that

XY nv = BnY
n−1v

for some numbers Bn. To see this, note that

XY v = [X,Y ]v + Y Xv = Hv + 0 = mv

so B1 = m, and

XY nv = [X,Y ]Y n−1v + Y XY n−1v

= HY n−1v + Y Bn−1Y
n−2v

= (m− 2n+ 2)Y n−1v +Bn−1Y
n−1v

We see that
Bn = Bn−1 +m− 2n+ 2

which (find the nth term!) gives

XY nv = (m− n+ 1)nY n−1v.

We can deduce more from this formula:

• We deduce that Y nv 6= 0 for all 0 ≤ n ≤ m. This follows by induction: certainly Y 0v =
v 6= 0 and

XY n+1v = (m− n)(n+ 1)Y nv

which is nonzero by induction for n < m.

• We deduce that Y m+1v = 0. To see this, let n be the smallest integer such that Y nv = 0
(which exists because the representation is finite-dimensional). We have

0 = XY nv = (m− n+ 1)nY n−1v

which is nonzero unless m− n+ 1 = 0. This implies m+ 1 = n.

• These two facts imply that the weights in the weight space decomposition of W occur in
an uninterrupted chain m, m − 2, . . . , 2 − m, −m. Moreover it is clear that the weight
spaces of W are one-dimensional (spanned by vectors of the form Y nv).

It remains to show that W = V . Since W is preserved by the generators of the Lie algebra,
it is preserved by any linear combination of them and therefore it is a subrepresentation. By
irreducibility of V , we have V = W .

Theorem 10.6. The (isomorphism classes of) finite-dimensional irreducible complex representa-
tions of sl(2,C) (equivalently of su(2) or of SU(2)) are in bijection with the nonnegative integers.
The bijection sends an irreducible representation to its highest weight. The highest weight divided
by two is a number in 1

2
Z sometimes called the spin of the representation.

We have not yet proved the theorem: it remains to construct representations with each
nonnegative integer value of spin. We proceed with a couple of examples, then construct
the remaining representations by taking symmetric products (Proposition 10.7).

48



10.1.5 Example: the adjoint representation

Consider the adjoint representation V = sl(2,C) of sl(2,C). This is three-dimensional,
spanned by H, X, Y . Since

adH X = [H,X] = 2X, adH Y = [H, Y ] = −2Y, adH H = [H,H] = 0

we see that the weight spaces are

V−2 = CY, V0 = CH, V2 = CX

so X is a highest-weight vector (with weight two). Indeed

adX Y = [X, Y ] = H, adX H = [X,H] = −2X, adX X = [X,X] = 0

so we can see that X shifts weight spaces to the right and

adY Y = [Y, Y ] = 0, adY H = [Y,H] = 2Y, adY X = [Y,X] = −H

so we can see that Y shifts weight spaces to the left.

10.1.6 Example: The standard representation

Consider C2 as the standard representation of sl(2,C), where H , X and Y act as the
matrices (

1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
.

The weight spaces are spanned by

e1 =

(
1
0

)
, e2 =

(
0
1

)
with weights ±1.

10.1.7 Symmetric powers

Proposition 10.7. The nth symmetric power Symn(C2) of the standard representation of SU(2)
is irreducible with highest weight n.

Proof. Let e1 and e2 be eigenvectors of H in the ±1 weight-spaces of C2. Then e⊗n1 has weight n
and is therefore contained in an irreducible subrepresentation W ⊂ SymnC2 of highest weight
at least n. This subrepresentation has dimension at least n+ 1 (by the proof of the classification
theorem for irreducible representations) as it contains the nonzero vectors

e⊗n1 , Y e⊗n1 , Y 2e⊗n1 , . . . , Y ne⊗n1 .

The dimension of SymnC2 is the dimension of the space of degree n homogeneous polynomials
in two variables. This is spanned by the n+ 1 monomials

xn, xn−1y, . . . , yn

and hence dimC Symn V = n+ 1 ≤ dimCW , so W = Symn V .
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In particular, we see that the adjoint representation is isomorphic to the symmetric square
of the standard representation:

sl(2,C) ∼= Sym2 C2.

We have now constructed representations of SU(2) with every possible highest weight.

10.2 Decomposing tensor products

We have seen that tensor products of representations are essentially never irreducible.
We know they are completely reducible, so one is led to ask: how do they decompose
into irreducible summands? If V and W are two representations with irreducible decom-
positions

V1 ⊕ · · · ⊕ Vm, W1 ⊕ · · · ⊕Wm

then V ⊗W decomposes as ⊕
Vi ⊗Wj

so to decompose V ⊗W completely it suffices to consider the case when V and W are
irreducible. In other words, we need to understand the decomposition of

SymmC2 ⊗ SymnC2

into irreducibles.

We will work out an example which indicates the general pattern.

Example 10.8. We have

Sym2 C2 ⊗ Sym3 C2 = Sym5 C2 ⊕ Sym3 C2 ⊕ Sym1 C2.

To see this, let v and w be highest weight vectors for Sym2 C2 and Sym3 C2, so

Hv = 2v, Hw = 3w.

Remember that Sym2 is spanned by v, Y v, Y 2v and Sym3 is spanned by w, Y w, Y 2w, Y 3w.
The tensor product is spanned by vectors

Y kv ⊗ Y `w

which have weight 2+3−2k−2` = 5−2(k+`). Therefore the weight space decomposition
of the tensor product is

Z−5 ⊕ Z−3 ⊕ Z−1 ⊕ Z1 ⊕ Z3 ⊕ Z5

where dimC Z±5 = 1, dimC Z±3 = 2, dimC Z±1 = 3.

The vector v ⊗ w generates an irreducible subrepresentation

ξ5 = {u = A(v ⊗ w) : A ∈ sl(2,C)} ⊂ Sym2 C2 ⊗ Sym3 C2
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of highest weight 5. The weight-space decomposition of this is

ξ5,−5 ⊕ ξ5,−3 ⊕ ξ5,−1 ⊕ ξ5,1 ⊕ ξ5,3 ⊕ ξ5,5

where all weight-spaces are one-dimensional.

The complement ζ of ξ5 ⊂ V ⊗W has weights −3,−1, 1, 3 and the corresponding weight
spaces have dimensions 1, 2, 2, 1. Picking a vector in ζ of weight 3 generates an irre-
ducible subrepresentation ξ3 in ζ of highest weight 3. Similarly the complement ζ ′ of
ξ3 ⊂ ζ has weight-space decomposition with weights −1, 1 and each weight space one-
dimensional. A vector of weight one in ζ ′′ now generates an irreducible subrepresenta-
tion ξ1 with highest weight one and its complement in ζ ′ is zero.

This implies the decomposition ξ5 ⊕ ξ3 ⊕ ξ1 as claimed.

The general result is proved in a similar way.

Theorem 10.9 (Clebsch-Gordan theorem). The tensor product

SymmC2 ⊗ SymnC2

decomposes into irreducible subrepresentations

m+n⊕
k=|m−n|

SymkC2

where the sum is over k ≡ m+ n mod 2.

This theorem is useful for computing the possible angular momenta of composite sys-
tems in quantum mechanics. In the next chapter we will see it play a role in the study of
energy levels in the hydrogen atom.

10.3 Binary quadratic forms

We now analyse the problem of classifying binary quadratic forms from lecture 1 using
the representation theory we have learned. A matrix g ∈ SL(2,C) acts by M 7→ gTMg on

the space V of symmetric matrices M =

(
a b/2
b/2 c

)
(this is how coordinate changes

act on quadratic forms). This representation is 3-dimensional. The diagonal matrix(
eiθ 0
0 e−iθ

)
acts by

(
eiθ 0
0 e−iθ

)T (
a b/2
b/2 c

)(
eiθ 0
0 e−iθ

)
=

(
ae2iθ b/2
b/2 ce−2iθ

)
so the weight space decomposition of this representation is V−2⊕V0⊕V2 where each sum-
mand is one-dimensional. By the classification theorem, this means that it is isomorphic
to the adjoint representation!
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We are trying to find polynomials in a, b, c which are invariant under this action. In other
words, we consider the matrix entries a, b, c as linear coordinate functions on V , that is
as elements of the dual representation V ∗. Homogeneous polynomials of degree d in
a, b, c are now elements of Symd(V ∗). An invariant polynomial is one which is fixed by
the action of SL(2,C), in other words it spans a trivial subrepresentation of Symd(V ∗).
So we should be able to detect invariant polynomials by decomposing Symd(V ∗) into
irreducible subrepresentations.

Example 10.10 (d = 2). V ∗ has weight spaces V ∗−2 ⊕ V ∗0 ⊕ V ∗2 spanned respectively by
c, b, a. The weight spaces for Sym2(V ∗) are

Sym2(V ∗)−4 = C〈c2〉
Sym2(V ∗)−2 = C〈bc〉

Sym2(V ∗)0 = C〈b2, ac〉
Sym2(V ∗)2 = C〈ab〉
Sym2(V ∗)4 = C〈a2〉.

In particular, a2 is a highest weight vector and spans an irreducible subrepresentation
isomorphic to Sym4(C2). Its orthogonal complement (with respect to an invariant Her-
mitian inner product) is a trivial one-dimensional subrepresentation; this tells us that
some linear combination of b2 and ac must be invariant!

We could (but won’t) figure out precisely which combination is invariant as follows:

1. let Y =

(
0 0
1 0

)
∈ sl(2,C),

2. consider a2, Y (a2), Y 2(a2), Y 3(a2), Y 4(a2) - this is a basis for the highest weight space
containing a2.

