
Geometry and Groups

Jonny Evans

March 27, 2017

The notation 1 may refer to the number one or to the identity matrix or to the identity
element in any group. It should be clear what is meant from the context, so please try not
to get confused!

1 Symmetries of polytopes

1.1 Isometries

This is a course about symmetry. For us, a symmetry will be a distance-preserving trans-
formation, otherwise known as an isometry:

Definition 1.1. An isometry of Rn is a distance-preserving bijection T : Rn → Rn, that is

|T (x)− T (y)| = |x− y|

for all x, y ∈ Rn. We will write Isom(Rn) for the group of all isometries. If P ⊂ Rn is a
subset then we define the symmetry group of P to be the subgroup

Sym(P ){T ∈ Isom(Rn) : TP = P},

where TP = P means “T (x) ∈ P if and only if x ∈ P”.

Example 1.2. For example, the symmetries of an equilateral triangle P comprise the three
reflections in its lines of symmetry and the three rotations about its centre of mass by
0, 2π/3 and 4π/3 radians. This is isomorphic to the group S3 of permutations of three
objects.

Example 1.3. If b ∈ Rn then the translation T (x) = x+ b is an isometry:

|T (x)− T (y)| = |(x+ b)− (y + b)| = |x− y|.
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Example 1.4. If A is an n-by-n orthogonal matrix (that is ATA = 1) then T (x) = Ax is an
isometry (an orthogonal transformation):

|T (x)− T (y)|2 = |A(x− y)|2

= (A(x− y))T (A(x− y))

= (x− y)TATA(x− y)

= (x− y)T (x− y)

= |x− y|2

where we have used the formula |v|2 = vTv for vectors v ∈ Rn and the fact that (Av)T =
vTAT . We write O(n) for the group of orthogonal matrices. Orthogonal transformations
include rotations and reflections through hyperplanes containing 0.

For example, the matrix (
cos θ − sin θ
sin θ cos θ

)
defines a rotation through an angle θ about the origin; the matrix(

1 0
0 −1

)
defines a reflection in the x-axis.

Recall that ifA ∈ O(n) then det(A) = ±1 (because det(A)2 = det(AT ) det(A) = det(ATA) =
det(1) = 1). If det(A) = 1, we say that A is orientation-preserving; if det(A) = −1, we
say that A is orientation-reversing. We write SO(n) for the subgroup of orientation-
preserving orthogonal matrices.

We will see later in the course that actually any T ∈ Isom(Rn) has the form

T (x) = Ax+ b

for some A ∈ O(n) and b ∈ Rn.

Definition 1.5. We will write Isom+(Rn) for the subgroup of orientation-preserving isome-
tries, that is T (x) = Ax + b for A ∈ SO(n). If P ⊂ Rn is a subset, we write Sym+(P ) for
the subgroup of orientation-preserving symmetries of P .

Example 1.6. If P is a regular n-gon then the group of symmetries comprises n reflections
and n rotations (including the identity). It is called the dihedral group1 D2n.

The aim of this first section is to compute the symmetry groups for some more compli-
cated 3- and higher-dimensional polytopes.

1Some people (including, sometimes, me) call this the dihedral group Dn - be careful of the notation.
For us, the subscript is the size of the group.
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1.2 The regular tetrahedron

Example 1.7 (The regular tetrahedron). The regular tetrahedron T has four vertices and
its symmetries permute those vertices, so we get a map A : Sym(T) → S4 which sends
each symmetry to the corresponding permutation. Explicitly, A(T ) is the permutation
sending the vertex v to the vertex Tv, i.e.

A(T )(v) = T (v).

I claim that A is (a) a homomorphism, (b) surjective, (c) injective, and hence it is an
isomorphism so we will see that Sym(T) ∼= S4.

(a) If T = 1 ∈ Sym(T) then it doesn’t move the vertices at all, so acts as the identity
permutation. Therefore A(1) = 1. Moreover, if T1, T2 ∈ Sym(T) and if v is a vertex
then

A(T1 ◦ T2)(v) = (T1 ◦ T2)(v)

= T1(T2(v))

= A(T1)(A(T2)(v))

= (A(T1) ◦ A(T2))(v)

so A(T1) ◦ A(T2) = A(T1 ◦ T2). This proves that A is a homomorphism.

(b) To see that A is surjective, we need to find, for every permutation of the vertices,
a symmetry of T which effects this permutation. We will (i) first find a symme-
try when the permutation is a transposition (switching two vertices and fixing the
other two). (ii) We then recall from basic group theory that the permutation group
is generated by transpositions. (iii) Finally, we will prove that if A : G → H is a
homomorphism and the image of A contains a generating set, then A is surjective.

(i) Suppose you want to switch the vertices p and q, leaving r and s fixed. Pick
the unique plane containing r and s which is orthogonal to the edge pq. The
reflection in this plane is a symmetry which effects the desired transposition.

(ii) Recall that the permutation group is generated by transpositions; in other
words, any permutation can be written as a composition of transpositions.
To see this, we work by induction on the number of objects being permuted:
if there are only two objects then there are only two permutations (the iden-
tity and a transposition) so the claim is certainly true; if there are n+ 1 objects
s1, . . . , sn+1 and σ is an arbitrary permutation then let τ be the permutation
that switches σ(sn+1) and sn+1 (unless these happen to be equal, in which case
let τ = 1); the permutation τ ◦ σ fixes sn+1, and is therefore a permutation of
the first n objects; by induction it can be written as a composition of transposi-
tions, so including τ as the final transposition we find that we can write σ as a
composition of transpositions.

(iii) If A : G → H is a homomorphism and the image of A contains a generating
set h1, . . . , hm then we know that there exist elements gi such that A(gi) = hi
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for all i. Since any element h ∈ H can be written as a product h±1
i1
· · ·h±1

ik
of

generators (or their inverses), we see that

h = A(g±1
i1

) · · ·A(g±1
ik

) = A(g±1
i1
· · · g±1

ik
),

so h is in the image of A for all h ∈ H , and A is surjective.

This proves surjectivity of A.

(c) To see injectivity, it is necessary and sufficient to show that the kernel ofA is trivial2.
The kernel ofA is the set of symmetries of T which leave every vertex fixed. In a few
lectures’ time, we will see that if an isometry T of Rn fixes n + 1 vectors a0, . . . , an
such that a1 − a0, . . . , an − a0 form a basis of Rn then T is the identity. In our case
we can apply this where a0, . . . , a3 are the vertices of the tetrahedron T to deduce
that if T ∈ ker(A) then T is the identity. Hence A is injective.

This proves that the symmetry group of a regular tetrahedron is isomorphic to the group
of permutations of four objects.

What about Sym+(T)? On the one hand, S4 is generated by transpositions. On the
other hand, these correspond under A to reflections. Note that a reflection is orientation-
reversing, and a product of k reflections is orientation-preserving if and only if k is even
(because det(M1 · · ·Mk) = det(M1) · · · det(Mk) = (−1)k if each Mi is a reflection). There-
fore the alternating group A4 of even permutations (which can be written as an even num-
ber of transpositions) correspond to the orientation-preserving symmetries of T, that is

Sym+(T) ∼= A4.