3. pick an invariant inner product and let ∆ be a vector orthogonal to Y 2(a2) in the
zero weight space.

This ∆ will be b2 − 4ac.

Example 10.11. If we decompose Sym4(V ∗) then we get

Sym4(V ∗)−8 = C〈c4〉
Sym4(V ∗)−6 = C〈bc3〉
Sym4(V ∗)−4 = C〈b2c2, ac3〉
Sym4(V ∗)−2 = C〈b3c, abc2〉

Sym4(V ∗)0 = C〈b4, ab2c, a2c2〉
Sym4(V ∗)2 = C〈ab3, a2bc〉
Sym4(V ∗)4 = C〈a2b2, a3c〉
Sym4(V ∗)6 = C〈a3b〉
Sym4(V ∗)8 = C〈a4〉
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and we see that the decomposition into irreducible representations is

Sym4(V ∗) = Sym8 C2 ⊕ Sym4 C2 ⊕C.

There is a one-dimensional trivial summand, so there is (up to scale) precisely one quartic
invariant. Since ∆2 is a quartic invariant, this means any other quartic invariant must be
a multiple of ∆2.

10.4 * Representations of SO(3)

The homomorphism Ad: SU(2)→ SO(3) comes from a map of Lie algebras

su(2)→ so(3).

Explicitly this map sends σi to 2Ki where tKi is the matrix which exponentiates to a
rotation by an angle t around the xi-axis. For example,

K1 =

 0 0 0
0 0 1
0 −1 0

 .

This map is an isomorphism of Lie algebras, so so(3) ∼= su(2). However, SO(3) is not
simply-connected, so SO(3) 6∼= SU(2) and it is not true that every representation of so(3)
comes from a representation of SO(3).

Given a complex representation R : SO(3) → GL(V ) we get a complex representation
R̃ : SU(2) → GL(V ) by precomposing with the double cover SU(2) → SO(3). We say R̃
is a lift of R. The next lemma tells us which representations of SU(2) arise as lifts.

Lemma 10.12. The finite-dimensional complex representations of SU(2) which arise as lifts of
representations of SO(3) are precisely those whose highest weight is even (or integer spin).

Proof. Since SU(2)→ SO(3) has kernel {±1}, the representations R̃ which arise as lifts all satisfy

ρ̃(−1) = 1.

Conversely, if κ is a representation of SU(2) with κ(−1) = 1 then we can define a representation
R of SO(3) as follows. For each A ∈ SO(3) pick a preimage Ã ∈ SU(2). The two choices of
preimage differ by a sign, so R(A) = κ(Ã) = κ(−Ã) is well-defined. Since−1 ∈ SU(2) is central
(commutes with everything), it’s easy to check that R is a representation.

This means that the representations of SU(2) which are lifts of representations of SO(3) are
those in which −1 acts as the identity.

Remember from Lemma 10.2 that the element etσ1 in SU(2) acts as scalar multiplication by eimt

on a weight space with weight m. The element −1 ∈ SU(2) is eπσ1 , so acts as eiπm on a weight
space with weight m. Therefore −1 acts as the identity if and only if all weights are even. This
proves the lemma.
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10.5 Outlook

The weights and weight spaces of the adjoint representation are particularly special and
are called the roots and root spaces. They are special for the following reason.

Suppose that we didn’t have the clever idea of picking H , X and Y to begin with. Ac-
tually the choice of H was unimportant: we just picked an element H such that iH ex-
ponentiated to give a subgroup U(1) ⊂ SU(2), which meant that its action diagonalised
and we obtained a weight-space decomposition. Any other H would have done just as
well, provided it exponentiated to give a subgroup U(1).

Having picked this H , the roots will turn out to be 0 and ±λ ∈ Z. It’s possible at this
stage that λ 6= 2, for instance we might pick twice the usual H , so let’s rescale our choice
to ensure that λ = 2. Pick a generator of the root space corresponding to λ; call it X . Pick
a generator of the other root space and call if Y . We know

[H,X] = λX, [H, Y ] = −λY

and, using these relations and the Jacobi identity, we get

adH [X, Y ] = [H, [X, Y ]]

= [X, [H,Y ]]− [Y, [H,X]]

= −λ[X, Y ]− λ[Y,X]

= 0

so [X, Y ] is in the zero root space spanned by H , in other words

[X, Y ] = µH

for some µ. We can rescale X to make sure µ = 1 and in this way we can recover the Lie
algebra (and this nice basis H,X, Y ) completely from a knowledge of its roots and root
spaces.

In summary: the root space decomposition of the adjoint representation is exactly what
we need to read off the key Lie bracket relations

[H,X] = 2X, [H,Y ] = 2Y, [X, Y ] = H

which allowed us to perform the above analysis of representations.
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Lecture 11: * The hydrogen atom

11.1 Motivation

The hydrogen atom consists of a single electron sitting in the potential well of a proton.
The potential of the proton is the Coulomb potential

V =
1

4πε0

q

r2

where r is the radial distance of the electron from the proton and where ε0 and q are
constants (respectively the permittivity of free space and the electric charge of the pro-
ton). In Schrödinger’s quantum mechanical model of the atom, the state of the electron is
represented by a wavefunction: a complex-valued function ψ : R3 → C whose magnitude
|ψ(x)|2 is the probability density that the electron is found at x (to get actual probabilities
one must integrate this over open sets).

To extract physical information from a wavefunction one has to apply a linear operator.
For example, if one wants to know the energy of a state, one applies the Hamiltonian
operator

∆− V
to the wavefunction (where ∆ is the Laplacian). In the rare case that ψ is an eigenfunction
of ∆− V ,

(∆− V )ψ = λψ,

we say that ψ has energy λ. With suitable (e.g. periodic) boundary conditions imposed,
the linear span of the eigenfunctions is dense in the space of all functions: in the same
way that any periodic (square-integrable) function on R has a (Fourier) expansion as a
convergent sum of eigenfunctions of d2/dx2 (sines and cosines), any 2-periodic (square-
integrable) function on R2 has an expansion as a convergent sum of eigenfunctions of
∆ − V . Therefore most states are in a superposition of states of definite energy. It is not
possible to assign a value of energy to these states directly in quantum mechanics and
it is one of the biggest mysteries in the foundations of quantum mechanics that we can
measure a definite value of energy at all. Something happens during the measurement
process to extract a particular eigenstate whose energy is measured, and the system sub-
sequently evolves from that eigenstate. The nature of this “wavefunction collapse” is, to
my knowledge, not well-understood.

Nonetheless, it is clearly important to understand the eigenfunctions of the Hamiltonian
operator if one wants to understand the orbitals of the hydrogen atom.

11.2 The spherical Laplacian

The Laplacian is the operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
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We will now write this in a slightly different form which is more amenable to the rota-
tional symmetry of the situation.

Lemma 11.1. In coordinates x, y, z with r2 = x2 + y2 + z2 we can write

∆ =

(
∂2
r +

2

r
∂r

)
+

1

r2

(
J2
x + J2

y + J2
z

)
where Jx = y∂z − z∂y and Jy, Jz are defined by cyclically permuting x, y, z. We write

∆S = J2
x + J2

y + J2
z

and call it the spherical Laplacian. We have

∆S(F1F2) = F1∆S(F2)

if F1 is a function of r alone.

If we separate variables in the equation ∆ψ − V ψ = λψ by assuming ψ has the form
R(r)Y (u) where u ∈ S2 is a unit vector, then

0 =
∆(RY )− V RY − λRY

RY
=

(
∂2
r + 2

r
∂r
)
R

R
+

∆SY

r2Y
− V (r)− λ

i.e.

r2

(
∂2
r + 2

r
∂r
)
R

R
− r2V (r)− r2λ =

∆SY

Y

where both sides must be constant because the left depends only on r and the right only
on u. Thus

∆SY = κY and r2R′′ + 2rR′ − (V + λ)r2R = κR

for some κ (where R′ denotes dR/dr).

Much of the information is therefore contained in the eigenfunctions of the spherical
Laplacian.

11.3 Rotational symmetry

The rotation group SO(3) acts on S2 ⊂ R3 and hence on the space of functions F : S2 → C
by

g(F )(x) = F (g−1(x)).

We need the inverse of g so that

(gh)(F )(x) = F (h−1g−1(x))

equals
g(h(F ))(x) = h(F )(g−1(x)) = F (h−1g−1(x))

giving a representation.
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Moreover the rotation group acts on operators. Operators are linear transformations
H : F → F on the space F of functions, so the action is given by

g(H)(F ) = (H(g−1(F )))

Lemma 11.2. The spherical Laplacian is invariant under rotations, in other words

∆S(g−1F ) = ∆S(F ).

Proof. This is certainly true of the usual Laplacian, and the spherical Laplacian differs from ∆ only
by differential operators in r which are also invariant.

We would like to understandF as a representation of SO(3), but it is an infinite-dimensional
space so we restrict to the finite-dimensional subspace Pn of polynomials of degree n.
Here we mean complex polynomial functions of x, y, z restricted to S2.

The rotation action of SO(3) on R3 is just the standard representation. The functions
x, y, z are linear functions on R3 and so can be considered as elements of the dual of the
standard representation. Homogeneous polynomials of degree n are then elements of
the symmetric n-th power of this dual representation. Thus

Pn = Symn(R3)∗ ⊕ Symn−1(R3)∗ ⊕ · · · ⊕ Sym1(R3)∗ ⊕R

where R is the trivial one-dimensional representation corresponding to constant polyno-
mials. This is the decomposition of Pn into irreducibles.

11.4 The Lie algebra action

Consider the action of so(3) on R3 which exponentiates to the standard representation of
SO(3). Remember that so(3) is the Lie algebra consisting of antisymmetric matrices, for
instance, we have

exp t

 0 0 0
0 0 −1
0 1 0

 =

 1 0 0
0 cos t − sin t
0 sin t cos t

 .

Let tKx, tKy, tKz be the matrices which exponentiate to give rotations by an angle t
around the x, y, z-axes respectively. For instance,

Kx =

 0 0 0
0 0 −1
0 1 0

 .

The action of this on polynomials is just the dual (or transpose) action, so on P1:

Kx(x) = 0, Kx(y) = −z, Kx(z) = y.

It is easy to check that the action of Kx agrees with the action of y∂z − z∂y = Jx on P1. In
fact:
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Lemma 11.3. We have
KxiP = JxiP

where x1, x2, x3 = x, y, z and P is any smooth function of x, y, z, in particular any polynomial.

Proof. Consider the space V of complex functions on R3. A linear map d : V → V satisfying Leib-
niz’s rule d(xy) = (dx)y+xdy is called a derivation. The commutator of two derivations is again
a derivation, so derivations form a Lie algebra and V is a representation of that algebra. Note
that if d is a derivation then its action on any function is determined by its action on x, y and z:
for example d(x2) = 2xdx.

The operators Jx, Jy , Jz obey Leibniz’s rule and satisfy Jxixj = Kxixj so if we can show that
each Kxi satisfies Leibniz’s rule we are done. This will follow from a general fact about Lie
group actions.

Suppose that a Lie group G acts smoothly on Rn (in other words, each transformation g : Rn →
Rn is a diffeomorphism). Then it acts on the space V of smooth functions on Rn:

R(g)F (x) = F (g−1x)

This defines an infinite-dimensional representation ofG. One can take the derivative d
dt

∣∣
t=0

R(etX)F
to find the corresponding Lie algebra representation. We claim that elements of the Lie algebra
obey Leibniz’s rule.

To prove this, consider the action of G on a product of functions:

exp(tX)(F1F2)(x) = (F1F2)(exp(−tX)x)

and differentiate with respect to t at t = 0 to find the Lie algebra action ofX . The chain rule now
implies Leibniz’s formula for this Lie algebra representation, hence X acts as a derivation.

Remember that SU(2) → SO(3) is a double covering homomorphism and so it induces
a homomorphism of Lie algebras. Since exp(tσi) is sent to the rotation by an angle 2t
around the xi-axis, the Pauli matrix σi goes to 2Kxi . This is actually an isomorphism of
Lie algebras (not an isomorphism of Lie groups because SO(3) is not simply-connected).
In particular, the complexification of so(3) is sl(2,C) and we pick a standard basis

H = −2iKz, X = Kx + iKy, Y = Kx − iKy

of sl(2,C).

In our representation, Jxi = Kxi . The spherical Laplacian is

J2
x + J2

y + J2
z .

If ρ is the representation of sl(2,C) associated to the representation Pn of so(3) then

−1

4
ρ(H2) +

1

2
(ρ(XY ) + ρ(Y X)) = J2

x + J2
y + J2

z = ∆S

so we can compute the eigenvalues of ∆S using the fact that

ρ(X)ρ(Y ) + ρ(Y )ρ(X) = 2ρ(X)ρ(Y )− ρ(H)

and the computation from Theorem 10.5 which showed:

ρ(X)ρ(Y )kv = (m− k + 1)kρ(Y )k−1v

for a highest weight vector v of weight m. The result is:
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Theorem 11.4. The eigenvalues of ∆S on Pn arem(m+1), 0 ≤ m ≤ n. Them(m+1)-eigenspace
has dimension 2m+ 1.

Proof. Omitting ρ from the notation, we have

∆S =
1

4
H2 +

1

2
(XY + Y X)

=
1

4
H2 − 1

2
H +XY.

If vm is a highest weight vector (with weight2 2m) for the subrepresentation Symm(R3)∗ then
this subrepresentation is spanned by vectors

Y kvm, k = 0, . . . , 2m.

From the computations we did while classifying representations of sl(2,C), we know that

HY kvm = (2m− 2k)Y kvm, XY (Y kvm) = (2m− k)(k + 1)Y kvm.

Therefore (
1

4
H2 − 1

2
H +XY

)
Y kvm = (m− k)2 − (m− k) + (2m− k)(k + 1)

or
m(m+ 1).

In other words, the subspace Symm(R3)∗ is a ∆S-eigenspace with eigenvalue m(m+ 1).

Remark 11.5. Note that the number 2(m−k) is itself an eigenvalue: the weight ofH acting
on the corresponding weight-space. Since H = −2iJz, the number i(m− k) is interpreted
as an eigenvalue of the angular momentum operator Jz. Thus states in the hydrogen atom
(with polynomial wavefunction) can be specified by giving the energy m(m + 1) where
m ∈ Z and the z-component of angular momentum, which is one of the 2m + 1 even
numbers between −2m and 2m.

If you want some explicit eigenfunctions, see [4, Section 4.9].

2Note that this is a representation of SO(3) and therefore has even weight, or integer spin.
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Lecture 12: Representations of SU(3), I

Having classified the irreducible representations of SU(2), we now move on to the more
complicated case of SU(3). This case presents essentially all of the issues and complica-
tions that arise in the general theory of semisimple Lie groups.

12.1 Strategy

In the case of SU(2), given a complex representation R : SU(2)→ GL(V ):

1. We took the subgroup T = U(1) → SU(2) of diagonal matrices
(
eiφ 0
0 e−iφ

)
and

considered the composition R|T : U(1)→ SU(2)→ GL(V ).

2. We decomposed V into weight spaces Vn =

{
v : R

(
eiφ 0
0 e−iφ

)
v = einφv

}
.

3. We then considered the corresponding complexified Lie algebra representation ρ : sl(2,C)→
gl(V ), so that we would make sense of the action of the matrix H ∈ sl(2,C), and
we get Vn = {v : ρ(H)v = nv} (saves writing i everywhere; we should technically
write ρC).

4. We took the complex basis X, Y,H of sl(2,C) and analysed how the elements ρ(X)
and ρ(Y ) acted on the weight spaces:

ρ(X)Vn ⊂ Vn+2, ρ(Y )Vn ⊂ Vn−2.

The reason this worked was because of the commutation relations [H,X] = 2X and
[H,Y ] = −2Y , i.e. becauseX and Y are weight vectors in the adjoint representation.

5. By considering the commutation relations between X, Y,H we showed that a high-
est weight vector v ∈ Vm (m maximal) generated an irreducible subrepresentation
with one-dimensional weight spaces V−m ⊕ V−m+2 ⊕ · · · ⊕ Vm−2 ⊕ Vm.

Given a complex representation R : SU(3)→ GL(V ):

1. We will take the subgroup T = U(1)2 → SU(3) of diagonal matrices

 eiφ1 0 0
0 eiφ2 0
0 0 e−i(φ1+φ2)

,

let t denote its Lie algebra, and consider the composition R|T : T → SU(3) →
GL(V ).

2. We will decompose V into weight spaces Vλ =
{
v : R(exp(t))v = eiλ(t)v ∀ t ∈ t

}
.

3. We will take the complexified Lie algebra representation ρ : sl(2,C)→ gl(V ) so that

we can make sense of ρC(H12) and ρC(H23) where H12 =

 1 0 0
0 −1 0
0 0 0

 and H23 =
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 0 0 0
0 1 0
0 0 −1

 are elements of tC. Then Vλ = {v : ρC(H)v = λ(H)v ∀ H ∈ tC}.

4. We will take basis elements Eij , i < j, and analyse how the elements ρ(Eij) act on
the weight spaces Vλ. This will work because we will pick Eij to be weight vectors
for the adjoint representation.

5. By considering the commutation relations between Eij, Hjk we will show that a
“highest weight vector” v ∈ Vλ generates an irreducible subrepresentation, in a
suitable sense.

12.2 The Lie algebra

The Lie algebra of su(3) is the space of tracefree skew-Hermitian complex three-by-three
matrices. It complexification is sl(3,C), the Lie algebra of tracefree complex three-by-
three matrices and a basis for sl(3,C) is

H12 =

 1 0 0
0 −1 0
0 0 0

 , H23 =

 0 0 0
0 1 0
0 0 −1

 ,

E12 =

 0 1 0
0 0 0
0 0 0

 , E23 =

 0 0 0
0 0 1
0 0 0

 , E13 =

 0 0 1
0 0 0
0 0 0


E21 = ET

12, E32 = ET
23, E31 = ET

13

(so dimC sl(3,C) = 8).

We will write h := tC = t⊕ it, the abelian Lie algebra of diagonal complex matrices with
trace zero. Note that it consists of the diagonal matrices in sl(3,R), so we will write this
as hR.

A general element of h is a C-linear combination of H12 and H23. Another way of writing
h is as:

h =


 a1 0 0

0 a2 0
0 0 a3

 : a1 + a2 + a3 = 0

 .

12.3 The weight lattice

Recall that we want to think of weights as elements of h∗. The weight lattice is the set of
λ ∈ h∗ such that λ(X) ∈ 2πiZ for all X ∈ ker exp.
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What is ker exp? We have

exp

 a1 0 0
0 a2 0
0 0 a3

 =

 ea1 0 0
0 ea2 0
0 0 ea3


which equals the identity if and only if a1, a2, a3 ∈ 2πiZ.