1.3 Group actions

If we try and generalise the example of the regular tetrahedron naively, we run into
problems. For example, a cube has eight vertices, but not all of the permutations of these
vertices can be realised by symmetries of the cube. Nonetheless, we can abstract many
of the important ideas from the example of the tetrahedron into a powerful tool we call
the theory of group actions. This gives us a systematic way of studying questions about
symmetry.

Definition 1.8. Let G be a group and X be a set. Let Perm(X) be the group of permuta-
tions of X . An action of G on X is a homomorphism

A : G→ Perm(X).

Almost always, we will write A(g)(x) as gx.

2If F : G → H is a homomorphism of groups then its kernel is the subgroup ker(F ) := {g ∈ G :
F (g) = 1}. If the kernel is {1} then F (g) = F (h) implies F (gh−1) = 1, so gh−1 = 1 and g = h; therefore
ker(F ) = {1} implies F is injective. Conversely, if F is injective then F−1(1) contains only one element, 1.
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Example 1.9. Let P ⊂ Rn and considerG := Sym(P ) ⊂ Isom(Rn) be the symmetry group
of P . Then there is a G-action on P : any g ∈ G gives us the permutation x 7→ gx. If P is a
polyhedron in R3, for example, this restricts to an action of G on the set of vertices of P ,
on the set of edges of P , on the set of faces of P ,...

Theorem 1.10 (Orbit-Stabiliser Theorem). If G acts on a set X then, for each x ∈ X , define

• Orb(x) := {y ∈ X : y = gx for some g ∈ G}, the orbit of x;

• Stab(x) := {g ∈ G : gx = x}, the stabiliser of x.

Then, for each x ∈ X , there is a bijection between the cosets G/ Stab(x) and the orbit Orb(x). In
particular, if G and X are finite then |Orb(x)| · | Stab(x)| = |G|.
Proof. The bijection G/Stab(x) → Orb(x) is [g] 7→ gx. This is well-defined because if [g1] = [g2]

then g2 = g1h for some h ∈ Stab(x), hence g2x = g1hx = g1x. It is injective because if g1x = g2x
then g−1

2 g1x = x so g−1
2 g1 ∈ Stab(x) and g1 Stab(x) = g2 Stab(x). It is surjective because if

y ∈ Orb(x) then there exists g0 ∈ G such that y = g0x, hence [g0] 7→ y.

Example 1.11. Consider the equilateral triangle P and look at the action of Sym(P ) on its
vertices. There are three vertices and any one can be mapped to any other by a symmetry,
so there is only one orbit of size 3. The stabiliser of a vertex comprises the identity and
the reflection about the line of symmetry passing through that vertex; in other words, it
has size 2. Therefore by the orbit-stabiliser theorem, the size of Sym(P ) is 6 (3 times 2).

This example has the special property that there is only one orbit. In this case we say that
the action is transitive. Here is an example where the action is not transitive:

Example 1.12. Let P be the pentagonal bipyramid, in other words, the polyhedron which
intersects the xy-plane in a regular pentagon of sidelength 1 and has two vertices at
(0, 0,±h) so that the sides connecting the vertices of the pentagon to (0, 0,±h) also have
length 1. The group of symmetries of P acts on the set of vertices. There are two orbits:
the vertices p1, . . . , p5 form an orbit and the vertices (0, 0,±h) form an orbit. The stabiliser
of (0, 0, h) is the symmetry group of the pentagon, so the total number of symmetries is
two (the number of vertices in the orbit of (0, 0, h)) times ten (the number of symmetries
fixing (0, 0, h)), that is 20. Alternatively, if we look at the stabiliser of p1 we see there
are four elements: the identity, the reflection in the vertical plane through p1 and 0, the
reflection in the xy-plane, and the 180 degree rotation around the p1-axis. The size of the
orbit of p1 is five, so the total number of symmetries is (again) 20.

Example 1.13. Let’s look again at the tetrahedron. The action of symmetries on faces
gives a homomorphism Sym(T ) → S4. As I explained earlier, an isometry is determined
by its action on four vectors a1, a2, a3, a4 such that a2 − a1, a3 − a1, a4 − a1 forms a basis,
and we can take these vectors to be the midpoints of the faces, so that the isometry is
determined by its action on faces. Therefore this is an injective homomorphism.

The orbit-stabiliser theorem tells us that | Sym(T )| is equal to the size of the orbit times
the size of the stabiliser. The orbit of a face is the set of of all face (we say the action is
transitive) and there are four. The stabiliser of a single face is the dihedral group D6: any
symmetry of the triangular face is the restriction of a symmetry of the tetrahedron. The
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orbit stabiliser theorem now implies | Sym(T )| = 4 × 6 = 24. Therefore the homomor-
phism Sym(T ) → S4 must be bijective (it’s an injective map between sets of the same
size) hence an isomorphism.

Example 1.14. Alternatively, one could look at the action on vertices. The only difficulty
is in working out the stabiliser of a vertex. For this, we look at the vertex figure at x: take
the faces incident at x and project them onto the plane orthogonal to the line through 0
and x. This gives an equilateral triangle in the case of T . A symmetry of T stabilising a
vertex (a “vertex-stabiliser”) induces a symmetry of the corresponding vertex figure. It is
easy to see that, in this case, every symmetry of the vertex figure is realised by a vertex-
stabiliser. Therefore the vertex stabiliser group is isomorphic to the symmetry group of
the vertex figure, namely D6.

Example 1.15. Similarly, this tells us that the number of symmetries of a cube C must be
48: there is an action of Sym(C) on the eight vertices. Any vertex can be mapped to any
other, and I claim that Stab(x) ∼= D6. To see this, observe that the vertex figure of a cube
is an equilateral triangle. Any symmetry of C fixing a vertex x acts on the vertex figure
of the cube and hence defines an element of D6. As before, an isometry fixing a vertex is
determined by the action on the vertex figure, and any symmetry of the vertex figure can
be realised (in this case). Therefore |G| = 8× 6 = 48.

Example 1.16. Let us just consider the rotational symmetries of the cube. Only the rota-
tional symmetries of the vertex figure can be realised, so the vertex stabiliser is C3 and
there are only 24 symmetries in total. In fact, we can see that Sym+(P ) ∼= S4. Consider
the set X comprising the four axes through of opposite vertices. There is a G-action on
this set which permutes these four axes, which gives a homomorphism G → S4. This is
surjective: again it suffices to find rotations which effect any given transposition. This
can be achieved with rotations about the axis through the midpoints of opposite edges
[picture]. Therefore it is an isomorphism.

Had we done this with the full symmetry group (including reflections) then the symme-
try x 7→ −x would have fixed each of the four axes, so this homomorphism would have
failed to be injective. In fact, Sym(C) = S4 × C2, as we will see on a problem sheet.