Let Li ∈ h∗ denote the coordinate function

Li

 a1 0 0
0 a2 0
0 0 a3

 = ai.

Then

 a1 0 0
0 a2 0
0 0 a3

 ∈ ker exp if and only if Lk

 a1 0 0
0 a2 0
0 0 a3

 ∈ 2πiZ for k = 1, 2, 3.

Therefore these elements span the weight lattice. They satisfy L1 + L2 + L3 = 0.

How should we represent the weight lattice? It should be a lattice in R2 (thinking of
R2 = h∗R) and the elements L1, L2, L3 should have centre of mass at the origin and sit
in a symmetric way, so we will put them at the vertices of an equilateral triangle (say
L1 = (1, 0), L2 = (cos(2π/3), sin(2π/3)), L3 = (cos(4π/3), sin(4π/3))). We will be able to
justify this geometrical choice later when we discuss the Killing form (a natural inner
product on the Lie algebra of any semisimple Lie group).

If R : SU(3) → GL(V ) is a representation we can now consider it as a representation of
the diagonal subgroup T and hence decompose it as a direct sum of weight spaces

V =
⊕

λ∈Λ⊂t∗Z

Vλ, Vλ = {v : ρ(H)v = λ(H)v}.

Here H =

 a1 0 0
0 a2 0
0 0 a3

 and if λ = A1L1 + A2L2 + A3L3 then λ(H) =
∑
Aiai. In other

words
Vλ = {v : R(exp(iH))v = exp(iλ(H))v}.

12.4 Root spaces

To continue our analysis, we want to find the elements of sl(3,C) analogous to X and
Y in sl(2,C). As the example of sl(2,C) suggested, we need to look at the weight space
decomposition of the adjoint representation to find them.

Definition 12.1. The weight spaces of the adjoint representation (for any Lie group) are
called root spaces.

62



Suppose that

H =

 a1 0 0
0 a2 0
0 0 a3

 ∈ h

(so a1 + a2 + a3 = 0) and that Eij (i 6= j) is the matrix with 1 in the (i, j)th entry and zeros
elsewhere. Then we have

adH Eij = (ai − aj)Eij.
Therefore,

Lemma 12.2. The root spaces of sl(3,C) are h with root 0 and (for each pair 1 ≤ i, j ≤ 3, i 6= j)
CEij with root Li − Lj .

HereLi is the functional on h which sends

 a1 0 0
0 a2 0
0 0 a3

 to ai. We have already decided

to represent L1, L2, L3 as the vertices of an equilateral triangle, so the vectors ±(L1 −L2),
±(L2 − L3), ±(L3 − L1) sit at the vertices of a hexagon

0 L1

L2

L3

L1 − L3

L2 − L3

L2 − L1

L3 − L1

L3 − L2

L1 − L2

Definition 12.3. We write
R = {Li − Lj}i 6=j

and we call R the root system of sl(3,C). The root diagram is the picture of the roots as
vectors in h∗R. For each root α ∈ R we write sl(2,C)α for the corresponding root space

sl(3,C)α = {v ∈ sl(3,C) : adH v = α(H)v ∀H ∈ h}

Lemma 12.4. If v ∈ sl(3,C)α and w ∈ sl(3,C)β then

[v, w] ∈ sl(3,C)α+β

Proof. If H ∈ h then, by the Jacobi identity,

adH [v, w] = [H, [v, w]]

= [v, [H,w]]− [w, [H, v]]

= (β(H) + α(H))[v, w]
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so
[v, w] ∈ sl(3,C)α+β .

We illustrate this lemma in the following sequence of diagrams.

0

L1 − L3

L2 − L3

L2 − L1

L3 − L1

L3 − L2

L1 − L2

E13

E31

0

L1 − L3

L2 − L3

L2 − L1

L3 − L1

L3 − L2

L1 − L2

E12

E21

0

L1 − L3

L2 − L3

L2 − L1

L3 − L1

L3 − L2

L1 − L2

E23 E32

12.5 sl(2,C)-subalgebras

Lemma 12.5. For each root α ∈ R, the subspace

sα = sl(3,C)−α ⊕ [sl(3,C)α, sl(3,C)−α]⊕ sl(3,C)α ⊂ sl(3,C)

is a Lie subalgebra isomorphic to sl(2,C).

Proof. Consider the rootα = Li−Lj . Note that the root spaces sl(3,C)α, α 6= 0 are one-dimensional.
Pick generators Eij = Xα ∈ Vα and Eji = Yα ∈ sl(3,C)−α. One can check 0 6= H12 = Hα =
[Xα, Yα] = Eii − Ejj . This element generates [sl(3,C)α, sl(3,C)−α]. Moreover,

[Hα, Xα] = α(Hα)Xα, [Hα, Yα] = −α(Hα)Yα

and it’s easy to check that α(Hα) = 2. Provided α(Hα) 6= 0 we could always achieve α(Hα) = 2
by rescaling Xα.

We see explicitly that this subalgebra is isomorphic to sl(2,C) by identifying this newly con-
structed basis with the standard basis of sl(2,C).
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Remark 12.6. It is clear from the proof that the key fact we used was

α([Xα, Yα]) 6= 0.

Remark 12.7. Each line through zero in the root system defines us such a subalgebra (since
sl(3,C)α = sl(3,C)−α) so there are three distinguished subalgebras. When I say distin-
guished, remember that all this depended on the choice of h: we could have picked a
different two-dimensional abelian subalgebra.

12.6 Highest weight vectors

Now suppose that ρ : sl(3,C) → gl(V ) is a finite-dimensional irreducible complex rep-
resentation and let V =

⊕
α∈Λ Vα be the weight-space decomposition. We have three

distinguished subalgebras sα and we study how they act on V .

Lemma 12.8. If X ∈ sl(3,C)α and v ∈ Vβ then

ρ(X)v ∈ Vα+β.

Proof. If H ∈ h then

ρ(H)(ρ(X)v) = ρ([H,X])v + ρ(X)(ρ(H)v)

= α(H)ρ(X)v + β(H)ρ(X)v

= (α(H) + β(H))ρ(X)v

so
ρ(X)v ∈ Vα+β .

To make full use of this observation, we need the analogue of a highest-weight vector.
This is not as straightforward as before, because the plane has no canonical ordering.

Definition 12.9. A linear functional π : h∗R → R is irrational with respect to a lattice L if for
any α, β ∈ L we have π(α) = π(β) if and only if α = β.

Example 12.10. If e1, . . . , ek is an integral basis for the lattice L and µ1, . . . , µk ∈ R are
linearly independent over Q then the functional π(

∑
aiei) =

∑
aiµi is irrational with

respect to L. This is because if α =
∑
aiei and β =

∑
biei then π(α)−π(β) =

∑
(ai− bi)µi.

If this vanishes then ai − bi = 0 because otherwise we would get a linear dependence
between {µi}ki=1 over Q.

Definition 12.11 (Highest weight vector). Pick a linear functional π on h∗R which is irra-
tional with respect to hZ. The weight α such that

π(α) = max
β∈Λ

π(β)

is called the highest weight. Such a weight exists (because there are finitely many weights)
and is unique by irrationality of π with respect to hZ (which contains Λ). If α is the highest
weight then any nonzero v ∈ Vα is called a highest weight vector.
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Definition 12.12 (Positive and negative roots). Since π is irrational with respect to hZ
which contains the roots, none of the nonzero roots γ ∈ R has π(γ) = 0. Since γ ∈ R
implies −γ ∈ R we see that precisely half of the roots are positive (i.e. π(γ) > 0) and half
are negative (π(γ) < 0). We write this decomposition R = R+ ∪R−. For convenience, we
will pick π so that R+ = {L1 − L2, L1 − L3, L2 − L3}.

0

L1 − L3

L2 − L3

L2 − L1

L3 − L1

L3 − L2

L1 − L2

π = 0

Definition 12.13. If a vector u lies in some weight-space Vδ for some representation ρ
then it will be convenient to write wρ(u) = δ for the weight of u. It will be even more
convenient to drop the ρ and hope that it is clear which representation we mean. If ρ is
the adjoint representation, if u is in the root space for the root α we will write r(u) = α.

Corollary 12.14. If v ∈ Vα is a highest weight vector for a representation ρ, X ∈ sl(3,C) and
r(X) ∈ R+, then ρ(X)v = 0.

Proof. The lemma implies that ρ(X)v ∈ Vα+r(X) but π(α + r(X)) > π(α) and π(α) is maximal
because v is a highest weight vector, so ρ(X)v = 0.

In the case of sl(2,C) we showed that an irreducible representation was spanned by
elements of the form v, Y v, Y 2, . . . , Y mv. The analogue for sl(3,C) is:

Proposition 12.15. If V is a complex linear complex representation of sl(3,C) and v is a highest
weight vector with weight α then v is contained in a unique subrepresentation spanned by all
elements of the form

ρ(X1)ρ(X2) · · · ρ(Xn)v

where Xi ∈ sl(3,C)αi
for some sequence of negative roots αi ∈ R−. With our choice of π we may

assume that Xi ∈ {E21, E31, E32}. As a consequence, if V is irreducible, then it is equal to this
subrepresentation and hence spanned by the vectors ρ(X1) · · · ρ(Xn)v, taken over all sequences of
negative root vectors Xi.

Proof. To prove the proposition it suffices to show that the subspace W ⊂ V spanned by these
elements is preserved by the action of sl(3,C) because then it is a subrepresentation and irre-
ducibility implies it must agree with V . Certainly by construction W is preserved by the action
of E21, E31, E32.
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Next we check that if H ∈ h then ρ(H)W ⊂W :

ρ(H)ρ(X1) · · · ρ(Xn)v = ρ([H,X1])ρ(X2) · · · ρ(Xn)v + ρ(X1)ρ(H)ρ(X2) · · · ρ(Xn)v

= α1(H)ρ(X1) · · · ρ(Xn)v + ρ(X1)ρ(H)ρ(X2) · · · ρ(Xn)v

= · · ·

=

(
α(H) +

n∑
i=1

αi(H)

)
ρ(X1) · · · ρ(Xn)v ∈W

using the fact that [H,Xi] = αi(H)Xi and that Hv = α(H)v.

Finally we need to check that E12, E13, E23 preserve W . This is an excellent inductive exercise
in Lie algebra. If you can’t do it yourself, see the proof of [2, Claim 12.10].

12.7 Applying sα

Together, Lemma 12.8 and Proposition 12.15 imply:

• the highest weight space Vα is one-dimensional (spanned by v) because all other
vectors

u = ρ(X1)ρ(X2) · · · ρ(Xn)v, w(Xi) ∈ R−, n ≥ 1

have π(w(u)) < π(α).

• Similarly, the weight spaces Vα+k(L2−L1) and Vα+k(L3−L2) are at most one-dimensional
(spanned by ρ(E21)kv and ρ(E32)kv respectively).

• Moreover, all weights which occur in the representation V are contained in the
shaded subspace of h∗R:

α

To get more information we apply the subalgebras sβ ∼= sl(2,C) to v for β = L2 − L1 and
β = L3 − L2. The space V splits as a direct sum of sβ-representations.

12.7.1 The upper edge

Along the upper edge of the shaded region we see that the direct sum of weight spaces
Vα+k(L2−L1) living here gives a representation of sL2−L1 . This is the irreducible representa-
tion of sl(2,C) generated by the highest weight vector v. The weights of these Vα+k(L2−L1)
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`23

`12`13

α

E21

E32

Figure 1: The edges of the weight diagram are symmetric about the lines `ij . Fill in the
rest of the diagram!

as sL2−L1-weight spaces are α(H12)− 2k: remember that the diagonal element in sL2−L1 is
H12 and (L2 − L1)(H12) = 2.

Using our knowledge of irreducible representations of sl(2,C), this confirms that all
weight spaces along the upper edge are at most one-dimensional. In fact it tells us much
more: they have to come in an unbroken sequence and they terminate when k reaches
α(H12).

Geometrically, the edge is parallel to L2 − L1 and therefore it is orthogonal to the line
`12 = {β : β(H12) = 0} which is parallel to L3 (remember that L1 · L3 = L2 · L3 =
1 and that L3(H12) = 0). The weights of the sL2−L1-representation along the edge are
the values β(H12) and they are symmetric about zero, by the classification theorem for
representations of sl(2,C). This means that `12 intersects the edge in its midpoint, so the
edge is symmetric under reflection in `12.

12.7.2 The right edge

Similarly we can analyse the action of sL3−L2 on the weight spaces Vα+k(L3−L2) sitting
along the right edge of the shaded region. These come in an unbroken sequence of one-
dimensional spaces which terminate at k = α(H23).

12.7.3 Rotating π

We can now carry out the same analysis but using α1 = α+ α(H12)(L2 − L1) as a highest
weight, simply by rotating our irrational linear functional π. There are six possible ways
of dividing R into R− and R+ using an irrational functional π: for α1 to be a highest
weight we will need R+ = {L2 − L3, L1 − L3, L2 − L1}.
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After doing this process six times we see that the weights must lie in a hexagon whose
edges are parallel to the root vectors. Moreover, by analysing the action of the distin-
guished sl(2,C)-subalgebras we see that:

• the weight spaces along the edges of this hexagon are each one-dimensional

• the hexagon is symmetric under the reflections in the lines `ij = {β : β(Hij) = 0},

• points β contained in the intersection of the weight lattice h∗Z with the interior
of the hexagon occur as weights of the representation: each weight space on an
edge generates an irreducible representation of one of the distinguished sl(2,C)-
subalgebras, the weights of which lie on a line inside the hexagon parallel to one of
its edges. Each β in the interior of the hexagon lives on one of these lines.

Definition 12.16. The group of reflections in the lines `ij is isomorphic to the permutation
group S3 and is called the Weyl group of sl(3,C).

Remark 12.17. Note that the hexagon corresponding to a representation might actually be
a triangle if some α(Hij) = 0. In this case we say the hexagon is degenerate.

12.8 Uniqueness

We want to prove that there is a unique irreducible representation with a given highest
weight. We need the following observation.

Lemma 12.18. Suppose that V and W are irreducible representations of a Lie algebra g. A
homomorphism f : V → W of representations is either zero or an isomorphism.

Proof. The kernel of f is a subrepresentation of V which is either 0 or V by irreducibility. The image
is a subrepresentation of W which is either 0 or W by irreducibility.

Lemma 12.19 (Uniqueness). There is a unique (up to isomorphism) irreducible representation
of sl(3,C) with a given highest weight.

Proof. Exercise!

In fact, any highest weight occurs:

Theorem 12.20 (Classification of irreducible representations of SU(3)). The irreducible rep-
resentations of SU(3) are as follows. Take a weight α = aL1 − bL3, with a and b nonnegative
integers, and consider its reflections under the Weyl group. The convex hull of these is a hexagon
X , possibly degenerate. There is a unique irreducible representation Γa,b whose weight diagram is
supported on this hexagon. The weights which occur are the translates of α by roots.

Write W (Λ) ⊂ h∗Z for the Z-lattice spanned by the weights Λ and call X ∩W (Λ) the hexagon
of weights. The hexagon of weights is layered by concentric hexagons:

X ∩W (Λ) = X0 ∩W (Λ) ⊃ X1 ∩W (Λ) ⊃ · · · ⊃ Xm ∩W (Λ)

The dimension of the weight spaces is constant on each layer and is given as follows. For a weight
on the boundary of the hexagon the dimension is one. On each subsequent layer the dimension
increases by one if the hexagon is nondegenerate and does not change if the hexagon is degenerate.
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We will prove the first part of this theorem in the next chapter by first constructing many
examples of representations. In particular we will prove existence of Γa,b. We will not
prove the formula for the dimensions (“multiplicities”) of weight spaces, though we will
work out some special cases. When we discuss representations in general we will give
a much more general theorem called the Freudenthal multiplicity formula which will
subsume this description and whose proof we may or may not have time for.

70



Lecture 13: Representations of SU(3), II

13.1 The standard representation

The simplest representation of SU(3) is its standard representation on C3. Pick a basis
e1, e2, e3 with respect to which we will write our matrices. Now eisH12 and eitH23 act as eis 0 0

0 e−is 0
0 0 1

 ,

 1 0 0
0 eit 0
0 0 e−it


so we see that the simultaneous eigenspaces are just Ce1, Ce2 and Ce3. The correspond-
ing weights are

α1 = L1, α2 = L2, α3 = L3

that is to say
eitHek = eitLk(H)ek

where we recall that Lk(H) = ak for H =

 a1 0 0
0 a2 0
0 0 a3

. Therefore the weight diagram

looks like:

0 L1

L2

L3

This consists of a single degenerate hexagon and corresponds to Γ1,0 in the notation of
Theorem 12.20.

13.2 The dual standard representation

The dual of the space of column vectors C3 is the space of row vectors (which we will
write (C3)∗ to distinguish it as a representation). The dual representation of SU(3) is just
the right action of matrices on row vectors. In order for this to be a representation the
action is

ρ(A)
(
a b c

)
=
(
a b c

)
A−1, A ∈ SU(3).
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This implies that with respect to the dual basis e∗1, e∗2, e∗3 (defined by e∗i (ej) = δij) the action
of eisH12 and eitH23 is  e−is 0 0

0 eis 0
0 0 1

 ,

 1 0 0
0 e−it 0
0 0 eit


with simultaneous eigenspaces {Ce∗k}3

k=1. The corresponding weights are

α1 = −L1, α2 = −L2, α3 = −L3

and the weight diagram is

0
−L1

−L2

−L3

which corresponds to Γ0,1. Note that this is not the same diagram as the standard rep-
resentation, so they are not isomorphic (by contrast, the standard and standard dual
representations of sl(2,C) are isomorphic because the weight diagrams agree).

Remark 13.1. It is not hard to see that given a representation ρ, the weight diagram of ρ∗

can be obtained by applying the transformation

−1: h∗R → h∗R

to the weight diagram of ρ.

13.3 The adjoint representation

We have already seen the weight diagram of this representation
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0

2

L1 − L3

L2 − L3

L2 − L1

L3 − L1

L3 − L2

L1 − L2

which corresponds to Γ1,1. Note that the weight space with weight zero is h so it is
two-dimensional (indicated by the numbered blob). All other weight spaces are one-
dimensional. Since this diagram is symmetric under x 7→ −x, the adjoint representation
is self-dual.