Remark 1.17. What is the relationship between T and C? Why does the permutation
group S4 show up in both cases? You can inscribe a tetrahedron in a cube using four
of the eight vertices. There are precisely two ways to do this. The symmetry group
Sym+(C) ∼= S4 acts on these two inscribed tetrahedra, giving a homomorphism S4 → S2.
The stabiliser of a single tetrahedron is Sym+(T ) ∼= A4. The stabiliser of a tetrahedron is
the subgroup of Sym+(C) which act as the identity, i.e. it is the kernel of the homomor-
phism S4 → S2. Therefore we get the usual identity S4/A4

∼= S2 (I like to write this as an
exact sequence 1 → A4 → S4 → S2 → 1, where exactness means that the kernel of each
map equals the image of the preceding map).

Definition 1.18. Let P be a polyhedron. Put a vertex at the centre of every face and you
get a new polyhedron, the dual. Taking dual twice gives the original polyhedron. For
example, the dual of T is T . The dual of C is an octahedron O (and, dually, the dual of O
is C). The dual of a dodecahedronD is an icosahedron I (and vice versa). Any symmetry
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of a polyhedron induces a symmetry of its dual and vice versa, so a polyhedron and its
dual have the same symmetry groups. In particular, Sym+(O) ∼= S4.

Example 1.19. The dodecahedronD has 12 pentagonal faces. Therefore the orbit-stabiliser
theorem tells us that | Sym(D)| = 12 × 5 = 120, | Sym+(D)| = 60; this is because the sta-
biliser of a face is the symmetry group D10 of a pentagon. In fact, Sym+(D) ∼= A5. We
can see this by inscribing five cubes in D. These cubes are permuted by Sym+(D), giving
a homomorphism Sym(D) → S5. We can check that this is surjective onto A5 by find-
ing rotational symmetries of D which effect permutations which generate A5. Similarly,
Sym+(I) ∼= A5.

How to check that these inscribed objects are really cubes? [picture] It is easy to see that
the graph G you get by connecting vertices by diagonals this way is homeomorphic to a
cube. Clearly, since all the diagonals have the same length, the edges of G all have the
same length. We will now show that any two of them meet at a right angle, and that
will suffice to show that G is a cube. Consider the edges uv and vw. Let x and y be as
in the picture. Then x and y are equidistant from both w and v, therefore the line xy is
orthogonal to wv. The line uv is parallel to xy, and hence orthogonal to wv.

Remark 1.20. As with the cube, it is an exercise to show that Sym(D) = A5 × C2.

Example 1.21. The 4-dimensional version of the tetrahedron has five tetrahedral faces.
By the orbit-stabiliser theorem, this has 5× 24 = 120 symmetries.

1.4 Convex polytopes

Recall that if x and y are vectors in Rn then tx + (1 − t)y, 0 ≤ t ≤ 1, is a parametrisation
of the straight line segment through x and y.

Definition 1.22. The convex hull of a finite set of points X ⊂ Rn is the set

Conv(X)

{∑
x∈X

txx : tx ≥ 0 for each x ∈ X,
∑
x∈X

tx = 1

}
A convex polytope in Rn is a compact subset of Rn which is the convex hull of a finite set
of points.

Remark 1.23. A set P ⊂ Rn is convex if the straight line segment between two points of
P is itself contained in P . Exercise: The convex hull of a finite set of points is convex!

Definition 1.24. Suppose P = Conv(X) is a convex polytope. A point x ∈ X is called
a vertex of P if x 6∈ Conv(X \ {x}). Exercise: A convex polytope is the convex hull of
its vertices, i.e. you can drop something that isn’t a vertex without changing the convex
hull. From now on we will just assume when we write P = Conv(X) that X is the set of
vertices of P . The interior of P is the set

Int(P ) :=

{∑
x∈X

txx : tx > 0 for each x ∈ X,
∑
x∈X

tx = 1

}
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and the boundary of P is the set ∂P := P \ Int(P ). We will assume WLOG that Int(P ) is
an open set in Rn, which means that P is an n-dimensional polytope. The boundary of a
convex polytope is stratified by lower-dimensional faces:

• zero-dimensional 0-faces (vertices!),

• one-dimensional 1-faces (edges!) connecting pairs of vertices,

• two-dimensional 2-faces (faces!) spanning collections of edges,

• ...

• (n− 3)-faces (“peaks”), i.e. codimension 3,

• (n− 2)-faces (“ridges”), codimension 2,

• (n− 1)-faces (“facets”), codimension 1.

These faces are themselves convex polytopes (obtained by setting some of the coefficients
tx equal to zero).

Example 1.25. The tetrahedron has four vertices, six edges and four faces.

Definition 1.26. A flag in an n-dimensional polytope P is a sequence f = (f0 ⊂ f1 ⊂ · · · ⊂
fn−1) where fk is a k-face of P . A convex polytope is called regular if, for any two flags f ,
f ′ there exists an isometry T of Rn such that Tfk = f ′k.

A flag is called a flag for the following reason. Consider a tetrahedron. A flag in a
tetrahedron consists of a vertex v, an edge e containing v and a triangle t containing e. If
you stand the edge up vertically with v at the top then the whole thing looks like a flag
(t) with a flagpole (e) and a little knob on top (v) keeping the flag in place.

Regular convex polytopes are classified by their Schläfli symbol, which is defined recur-
sively as follows:

Definition 1.27. The Schläfli symbol of a regular convex p-gon {p}. The Schläfli symbol
of a regular convex polyhedron with q copies of {p}meeting at each vertex is {p, q}. The
Schläfli symbol of a regular convex 4-polytope with r copies of {p, q}meeting along each
edge is {p, q, r}. The Schläfli symbol of a regular convex n-polytope with pn−1 copies of
{p1, . . . , pn−2} meeting along each ridge is {p1, . . . , pn−1}. [Note: All pi > 2.] Note that if
P has Schläfli symbol {p1, . . . , pn} then its dual has Schäfli symbol {pn, . . . , p1}.

Theorem 1.28. If two regular convex polytopes have the same Schläfli symbol then they are
congruent by an isometry of Rn. The vertex figure of a regular convex polytope with Schläfli
symbol {p1, . . . , pn} is a regular convex polytope with Schläfli symbol {p2, . . . , pn}. Any vertex-
stabiliser induces a symmetry of the vertex figure at that vertex. If the convex polytope is regular
then for any symmetry of the vertex figure there exists a unique vertex-stabiliser which induces
it.

Example 1.29. The Schläfli symbol of a tetrahedron is {3, 3}.
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Theorem 1.30. There are precisely five 3-dimensional regular convex polytopes, with Schläfli
symbols:

{3, 3}, {3, 4}, {3, 5}, {4, 3}, {5, 3}.

These are the tetrahedron, octahedron, icosahedron, cube and dodecahedron respectively (the Pla-
tonic solids).

Proof. (Sketch.) Note that the internal angle at a vertex of {p} is π
(

1− 2
p

)
and so if there are q

meeting at every vertex (i.e. Schläfli symbol {p, q}) then, in order for the polytope to be convex
at each vertex, we must have

qπ

(
1− 2

p

)
< 2π

or
1

2
<

1

p
+

1

q
.

The only possibilities are the ones listed.

1.5 Four dimensions

There are six possibilities in dimension 4! These are:

{3, 3, 3} 5-cell/4-simplex five tetrahedral facets
{3, 3, 4} 16-cell/4-orthoplex 16 tetrahedral facets
{3, 3, 5} 600-cell 600 tetrahedral facets
{3, 4, 3} 24-cell 24 octahedral facets
{4, 3, 3} 8-cell/4-cube/tesseract eight cubical facets
{5, 3, 3} 120-cell 120 dodecahedral facets

This is proved by a similar argument as in the 3-dimensional case:

• {p, q} and {q, r}must be the Schläfli symbols of Platonic solids.

• Moreover, the dihedral angles around each ridge must add up to 2π.

Exercise: Look up or calculate the dihedral angles for each Platonic solid and hence (or
otherwise) prove the classification of 4-dimensional regular convex polytopes.

In higher dimensions, there are always three regular convex polytopes! These are

• {3, 3, 3, . . . , 3} (n-simplex),

• {4, 3, 3, . . . , 3}, (n-cube),

• {3, 3, . . . , 3, 4} (n-orthoplex).
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2 Isometries of Euclidean space

2.1 Pythagoras’s theorem

Theorem 2.1. If ∆ is a right-angled triangle with side-lengths a, b, c (c being opposite the right-
angle) then c2 = a2 + b2.

Proof. Drop a perpendicular from the vertex with the right-angle to the side c. This divides the
triangle into two smaller triangles ∆1 and ∆2. If A(∆) denotes the area of ∆ then A(∆) =
A(∆1) + A(∆2). The three triangles are similar: they all have the same angles. The hypotenuse
of ∆1 is a, of ∆2 is b and of ∆ is c. Therefore ∆1 = aδ, ∆2 = bδ and ∆ = cδ where δ is the similar
triangle with hypotenuse of length 1. Let λ = A(δ). Since area scales like the square of the
scaling factor, we have A(∆) = λc2, A(∆1) = λa2 and A(∆2) = λb2. Therefore a2 + b2 = c2.

We can, alternatively, define length to make Pythagoras’s theorem true:

Definition 2.2. Given two points x, y ∈ Rn, with coordinates (x1, . . . , xn), (y1, . . . , yn), the
distance between x and y is d(x, y) = |y − x| =

√∑n
k=1(yk − xk)2.

2.2 Definitions and examples

Definition 2.3. An isometry of Rn is a map T : Rn → Rn such that d(Tx, Ty) = d(x, y)
for all x, y.

Example 2.4. A translation Tx = x+ b is an isometry: |Tx−Ty| = |x+ b−y− b| = |x−y|.

Example 2.5. If A is an orthogonal matrix (ATA = 1) then Tx = Ax defines an isometry:
note that |x|2 = xTx so |Ax|2 = xTATAx = xTx = |x|2. In particular, |Tx − Ty| =
|A(x− y)| = |x− y|.

We will see later that any isometry has the form Tx = Ax+ b for some orthogonal matrix
A.

Lemma 2.6. The following are equivalent.

(a) A ∈ O(n) (i.e. ATA = 1).

(b) (Av) · (Aw) = v · w for all v, w ∈ Rn.

(c) |Av|2 = |v|2 for all v.

(d) The columns of A form an orthonormal basis for Rn, i.e. ei · ej = δij .

Proof. (c) is obvious given (b): just take v = w. To show (b) from (c), take u = v + w and note that

|v|2 + |w|2 + 2v · w = |u|2 = |Au|2 = |Av|2 + |Aw|2 + 2(Av) · (Aw)

which implies (b) since we are in characteristic 0 6= 2.

Suppose that A ∈ O(n). Then ATA = 1, so

(Av) · (Aw) = vTATAw = vTw = v · w.
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Conversely, (b) holds then vTATAw = vTw. If we let v and w run independently over an
orthonormal basis {ei} then eTi A

TAej = (ATA)ij = eTi ej = δij , so ATA = 1.

To see (a) and (d) are equivalent, note that if A = (e1 e2 · · · en) then (ATA)ij = ei · ej .

Out of interest, here are two ways of going straight from (c) to (a):

• If v =
∑
i xiei then |v|2 =

∑
i x

2
i and |Av|2 =

∑
j,k

∑
iAijAikxjxk. Thinking of these as

polynomials in the xn and comparing coefficients we get AijAik = δij so ATA = 1.

• vT v = |v|2 = |Av|2 = vTATAv so vT (ATA−1)v = 0. ATA−1 is symmetric and hence can
be diagonalised in some orthonormal basis ei. With respect to this basis, ei(ATA− 1)ei =
(ATA− 1)ii = 0 so the diagonal entries are all zero. Since this matrix is in diagonal form,
it must vanish. Hence ATA = 1.

Example 2.7. A rotation is defined by an orthogonal matrix, for example(
cos θ − sin θ
sin θ cos θ

)
is a rotation of R2 by θ.

Example 2.8. Let H be a hyperplane defined by x · n = c, |n| = 1. This hyperplane
contains the point cn and the vector n is normal to H . H contains 0 if and only if c = 0.
The reflection in H is the transformation

rH(x) = x− 2((x · n)− c)n.

Note that this sends x ∈ H to itself. If c = 0 then

rH(x) = x− 2(x · n)n

is linear in x. It is actually given by an orthogonal matrix 1 − 2nnT . This matrix sends
x ∈ H to x and λn to −λn. Note that(

1− 2nnT
)T (

1− 2nnT
)

= 1− 4nnT + 4nnTnnT = 1,

so this matrix is orthogonal. For example, if n = (0, 0, 1) and c = 0 then we get the matrix 1 0 0
0 1 0
0 0 −1

 .

Indeed, any reflection matrix has an eigenspace spanned by n with eigenvalue −1 and
an eigenspace H with eigenvalue 1. Therefore the determinant is −1.

Definition 2.9. The determinant map gives a homomorphism det : O(n) → {±1} since
det(ATA) = det(A)2 = 1 so det(A) = ±1 if A ∈ O(n). We call the kernel of this homomor-
phism SO(n), the special orthogonal group.
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2.3 2-dimensions

Proposition 2.10. Any orthogonal 2-by-2 matrix has the form(
cos θ − sin θ
sin θ cos θ

)
or
(

cos θ sin θ
sin θ − cos θ

)
.

Proof. If A =

(
a b
c d

)
is in O(2) then it has determinant ∆ = ±1. Therefore

A−1 = ∆

(
d −b
−c a

)
.