13.4 The tensor square (C3)⊗2

If we take the tensor square of the standard representation then the new weight spaces
are

C(ei ⊗ ej) with weight Li + Lj

so the weight diagram is

2

2

2 0

where we have drawn numbered blobs to denote weight spaces of dimension two. We
see that this is not irreducible because the dimensions of the weight spaces around the
edge of the diagram are not all one. Indeed the tensor square of a nontrivial representa-
tion is never irreducible: it always contains the symmetric and exterior squares. Taking
the highest weight vector furthest right in the diagram we generate an irreducible repre-
sentation with weight diagram
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0

or Γ2,0, which leaves a copy of the weight diagram Γ0,1 of (C3)∗ behind. In other words

C3 ⊗C3 = Γ2,0 ⊕ Γ0,1

A quick dimension check (or thinking a little harder) shows that

Sym2 C3 = Γ2,0 and Λ2C3 = Γ0,1
∼= (C3)∗

In general, it’s easy to check that

Γn,0 = Symn Γ1,0, Γ0,n = Symn Γ0,1.

13.5 Another tensor product

Take the tensor product Γ1,0⊗Γ1,1 of the standard and adjoint representations. The weight
diagram is:

2

2

2

4

4

40

The labelled blobs denote weight spaces of dimension given by the label.

It is clear that this representation contains an irreducible summand Γ2,1, generated by
e1 ⊗ E13. There are three ways of applying E21, E31 and E32 to e1 ⊗ E13 to obtain a vector
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with weight L1:

ρ(E21)ρ(E32)(e1 ⊗ E13), ρ(E23)ρ(E21)(e1 ⊗ E13), ρ(E31)(e1 ⊗ E13)

where ρ is the tensor representation. Therefore the weight-space of Γ2,1 with weight L1 is
spanned by these three vectors. Clearly these have a linear dependence, since

ρ(E21)ρ(E32)− ρ(E32)ρ(E21) = ρ([E21, E32]) = −ρ(E31)

so the L1 weight-space of Γ2,1 is at most two-dimensional. We know it is at least one-
dimensional. We have

E32e1 = 0, adE32 E13 = −E12

and
E21e1 = e2, adE21 E12 = −H12

so
ρ(E21)ρ(E32)(e1 ⊗ E13) = e2 ⊗ E12 − e1 ⊗H12.

Similarly
ρ(E32)ρ(E21)(e1 ⊗ E13) = e3 ⊗ E13 − e2 ⊗ E12 − e1 ⊗H23.

Since these two vectors are linearly independent, we see that the L1 weight-space is two-
dimensional. By Weyl symmetry, the L2 and L3 weight-spaces are also two-dimensional,
so the weight diagram of Γ2,1 is:

2

2

20

Further decomposing Γ1,0 ⊗ Γ1,1 we get

Γ1,0 ⊗ Γ1,1
∼= Γ2,1 ⊕ Γ0,2 ⊕ Γ1,0.
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Lecture 14: The eightfold way

The representation theory of SU(3) and other more complicated groups is important in
particle physics. The goal of this more informal chapter is to explain why.

14.1 SU(2): The Yang-Mills model

The proton and the neutron look pretty similar, except that one has electric charge and
the other is electrically neutral and the neutron is slightly heavier. When studying the
strong nuclear interactions between these particles, which bind them into nuclei, the
electric charge is not so important (how else could two protons get as close together as
they do in the nucleus of an atom?) and to an extent one can forget about the difference
between them. The theory is approximately symmetric under the interchange of proton
and neutron.

In quantum mechanics one models particles by specifying the quantum state they inhabit.
One can take complex linear combinations (superpositions) of states in the same way one
can superimpose water waves in a bath by exciting the water in two different ways simul-
taneously (the only difference being that one usually takes real coefficients in the bath).
This means that the state space of quantum mechanics is a complex vector space. The
quantities one can measure (usually) only depend on the norm of vectors in this space,
so one can rescale all vectors by a complex scalar. In other words, the physics is described
by a complex line in a complex vector space, or a point of CPn (the projectivisation)3.

Imagine now that we have a state P corresponding to a particle being a proton and a
state N corresponding to a particle being a neutron. These span a copy of C2 which is
the space of states and the projectivisation is CP1 = SU(2)/U(1)∆. If your theory re-
ally is symmetric under interchanging protons and neutrons then (by linearity) it’s also
symmetric under the action of SU(2) which rotates amongst all possible linear combina-
tions of the state P and the state N . This approximate “isospin symmetry” led Yang and
Mills to postulate a model for strong interactions based on the group SU(2). This origi-
nal Yang-Mills model, while not a good description for the strong interaction, developed
into a formalism called gauge theory which is now used to describe all the interactions
whose quantum behaviour we understand. Gauge theory is possibly the most important
subject in which Lie groups appear in a useful way outside pure mathematics.

14.2 SU(3): The quark model

In the early 1960s particle accelerators were producing many different particles and it
became a challenge to classify them. Inspired by the idea of generalising SU(2)-isospin

3...though often the vector space of states is infinite-dimensional.
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symmetry to SU(3), Gell-Mann and Ne’eman were led to such a classification. The pic-
ture that gradually emerged (through further ideas of Gell-Mann and Zweig) was called
the quark model.

The idea is as follows. There are three4 fundamental particles called quarks: the up quark
u, the down quark d and the strange quark s. These are called the different flavours of
quarks. The space of flavour states of a single quark is therefore C3 (or its projectivisation
CP2, but let’s ignore that subtlety). Quarks q (and their antiparicles q̄) combine in pairs
q1q̄2 or triples q1q2q3 to form bigger particles like pions, kaons, protons and neutrons. A
quark-antiquark pair is called a meson; a quark triple is called a baryon. To get the space
of states of pair we take the tensor square of C3, to get it for a triple we take the tensor
cube of C3. To get the state space of an antiparticle we take the dual representation.

We know that the tensor powers of a representation are not irreducible. This means that
there are combinations of quarks which can never be transformed into one another, for
instance uds− usd+ dsu− dus+ sud− sdu spans the one-dimensional subrepresentation
Λ3C3 (the exterior cube) and so could never be made into any other baryon. Therefore
we classify particles into the irreducible SU(3)-representations to which they belong.

Particles which belong to a one-dimensional irreducible representation in the above sense
are said to form a singlet. Those in a two-dimensional representation form a doublet, and
so on. The word multiplet is used for the collection of all particles in a given irreducible
representation.

The eight-dimensional adjoint representation su(3) (or octet) was called the “eightfold
way” by (an overexcited?) Gell-Mann. We will see that it plays a key role for both mesons
and baryons.

14.2.1 Mesons

For mesons we start with the representation C3 ⊗ (C3)∗ and decompose it into irre-
ducibles. The weight diagram for this representation is

4...actually there are three others called top, bottom and charm, but for the SU(3) model we only need
up, down and strange.
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0

3

L1 − L3

L2 − L3

L2 − L1

L3 − L1

L3 − L2

L1 − L2

where the dimension of the zero weight-space is three. Therefore

C3 ⊗ (C3)∗ ∼= Γ1,1 ⊕C

where C is the trivial one-dimensional representation (“singlet”) corresponding to the
invariant subspace spanned by η1 = uū+dd̄+ss̄√

3
. We call Γ1,1 the meson octet. If u, d, s are

the 1, 2, 3-directions in C3 then ud̄ corresponds to the matrix E12 (where we are thinking
of V ⊗ V ∗ as the space of matrices on V ), us̄ corresponds to E13, etc. so that the weight
spaces correspond to quark combinations as follows

0

us̄ = K+

ds̄ = K0

dū = π−

sū = K−

sd̄ = K̄0

ud̄ = π+

where we have written on the particle names which have these quark decompositions.
Note that 0 corresponds to all combinations of uū, dd̄, ss̄ and this space is spanned by the
η, η′ and π0 mesons. Note that these latter particles are superpositions of different quark-
antiquark states. Also, the observed particles η and η′ do not actually live in the octet or
the singlet: if π0 and η8 form a basis for the zero weight-space of the octet and η1 spans
the singlet then η and η′ are a linear combination of η1 and η8. This happens because in
reality the SU(3)-symmetry is only approximate and the weak nuclear interaction leads
to “Cabbibo mixing” between down and strange quarks.
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14.2.2 Baryons

For the tensor cube, we get

(C3)⊗3 ∼= Γ3,0 ⊕ Γ1,1 ⊕ Γ1,1 ⊕C

where Γ3,0 is the symmetric cube and C is the exterior cube. This is clear from the weight
diagram:

3

3

3

33

3

6

This should lead us to a classification of baryons into a decuplet:

∆++ = uuuΣ∗0 = uds

∆− = ddd

Ω− = sss

∆0 = udd

∆+ = uud

Ξ∗0 = uss

Σ∗− = dds

Ξ∗− = dss Σ∗+ = ddd

an octet (including p+ the proton and n0 the neutron):

Σ0, Λ = uds
p+ = uud

n0 = udd

Σ− = dds

Ξ− = dss

Ξ0 = uss

Σ+ = uus

and a singlet: Λ1 = uds.
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Remark 14.1. Confusingly, it seems that there should be two octets. However this is an
oversimplified picture. Really we should remember that each quark is a spin-1/2 par-
ticle, meaning that it has two states: ↑ and ↓. These span a copy of C2 in the space of
quantum states. The true state space for a single quark is therefore C3 ⊗ C2 ∼= C6 and
the relevant group is really SU(6). The tensor cube (C6)⊗3 decomposes into irreducible
subrepresentations one of which is the 56-dimensional Sym3 C6. Under the subgroup
SU(3) × SU(2) ⊂ SU(6) this decomposes into two pieces: a 40-dimensional piece and
a 16-dimensional piece. The 40-dimensional piece is the tensor product of the decuplet
with the standard 4-dimensional (spin-3/2) representation of SU(2); the 16-dimensional
piece is the tensor product of the octet with the standard 2-dimensional (spin-1/2) repre-
sentation of SU(2). These are the actual baryons that we see: the baryons in the decuplet
above all have spin-3/2 and those in the octet have spin-1/2.