But since A is orthogonal, this is equal to AT , so we get:

a = ∆d, b = −∆c.

This means

A = ±
(
a −∆c
c ∆a

)
.

Since det(A) = ∆ = ∆(a2 + c2), we see that a2 + c2 = 1, so there is a unique θ ∈ [0, 2π) such that
a = cos θ, c = sin θ.

2.4 3-dimensions

Theorem 2.11. If A ∈ SO(3) then A has an eigenvector with eigenvalue 1. (Every rotation has
an axis). If A 6= 1 then this eigenvector is unique (up to scale) and the restriction of A to the
orthogonal complement of the axis is an element of SO(2).

Proof. We have det(A − 1) = det(AT − 1) = det(A−1 − 1) = det(−A−1(A − 1)) = −det(A − 1).
Therefore det(A−1) = 0 and henceA−1 has nontrivial kernel. If v is in this kernel thenAv = v.
The orthogonal complement to the space spanned by v is then preserved (as v · w = 0 implies
v ·Aw = Av ·Aw = v ·w = 0) so the restriction ofA to this plane is an orthogonal transformation
whose determinant is one. Hence A ∈ SO(2). If A 6= 1 then this element of SO(2) has no fixed
points in the plane, hence v is the only eigenvector (up to scale).

Let R(u, θ) denote the rotation by an angle θ anticlockwise around the positive u-axis.

Proposition 2.12. The group SO(3) is generated by {R(z, θ)}θ∈[0,2π) and R(y, π/2).

Proof. First we observe that R(x, θ) = R(y, π/2)R(z, θ)R(y,−π/2). Next we observe that, given
any positive axis u, there exist angles φ, ψ such that g := R(x, ψ)R(z, φ)u is the positive z-axis:
i.e. you can rotate any half-line around the z-axis until it comes into the yz-plane, then rotate
it around the x-axis (in the yz-plane) until it becomes the positive z-axis. Now g−1R(z, θ)g is
a rotation by θ around the u-axis (the group SO(3) is acting on positive axes and gu = z so
the stabiliser of u is the conjugate by g−1 of the stabiliser of z; the stabiliser of an axis is the
subgroup of rotations around that axis). Since any element of SO(3) is of the form R(u, θ) for
some u and θ, this proves the proposition.
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2.5 Classification

Lemma 2.13. Let T : Rn → Rn be an isometry with the following property: there exists a basis
{ei}ni=1 such that Tei = ei and T0 = 0. Then T = id.

Proof. Let x ∈ Rn be a point. We have

|x| = d(x, 0) = d(Tx, T0) = d(Tx, 0) = |Tx|

and

d(x, ei)
2 = |x− ei|2 = |x|2 + |ei|2 − 2x · ei|ei|2

= d(Tx, Tei)
2 = d(Tx, ei)

= |Tx− ei|2 = |Tx|2 + |ei|2 − 2Tx · ei|ei|2

so the components of x with respect to the basis ei are the same as the components of Tx with
respect to the basis ei. Therefore x = Tx for all x.

Lemma 2.14. If T is an isometry fixing 0 and {ei}ni=1 is an orthonormal basis, then {Tei}ni=1 is
also an orthonormal basis.

Proof. Let fi = Tei. We have
|fi| = |Tei| = |ei| = 1

and

fi · fj =
1

2

(
|fi|2 + |fj |2 − |fi − fj |2

)
=

1

2
(1 + 1− |ei − ej |2)

= 0

since |ei − ej | =
√

2.

Lemma 2.15. If {ei}ni=1 and {fi}ni=1 are two orthonormal bases then there exists a unique matrix
A ∈ O(n) such that fi = Aei (i.e. the action of O(n) on orthonormal bases is transitive).

Proof. Let A be the change of basis matrix taking ei to fi. We just need to prove that A ∈ O(n). We
have

δij = fi · fj = (Aei) · (Aej) = eTi A
TAej = (ATA)ij

so ATA = 1.

Corollary 2.16. Any isometry of Rn has the form Tx = Ax + b for some A ∈ O(n) and some
b ∈ Rn.

Proof. Let S := t−b ◦ T where tb(x) = x + b. Then S is an isometry which fixes 0. Let {ei}ni=1

be an orthonormal basis of Rn and let fi = Sei. By Lemma 2.14, fi is, again, an orthonormal
basis. By Lemma 2.15, there exists a unique orthogonal matrix A such that fi = Aei. Now the
transformation U = A−1 ◦ S is an isometry fixing 0 and satisfying Uei = ei. By Lemma 2.13,
U = id. Therefore Tx = Ax+ b.

Theorem 2.17. An arbitrary isometry of Rn is a composition of at most n+ 1 reflections.

Proof. We will use the reflections to find a composition r1 · · · rmT which fixes 0, e1, . . . , en. This will
then necessarily equal the identity by Lemma ??.
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First, using a reflection, we can assume that T fixes the origin. Namely, take the line connecting
0 to T0 and take the hyperplane H1 orthogonal to this situated halfway between 0 and T0. The
reflection rH1

in this hyperplane sends T0 to 0, so r1T fixes the origin.

Next, we will suppose that Tei = ei for i < k and prove that there exists a reflection r through
a hyperplane containing 0 such that rTei = ei for i ≤ k (and rT0 = 0).

If Tek = ek then do nothing.

If Tek = −ek then reflect in the hyperplane through 0 orthogonal to ek. Since this hyperplane
contains e1, . . . , ek−1, rHTei = ei for i < k. We also end up with rTek = ek.

Otherwise Tek and ek are linearly independent and span a plane π. Suppose ek and Tek make
an angle θ with one another and take the line in π which makes an angle θ/2 with both of them.
Take the hyperplane Hk spanned by this line and the codimension 2 subspace orthogonal to π.
The reflection rHk still fixes the origin and ei for i < k. It also sends Te1 to e1, so rH2T fixes 0
and e1, . . . , ek.
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3 Quaternions and rotations

3.1 The quaternion algebra

Definition 3.1. The quaternion algebra H is the 4-dimensional R-algebra with generators
i, j, k subject to the relations i2 = j2 = k2 = −1 and ij = k = −ji, jk = i = −kj,
ki = j = −ik. In other words, a quaternion is an expression

t+ ix+ jy + kz, t, x, y, z ∈ R

and multiplication is R-linear and subject to the above rules.

Example 3.2. We have (i+ j)(j − 2k) = ij + j2 − 2ik − 2jk = −1− 2i+ 2j + k.

Lemma 3.3. Quaternion multiplication is associative.

Proof. Lengthy computation: omitted. Note that it is not immediately obvious from the definition.
Indeed, the octonions (defined using similar relations) are not associative.

Definition 3.4. If q = t + ix + jy + kz is a quaternion then define its conjugate x̄ =
t− ix− jy − kz and its magnitude by |q|2 = qq̄.

Lemma 3.5. (a) If q = t+ ix+ jy + kz then |q|2 = t2 + x2 + y2 + z2.

(b) qq̄ = q̄q.

(c) If q 6= 0 then q−1 := 1
|q|2 q̄ satisfies q−1q = qq−1 = 1. Moreover, q−1 is the unique element

satisfying these conditions.

(d) q1q2 = q̄2q̄1.

(e) |q1q2| = |q1||q2| and |q−1| = |q|−1 if q 6= 0.

(f) If qm = tm + ixm + jym + kz +m, m = 1, 2, are quaternions then

Re(q̄1q2) = t1t2 + x1x2 + y1y2 + z1z2.

Proof. (a)

|q|2 = (t+ ix+ jy + kz)(t− ix− jy − kz)
= t2 + x2 + y2 + z2 + xt(i− i) + · · ·+ xy(−ij − ji) + · · ·
= t2 + x2 + y2 + z2.

(b) Both are equal to t2 + x2 + y2 + z2 by part (a).

(c) The fact that qq−1 = 1 is clear by the definition of |q|. The fact that additionally q−1q = 1
is clear from (b). To see uniqueness, observe that if a and b are both inverses of q then
aq = bq so a = aqa = bqa = b.

(d) We know by (c) that q1q2 is the unique solution to q1q2q1q2 = 1 = q1q2q1q2. But q̄2q̄1q1q2 =
1, hence the result.
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(e) We have
|q1q2|2 = q1q2q1q2 = q1q2q̄1q̄2 = |q1|2|q2|2

and 1 = |qq−1| = |q||q−1|.

(f) This is an exercise.

Lemma 3.6. If q 6= 0 then there exists a unique q−1 = q̄/|q|2 such that qq−1 = q−1q = 1.

Proof. We have qq̄/|q|2 = q̄q/|q|2 = 1.

3.2 Quaternions and rotations in 3D

Lemma 3.7. Let G = {q ∈ H : |q| = 1} denote the set of unit quaternions. Then G is a group
under quaternion multiplication. The inverse of a unit quaternion q is q̄. Note that, topologically,

G = {(t, x, y, z) ∈ R4 : t2 + x2 + y2 + z2 = 1}

is a 3-sphere in 4-space.

Proof. Clearly, if q ∈ G then q−1 = q̄ ∈ G. If q1q2 ∈ G then

|q1q2|2 = q1q2q̄2q̄1 = 1

Finally, 1 ∈ G is the identity element.

Definition 3.8. There is an action of G on H defined as follows

ρ(g, x) = gxg−1.

Lemma 3.9. The conjugation action of G on H is by isometries fixing 0, in fact by orthogonal
transformations of H with respect to the norm |q|2. The subspace Im(H) = {ix + jy + kz :
x, y, z ∈ R} of pure imaginary quaternions is preserved by this action so we get an isometric
action of G on R3 ∼= Im(H) fixing the origin.

Proof. The action is linear, that is g(λx+µy)g−1 = λgxg−1 +µgyg−1 (λ, µ ∈ R). We have |gxg−1| =
|g||x|g−1| = |x| as |g| = |g−1| = 1. Therefore x 7→ gxg−1 is a linear map preserving magnitudes
of vectors, which is an orthogonal transformation. To see that the pure imaginary quaternions
are preserved, note that x ∈ Im(H) if and only if x̄ = −x, and that gxg−1 = ḡ−1x̄ḡ = gx̄g−1.
Therefore if x ∈ Im(H) then gxg−1 = gx̄g−1 = gxg−1, so gxg−1 ∈ Im(H) too.

An isometric action of G on R3 fixing the origin is the same as a homomorphism π : G→
Isom(Rn) such that π(g) = Ax for some orthogonal matrix A, in other words, we get a
homomorphism G→ O(3).

Example 3.10. (a) Consider the conjugation action of i on imaginary quaternions. We
have i−1 = −i, so

i(ix+ jy + kz)(−i) = ix+ (−iji)y + (−iki)z = ix− jy − kz

so i acts as a rotation by π radians around the x-axis.
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(b) Consider the conjugation action of eiθ := cos θ + i sin θ on imaginary quaternions.
Since eiθ commutes with ix, we have

(cos θ + i sin θ)(ix+ jy + kz)(cos θ − i sin θ) = ix+ eiθje−iθy + eiθke−iθz.

Now

(cos θ + i sin θ)j(cos θ − i sin θ) = j cos2 θ + (ij − ji) sin θ cos θ − j sin2 θ

= j cos 2θ + k sin 2θ

because ij − ji = 2k. Therefore the action of eiθ is a rotation by 2θ radians around
the x-axis.

Lemma 3.11. Let q be a unit quaternion not equal to ±1. Then there exists a unique θ ∈ R/2πZ
and u ∈ Im(H), |u| = 1, such that q = cos θ + u sin θ.

Proof. The quaternion r = 1
2 (q+ q̄) is real, i.e. r̄ = r. The quaternion h = 1

2 (q− q̄) is pure imaginary.
The sum r + h equals q. We have 1 = |r + h|2 = |r|2 + |h|2, so there exists a unique θ ∈ R/2πZ
such that r = cos θ, |h| = sin θ. We can then write h = u sin θ where u = h/|h|. This gives the
required decomposition.

Lemma 3.12. Suppose that um = ixm + jym + kzm, m = 1, 2, are pure imaginary quaternions.
Then

u1u2 = −u1 · u2 + u1 × u2,

that is the real part of u1u2 is −(x1x2 + y1y2 + z1z2) and the imaginary part is i(y1z2 − y2z1) +
j(z1x2 − z2x1) + k(x1y2 − x2y1).

Proof. Exercise!

Corollary 3.13. Let u and v be orthogonal unit imaginary quaternions. Then u, v, uv is an or-
thonormal basis for the imaginary quaternions. Any orthonormal basis of pure imaginary quater-
nions u, v, w satisfies the quaternion relations

u2 = v2 = w2 = −1, uv = w = −vu, vw = u = −wv, wu = v = −uw.

Proof. The quaternion w is pure imaginary since u · v = 0 and corresponds to the cross-product of
u and v.

Theorem 3.14. Let u be a unit pure imaginary quaternion and q = cos θ + u sin θ. Then the
action of q on H is a rotation by 2θ around the axis u.

Proof. We have quq−1 = u because q and u commute. Suppose that v is a unit pure imaginary
quaternion orthogonal to u and define w = uv. We know that uvu = wu = v, uwu = uv = w,
uv − vu = 2w and uw − wu = −2v, so we have

qvq−1 = (cos θ + u sin θ)v(cos θ − u sin θ)

= cos2 θv − uvu sin2 θ + sin θ cos θ(uv − vu)

= cos(2θ)v + sin(2θ)w

qwq−1 = (cos θ + u sin θ)w(cos θ − u sin θ)

= cos2 θw − uwu sin2 θ + sin θ cos θ(uw − wu)

= cos(2θ)w − sin(2θ)v.