Remark 14.2. The true wavefunction of (for example) the proton is therefore a linear com-
bination of wavefunctions from the two SU(3)-octets combined with different spin wave-
functions. The naive picture we have of a proton being “two up quarks and one down
quark” is misleadingly simple. Indeed the ∆+ is also made up of two up quarks and one
down quark. They are distinguished by the way they transform under SU(3) (or SU(6)).

14.2.3 The point of all this

This is not just abstract nonsense:

• If one assigns charges 2/3,−1/3,−1/3 to u, d, s then they add correctly to give the
charges of the composite particles.

• Similarly (to a good approximation) with masses 2.4, 4.8, 104MeV/c2 and other quan-
tum numbers like spin, baryon number and strangeness which are preserved by
strong nuclear interactions.

• When the classification was originally made, the Ω− had not been observed. Its
existence, mass, charge and other basic properties were predicted on the basis of
this classification. It was discovered [3] in 1964.

The group SU(3) plays an even more central (but essentially different) role in the the-
ory strong nuclear interactions as the gauge group of quantum chromodynamics. In
other words, quarks have a charge-like property called colour which has three linearly
independent states that can be acted on by SU(3). This is not the same as the flavour
symmetry we have been discussing!
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Lecture 15: Strategy for the general case

Much of the theory we have outlined in the foregoing lectures generalises to other groups.
The most general setting in which it works is that of compact semisimple Lie groups.

15.1 Abelian Lie groups

Proposition 15.1. Any compact abelian Lie group G is a torus.

Proof. Since G is abelian the Lie bracket is identically zero on the Lie algebra, so the exponential
map is a homomorphism (i.e. the usual law of logarithms holds) from g ∼= Rn to G.The kernel
of this is a lattice in Rn: that is, it is a subgroup where every point p ∈ ker exp is surrounded by
a ball Bp such that Bp ∩ ker exp = {p}. The balls are obtained by looking at the preimages of
a small exponential chart. This lattice is finitely generated and hence isomorphic to Zn by the
classification of finitely generated abelian groups (without torsion because Rn has no torsion). If
a1, . . . , an are generators for this group then they form an R-basis for Rn (otherwise the quotient
is not a compact group) and when written in that basis (so t ∈ g is t =

∑
tiai) the group is just

(exp(t1), . . . , exp(tn)) which is clearly isomorphic to U(1)n.

15.2 Maximal tori

The key to the structure of SU(2), SU(3) and their representations was the existence of
a torus H of diagonal matrices, isomorphic to U(1) and U(1) × U(1) respectively. We
decomposed representations of SU(2) and SU(3) into weight spaces under the action of
this torus.

Definition 15.2. A torus in a Lie group is a subgroup isomorphic to U(1)n for some n ≥ 1.
A maximal torus is a torus which is not contained in any other torus.

Proposition 15.3. If G is a compact group then there exists a torus in G. Moreover there exists
a maximal torus.

Proof. Let X ∈ g and take the one-parameter subgroup exp(tX). The image of this is an abelian
subgroup of G. Its closure (topological!) is again an abelian matrix group (one of the first things
we proved about matrix groups) and because a closed subset of a compact set is compact, it
must be a torus. Its Lie algebra contains X and is therefore at least one-dimensional.

Now consider the partially-ordered set of abelian subalgebras of g. Since subalgebras are in
particular subspaces there are maximal elements in the poset (as dimension is finite). We claim
that the exponential image of a maximal abelian subalgebra t is a maximal torus. To see this,
consider the Lie group T = exp(t). It is a torus and its Lie algebra is an abelian subalgebra
containing t, hence its Lie algebra equals t. If T ⊂ T ′ for some abelian group T ′ then t′ is an
abelian subalgebra containing t and hence t = t′ and the two subgroups are equal.

Henceforth we will choose a particular maximal torus. Changing this choice won’t affect
our analysis because:

Theorem 15.4. Any two maximal tori T, T ′ in a compact finite-dimensional Lie group are con-
jugate to one another, that is T = gT ′g−1 for some g ∈ G.
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Proof. The proof is an application of the Lefschetz fixed point formula from algebraic topology and
is beyond the scope of this course. For those who are interested, see [1, 4.21–4.23].

15.3 The strategy

Given a compact group G and a complex representation R : G→ GL(V ):

• Pick a maximal torus T ⊂ G and restrict the representation to T to obtain a repre-
sentation R|T of T .

• Decompose R|T : T → GL(V ) into weight spaces

V =
⊕
λ∈t∗Z

Vλ.

• Let ρ : g → gl(V ) be the associated Lie algebra representation. We now know that
the elements X ∈ t act by

ρ(X)v = λ(X)v

on v ∈ Vλ. The final step is to figure out how the other elements of g (not in t) act
on the Vλs. This will involve careful analysis of the adjoint representation.

15.4 Killing form

For SU(3), we drew a picture of the roots (a hexagon in R2) and were able to do geometry
in h∗R. At the time this involved an arbitrary choice of metric by declaring h∗R to be a
quotient of the inner product space RĽ1 ⊕RĽ2 ⊕RĽ3 with a basis given by {Ľi}3

i=1. For
the general story we need a canonical prescription.

Lemma 15.5. There is a natural symmetric bilinear form K : g × g → R which is invariant in
the sense that

K([X, Y ], Z) = K(Y, [X,Z]).

Proof. This form is called the Killing form and is defined as

K(X,Y ) = Tr(adX adY ).

Here adX and adY are matrices, we take their product and then take the trace. Invariance
follows from the Jacobi identity.

We will assume in what follows that −K is positive-definite. Of course this is not true
for all Lie algebras and we must further restrict our attention. The resulting class of Lie
algebras are the Lie algebras of compact semisimple Lie groups.

Definition 15.6. A Lie algebra over C is called semisimple if its Killing form is nondegen-
erate (this is not the right definition for Lie algebras over fields of characteristic p 6= 0). A
Lie group G is called semisimple if gC is semisimple.
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Lemma 15.7. The Killing form of a compact semisimple Lie group is negative definite.

Proof. For a compact group we know that any representation is unitary for some choice of Her-
mitian inner product. This means that the adjoint representation can be thought of as a map
ad: g→ u(n) (where n = dimG). Therefore adX is a skew-Hermitian matrix. Now

Tr(adX adX) = −Tr(adX ad†X) = −
∑
i,j

|xij |2 ≤ 0

where xij are the entries of adX . Equality occurs if and only if adX = 0.

We are also assuming semisimplicity, i.e. nondegeneracy of the Killing form. If adX = 0 then
K(X,Y ) = 0 for all Y , so this cannot occur. Therefore the Killing form is negative definite.

Remark 15.8. Henceforth we will work only with compact semisimple Lie groups so that
we can assume the existence of a maximal torus and the negative definiteness of the
Killing form.

Example 15.9. As an example, let’s consider the Killing form on su(2). With respect to
the basis σ1,σ2,σ3 of su(2), the adjoint action of σ1 is

adσ1 σ1 = 0, adσ1 σ2 = 2σ3, adσ1 σ3 = −2σ2

so ad2
σ1

is the diagonal matrix diag(0,−4,−4) with trace −8. Similarly the trace of ad2
σk

is −8 for k = 2, 3. We can also check that σk are orthogonal: for example adσ1 adσ3 is
a matrix with a four in the bottom right corner, so its trace vanishes. When we look at
isu(2) = sl(2,R), we get a minus sign. It is convenient to use the form K/8 so that the
standard basis is orthonormal.

An inner product on g gives a vector-space isomorphism5 [ : g→ g∗:

[(v)(w) = 〈v, w〉.

So we can also think of the inner product as defined on the dual space. We will now
check that (up to an overall rescaling) the inner product−K is the inner product we used
when analysing h∗R for su(3).

Example 15.10. Let’s use the basis given byEij , i < j andHij = Eii−Ejj , i < j. It’s easy to
compute the (eight-by-eight) matrix of adH12 with respect to the basisH12, H23, S12, A12, S13, A13, S23, A23:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 −2 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0


whose square is diag(0, 0,−4,−4,−1,−1,−1,−1) with trace K(H12, H12) = −12.

5The inverse of [ is ].
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Similarly K(H23, H23) = −12 and K(H12, H23) = 6. Let’s use the inner product−K/12 (or
work on isu(3) = sl(3,R)). With respect to this, I = H12, J = 2√

3

(
H23 + 1

2
H12

)
form an

orthonormal basis so I[, J [ form a basis for the dual space. We would like to use this to
compute the inner products of L1, L2 and L3. Recall that 〈H[

jk, Li〉 = L1(Hjk) = δij − δjk.
Therefore

L1 ·H[
12 = 1 L1 ·H[

23 = 0

L2 ·H[
12 = −1 L2 ·H[

23 = 1

so
L1 = I[ +

1√
3
J [, L2 = −I[ +

1√
3
J [.

Therefore L1 · L1 = 4/3 = L2 · L2 and L1 · L2 = −2/3. Rescaling again by 3/2 (so we are
now using −K/8) we get the dot products

Li · Lj = −1, i 6= j Li · Li = 2

as before.