Therefore q acts by rotating an angle 2θ radians in the (v, w)-plane, fixing the u-axis.
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Corollary 3.15. The homomorphism π : G → O(3) lands in the component SO(3) of rotations
and is surjective onto that component. The kernel of π consists of ±1.

Proof. The only thing we have not checked is the kernel. Suppose that q = cos θ + u sin θ is in the
kernel of π. Then if θ 6∈ πZ, q acts as a rotation by a nontrivial angle. If θ ∈ πZ then cos θ = ±1
and sin θ = 0. Therefore kerπ = {±1}.

3.3 * Rotations in 4D

Definition 3.16. We define an action of G×G on H by

ρ((g, h), x) = gxh−1.

This is an action by isometries (exercise!).

Remark 3.17. This action gives a homomorphism φ : G × G → Isom(R4) which lands in
the subgroup O(4) of isometries fixing the origin.

In fact,

Theorem 3.18. The homomorphism φ maps G × G surjectively onto SO(4) ⊂ O(4) and has
kernel precisely {(1, 1), (−1,−1)}.
Proof: Highly non-examinable. The claim about the kernel is an easy exercise.

Claim: We always land in SO(4).

(a) Note that det : O(4) → {±1} depends continuously on the entries of a matrix in O(4).
Also, the matrix entries of φ(g, h) depend continuously (in fact, bilinearly) on the quater-
nions g, h.

(b) Note that G is a connected space: any two unit quaternions p and q can be connected by
a continuous path of unit quaternions, i.e. γ : [0, 1] → G such that γ(0) = p, γ(1) = q. To
see this, connect p and q by a straight line ` in H. Pick a 2-plane containing 0 and ` (there
is a unique choice if ` does not pass through 0). This 2-plane intersects G in a unit circle
containing p and q and either of the two arcs of this circle is a path in G between p and q.

(c) G×G is a path-connected space: any two points (p1, p2), (q1, q2) inG×G can be connected
by a continuous path in G×G. To see this, let γ1(t) and γ2(t) be the paths in G connecting
p1, q1 and p2, q2 respectively. Then (γ1(t), γ2(t)) is the required path in G×G.

(d) Finally, det ◦φ ◦ γ : [0, 1] → {±1} is a continuous map because it is a composition of con-
tinuous maps. Since {1} is an open subset of {±1}, the preimage of {1} is an open subset
in [0, 1]. Since {−1} is an open subset of {±1}, the preimage of {−1} is an open subset
in [0, 1]. But [0, 1] cannot be partitioned into two open subsets because it is connected.
Therefore det ◦φ ◦ γ is constant. Since (1, 1) ∈ G × G has detφ(1, 1) = 1 we see that
det ◦φ(G×G) = {1}.

Surjectivity is a little harder to prove. The easiest proof I know uses some results from the theory
of Lie groups (see my 4th year course!): you prove that (a) the derivative at the identity of the map
φ is surjective, (b) this implies that an open neighbourhood of the identity maps surjectively
onto an open neighbourhood of the identity (this is called the inverse function theorem), (c)
finally, you use the fact that a connected Lie group (like SO(4)) is generated (as a group) by a
neighbourhood of the identity, so if you hit a neighbourhood of the identity then you hit the
whole group.
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4 Spherical geometry

Definition 4.1. The n-dimensional sphere is the subset

Sn := {x ∈ Rn+1 : |x| = 1}.

Definition 4.2. A great circle in Sn is the intersection of a 2-plane R2 ⊂ Rn+1 through 0
with Sn.

Lemma 4.3. Let a be a segment of a great circle which subtends an angle of θ radians. Then the
length of a is θ. Suppose that the endpoints of a are x, y ∈ Sn. Then

θ ∈ cos−1(x · y).

Proof. Actually, calling the first part a lemma is disingenuous. It is really the definition of angle as
measured in radians. Note that when the angle subtended equals 2π, the length of the segment
is equal to the circumference of the unit circle in R2, i.e. 2π. To get the formula, we note that
x · y = |x||y| cos θ and |x| = |y| = 1.

When we write θ ∈ cos−1(x · y) we are recognising the fact that cos−1 is a multivalued
function. For example, if x = (1, 0, 0) and y = (0, 1, 0) then the great circle consists of
points {(a, b, 0) : a2 + b2 = 1} and x, y divide this into two arcs with lengths π/2 and
3π/2.

Definition 4.4. Given x, y ∈ S2 define

d(x, y) = cos−1(x · y)

to be the smallest positive value of cos−1(x · y).

Remark 4.5. Note that d(x, y) ≤ π with equality if and only if x · y = −1, which holds if
and only if x = −y. In this case we say that x and y are antipodal.

Lemma 4.6. Through any two non-antipodal points of Sn there passes a unique great circle.

Proof. Two points x and y on Sn are linearly dependent if and only if x = ±y. Therefore two non-
antipodal points are linearly independent and hence span a 2-plane. The great circle in question
is cut out by this 2-plane. Conversely, if a great circle passes through x and y then it is cut out
by the 2-plane spanned by these two vectors, which specifies the 2-plane uniquely.

Later, we will see the following:

Theorem 4.7. Let x, y ∈ Sn and consider all continuous paths γ : [0, 1] → Rn+1 such that
γ([0, 1]) ⊂ Sn. Then `(γ) ≥ cos−1(x · y) with equality if and only if γ is a segment of a great
circle. We will call a segment of a great circle a spherical line.

4.1 Spherical trigonometry

In this section, we will only consider geometry on S2.
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Definition 4.8. A spherical triangle on S2 is a triple of spherical lines of length < π
connecting points A,B,C ∈ S2. Let a, b, c denote the lengths of the spherical lines
BC,CA,AB respectively. Each spherical line is a segment of a great circle Π ∩ S2 where
Π is a 2-plane. We write Πa,Πb,Πc for the planes cutting out BC,CA,AB respectively.

Lemma 4.9. The unit normals to Πa,Πb,Πc pointing out of the triangle are

na = − 1

sin a
B × C

nb = − 1

sin b
C × A

nc = − 1

sin c
A×B

respectively.

Proof. Recall that X × Y is orthogonal to the plane spanned by X and Y . It suffices to check that
|B × C| = sin a, etc. But |B × C| = |B||C| sin θ = sin θ where θ is the angle between B and C.
By definition, the angle between B and C is angle subtended by the spherical line, which is the
length of the spherical line, in this case a.

Definition 4.10. Let α, β, γ denote the internal angles of the spherical triangle at the ver-
tices A,B,C respectively. We define these in the following way: let ΠA be the plane
orthogonal to A; the two planes Πb and Πc cut out the spherical lines passing through A
and they intersect ΠA in a pair of lines `b and `c meeting at the origin of ΠA. The angle α
is then the angle between `b and `c.

Lemma 4.11. We have

− cos(α) = nb · nc,
− cos(β) = nc · na,
− cos(γ) = na · nb

Proof. The vectors nb and nc are orthogonal to `b and `c and point out from the triangle, so the angle
between nb and nc is equal to α + π/2 + π/2 = α + π. Therefore nb · nc = |nb||nc| cos(α + π) =
− cosα.