15.5 Geometry of roots

Now, for a compact semisimple Lie group G (with associated Lie algebra g) we have (a)
a maximal torus H and the accompanying root decomposition

gC = h⊕
⊕
α∈R

gα

of the adjoint representation, and (b) the definite Killing form on h∗R. Given this we can
start proving things about root systems of compact semisimple Lie groups.

Lemma 15.11. If X ∈ gα and Y ∈ gβ then

[X, Y ] ∈ gα+β.

Proof. We proved this before for su(3) and the proof goes through unchanged.

Corollary 15.12. If X ∈ gα, Y ∈ gβ and α + β 6= 0 then K(X, Y ) = 0.

Proof. By the lemma, the matrix (adX adY )
n applied to a vector Z ∈ gγ gives

(adX adY )
n
Z ∈ gγ+n(α+β).

Since α + β 6= 0 and since there are only finitely many nonzero root spaces, this is eventually
zero (for large enough n). This implies that adX adY is nilpotent: when raised to some power it
vanishes. The trace of a nilpotent matrix over C is zero: this is easiest to see in Jordan normal
form, where nilpotence means that the diagonal entries are all zero.

Remark 15.13. In other words, the only way for two root vectors to pair nontrivially under
the Killing form is for them to lie in opposite root spaces gα and g−α.
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Semisimplicity means nondegeneracy of the Killing form, which implies that

Corollary 15.14. Suppose that G is a compact semisimple Lie group and R is the root system of
its Lie algebra. If α ∈ R then −α ∈ R.

Lemma 15.15. If X ∈ gα and Y ∈ g−α then

[X, Y ] = K(X, Y )α].

Proof. Translating into a Killing-dual statement, we need to prove that

K(H, [X,Y ]) = α(H)K(X,Y )

for all H ∈ hR. Using invariance of the Killing form we get

K(H, [X,Y ]) = K([H,X], Y ) = α(H)K(X,Y )

as required.

15.6 sl(2,C)-subalgebras

We can now find the all-important sl(2,C)-subalgebra associated to a root α. Pick Xα ∈
gα. By Remark 15.13 and nondegeneracy of the Killing form, we know there exists Yα ∈
gα such that K(Xα, Yα) 6= 0. Lemma 15.15 tells us that

Hα := [Xα, Yα] = K(Xα, Yα)α].

Rescaling, we can pickXα and Yα so thatK(Xα, Yα) = 2/|α|2 (which makes sense because
we are assuming positive-definiteness of the Killing form, so |α|2 6= 0). Then

α(Hα) = 2

and it is easy to check that

Lemma 15.16.
sα = CXα ⊕CYα ⊕CHα ⊂ gC

is a Lie subalgebra isomorphic to sl(2,C).

It remains to show that gα is one-dimensional, so that there is really no choice in con-
structing this sl(2,C)-subalgebra.

Lemma 15.17. The subspace

V = CHα ⊕
⊕

k∈Z\{0}

gkα ⊂ g

is an irreducible representation of sα. In particular, g±α are one-dimensional.
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Proof. We must check that it is a representation, i.e. that it is preserved by the adjoint action of sα.
Certainly

adXα gkα ⊂ g(k+1)α, adYα g−kα ⊂ g−(k+1)α

when k 6= −1. Moreover, Lemma 15.15 implies that

adXα g−α ⊂ CHα, adYα gα ⊂ CHα.

We also have
v ∈ gkα ⇒ adHα v = kα(Hα)v = 2kv

so V is preserved by the action of the generators Xα, Yα, Hα of sα. Moreover we see that the
weight decomposition of this sl(2,C)-representation has gkα as the 2k weight-space and CHα

as the zero weight-space.

Now V decomposes into irreducible subrepresentations, each with even weight. Each subrep-
resentation has a zero weight summand. The direct sum of these zero weight summands is the
zero weight-space of V , which is one-dimensional. Hence there is only one irreducible sum-
mand and V is irreducible.

From the classification of irreducible representations of sl(2,C), this immediately implies that
gα and g−α are one-dimensional.

We can push this a little further.

Corollary 15.18. On the line connecting −α to α there are no roots other than ±α and 0.

Proof. We know that sα preserves the direct sum of root spaces along this line: Xα and Yα trans-
late in either direction. If β = bα is a root on this line then the weight of Hα acting on gβ is
2K(α, β)/K(α, α) = 2b and this must be an integer, so b is a half-integer. By reversing the roles
of α and β we also see that 1/b is a half-integer, so b ∈ {±1,±2,±1/2}. Without loss of generality
(swapping α and β and changins β to −β) assume that b ∈ {1, 2}. We want to rule out the case
b = 2.

The previous lemma showed that V = CHα⊕
⊕

k∈Z\{0} gkα was an irreducible sα-representation.
If b = 2 were possible then this representation would be

g−2α ⊕ gα ⊕CHα ⊕ gα ⊕ g2α.

However, we know that Xα generates gα and hence adXα gα = 0. In an irreducible represen-
tation, the weight space g2α would be generated by adXα applied to the α-weight space. Since
this vanishes, we see that b 6= 0. This proves the corollary.

We can further decompose g as a representation of sα:

Lemma 15.19. Suppose that β is a root which is linearly independent from α. Then⊕
k∈Z

gβ+kα

is an irreducible representation of sα.

Proof. Certainly this subspace is preserved by sα. It decomposes into weight spaces gβ+kα with
weight β(Hα) + 2k. Each of these weight spaces is one-dimensional (as it is a nonzero root
space). Therefore the representation is irreducible.

There are two important facts about irreducible representations of sl(2,C) which give us
yet more structure:
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• The weights are integers.

Since Hα acts with weight β(Hα) = 2K(α, β)/K(α, α) on gβ this means that:

Corollary 15.20. For any nonzero roots α, β we have

2K(α, β

K(α, α)
∈ Z.

• The weights are distributed symmetrically about the origin.

This means that

Corollary 15.21. The reflection operator

sα(β) = β − 2K(α, β)

K(α, α)
α

which reflects in the hyperplane

Ωα = {β : K(α, β) = 0}

preserves the set of roots in h∗R. The group generated by these reflection operators is called the
Weyl group.

15.7 Summary

Theorem 15.22. If G is a compact semisimple Lie group with Lie algebra g then:

• The Killing form
K(X, Y ) = Tr(adX adY )

on g is negative-definite (positive-definite on ig).

• There exists a maximal torus H ⊂ G (unique up to conjugation) with Lie algebra h ⊂ g.

• Under the adjoint action of the maximal torus, the complexified Lie algebra gC decomposes
into root spaces

gC = hC ⊕
⊕
α∈R

gα

where hC is the zero root-space.

• If α ∈ R then −α ∈ R. Moreover the only roots on the line through ±α are ±α and 0.

• Each root-space gα is one-dimensional.

• For each pair of roots, α, β we have

2K(α, β)

K(α, α)
∈ Z.
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• The reflection operator

sα(β) = β − 2K(α, β)

K(α, α)
α

which reflects in the hyperplane

Ωα = {β : K(α, β) = 0}

preserves R ⊂ h∗R.

• The group of reflections in Ωα is called the Weyl group.

• If β is a root which is linearly independent from α. Then

Vβ =
⊕
k∈Z

gβ+kα

is an irreducible representation of sα.

• As a representation of sα, gC decomposes into irreducibles

sα ⊕
⊕
β

Vβ ⊕ hC/CHα.

15.8 Irreducible representations

We can analyse representations of compact semisimple Lie groups as we analysed repre-
sentations of SU(2) or SU(3). We have complete reducibility into irreducible subrepre-
sentations. We can take a weight space decomposition with respect to a maximal torus
(whose complexified Lie algebra if t) and we get a collection of vertices in the weight
lattice

t∗Z = {f ∈ t∗ : f(v) ∈ 2πZ for all v ∈ ker exp}.
A highest weight vector (with respect to an irrational linear function for the weight lat-
tice) generates an irreducible subrepresentation by acting using negative roots. For each
weight α there is a unique irreducible representation containing a highest weight vector
with weight α and the weight diagram for this irreducible representation:

• is symmetric under the Weyl group

• is obtained by:

– reflecting the highest weight under all the elements of the Weyl group,

– taking the convex hull of the images,

– and looking at all lattice points in this convex hull which can be obtained from
the highest weight by translating along a root.

The only conundrum is what multiplicities to put on the weights. There are a number
of beautiful approaches (Weyl’s character formula, the Littlemann path model, Freuden-
thal’s multiplicity formula) and we will use one of them.
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15.9 Multiplicities

Theorem 15.23 (Freudenthal’s multiplicity formula). Suppose that G is a Lie group and
G → GL(V ) is a finite-dimensional complex irreducible representation of highest weight λ. Let
R+ denote the set of positive roots of G. Then the multiplicity of the weight µ is

dimVµ =
2
∑

α∈R+

∑
j≥1〈µ+ jα, α〉 dimVµ+jα

‖λ+ ρ‖2 − ‖µ+ ρ‖2

where ρ = 1
2

∑
α∈R+

α, ‖X‖2 = 〈X,X〉 and 〈, 〉 means the Killing form.

Proof. The proof involves studying the action of a Casimir operator in the Lie algebra g - this is an
element C which has the property that, for any representation ρ, ρ(C) commutes with ρ(X) for
all X ∈ g. We met the Casimir for sl(2,C) on Sheet 6. The proof is beyond the timescale of this
course and can be found in [2, Chapter 25.1].
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