Recall the vector triple product identities: a · (b × c) = b · (c × a) = c · (a × b) and
a× (b× c) = (a · c)b− (a · b)c.

Theorem 4.12 (Spherical cosine rule).

sin a sin b cos γ = cos c+ cos a cos b.

Proof. We have − cos γ = na · nb = 1
sin a sin b (B × C) · (C ×A). Now

(B × C) · (C ×A) = (C × (C ×A)) ·B
= (C(C ·A)−A(C · C)) ·B
= (C ·B)(C ·A)− (A ·B) as |C| = 1

= cos a cos b− cos c
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as A ·B = |A||B| cos c = cos c, etc. Therefore

cos c− cos a cos b = sin a sin b cos γ.

Corollary 4.13 (Spherical Pythagoras). For a spherical triangle where γ = π/2 we have
cos a cos b = cos c.

It is an exercise to see that for very small triangles this approximates the usual Pythagoras
theorem.

Theorem 4.14 (Spherical sine rule).

sin a

sinα
=

sin b

sin β
=

sin c

sin γ
.

Proof. We will prove that sin γ sin a sin b equals the scalar triple product B · (C × A). The identity
will follow from the cyclic symmetry of the scalar triple product.

First, we have na × nb = C sin γ. To see this, we note that C is contained in the intersection
of Πa and Πb and is therefore orthogonal to both na and nb, so na × nb is a multiple of C. The
right-hand rule tells us that na × nb points in the positive C direction. The length of na × nb is
the magnitude of the sine of the angle between them, which is γ + π. Since sin(γ + π) = − sin γ
and sinγ > 0 we get na × nb = C sin γ.

Now

na × nb sin a sin b = (B × C)× (C ×A)

= ((B × C) ·A)C − ((B × C) · C)A

= B · (C ×A)C

so we see that
B · (C ×A) = sin γ sin a sin b.

Corollary 4.15 (Triangle inequality). If x, y, z are points on S2 then

d(x, y) ≤ d(x, z) + d(z, y)

with equality if and only if z lies on the shortest spherical line segment through x and y.

Proof. If two of the points coincide then it is obvious so we will assume that the three points are
distinct.

First, suppose that c = d(x, y), a = d(y, z), b = d(x, z) are all strictly less than π. Then
xyz is a spherical triangle; let γ denote the internal angle at z. We have cos c = cos a cos b +
sin a sin b cos γ ≥ cos a cos b − sin a sin b = cos(a + b) with equality if and only if cos γ = −1,
which happens if and only if γ = π. Therefore

c ≤ a+ b

with equality if and only if γ = π, i.e. if and only if C lies on the spherical line between A and
B.

Next we must check it in the case where some of the points are antipodal (i.e. one of a, b, c
equals π). Suppose x and y are antipodal. Then there is a unique 2-plane through x, y, z so
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all three points lie on a great circle and we have d(x, y) = d(x, z) + d(z, y). Suppose x and z
are antipodal. Then d(x, z) = π and d(x, y) < π, so the triangle inequality holds. A similar
argument deals with the case when y and z are antipodal.

Recall (Analysis 4) that a metric space is a set X with a distance function d(x, y) such that
d(x, y) = d(y, x), d(x, y) ≥ 0 with equality if and only if x = y and d(x, y) ≤ d(x, z)+d(z, y)
for all x, y, z. Now we know that the sphere equipped with the spherical distance is a
metric space.

4.2 Area

Theorem 4.16 (Angle surplus formula/Gauss-Bonnet theorem). If ∆ is a spherical triangle
with vertices A,B,C and angles α, β, γ then

area(∆) = α + β + γ − π.

Proof. Let Lθ(p) denote the double lune with internal angle θ, that is the region bounded by two
great circles which meet at the points p and −p at an angle θ. The triangle ∆ is a component of
the intersection Lα(A) ∩ Lβ(B) ∩ Lγ(C). The other component is −∆. Therefore area(Lα(A)) +
area(Lβ(B)) + area(Lγ(C)) = 4π + 4 area(∆) because the union of the double lunes cover the
whole sphere with multiplicity one except that they cover ∆ and −∆ with multiplicity three, so
when summing their areas we get the area of the whole sphere plus an overcount of area(∆)
four times (because it is counted six times in total). Now area(Lθ(p)) = 2θ

2π4π = 4πθ because the
double lune subtends a fraction 2θ/2π of the whole sphere. Therefore

4π(α+ β + γ)− 4π = 4 area(∆).

Corollary 4.17. Let P be a spherical n-gon with vertices p1, . . . , pn connected by spherical lines,
meeting at internal angles α1, . . . , αn. Suppose that P is convex (i.e. for any two points in P the
spherical line connecting them is also contained in P ). Then

area(P ) =
n∑
i=1

αi − (n− 2)π.

Proof. Subdivide P into n− 2 triangles by connecting p1 to p3, p4, . . . , pn−1 (we are using convexity
here). The internal angles of P are given by the sums of the internal angles of all constituent
triangles in the subdivision; the area of P is the sum of areas of triangles in the subdivision.
Therefore, by the theorem,

area(P ) =

n∑
i=1

αi − π − · · · − π

subtracting π for each triangle in the subdivision.

Corollary 4.18 (Euler’s formula). Suppose that S2 is subdivided into convex spherical poly-
gons. Suppose that in total there are V vertices, E edges and F polygonal faces. Then

V − E + F = 2.
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4.3 Isometries

Definition 4.19. An isometry of S2 is a map t : S2 → S2 such that

d(tx, ty) = d(x, y)

for all x, y ∈ S2. (Here d(x, y) denotes the spherical distance).

Theorem 4.20. The isometries of S2 are precisely the orthogonal transformations of R3 fixing 0,
restricted to S2.

Proof. Let t : S2 → S2 be an isometry. Define T : R3 → R3 by T0 = 0 and Tx = |x|tx̂ where
x̂ = x/|x| for x 6= 0. We will show that T is an isometry. Since T clearly fixes 0, it then follows
from the classification of isometries of R3 that Tx = Ax for some A ∈ O(3).

To see that T is an isometry, we compute

|Tx− Ty|2 = |Tx|2 + |Ty|2 − 2Tx · Ty
= |x|2|tx̂|2 + |y|2|tŷ|2 − 2|x||y|tx̂ · tŷ
= |x|2 + |y|2 − 2|x||y| cos(d(tx̂, tŷ))

= |x|2 + |y|2 − 2|x||y| cos(d(x̂, ŷ))

= |x|2 + |y|2 − 2|x||y|x̂ · ŷ
= |x− y|2

where we have used tx̂, tŷ ∈ S2, d(a, b) = cos−1(a · b) and d(ta, tb) = d(a, b) for a, b ∈ S2.

4.4 Geodesics

Now, as promised, we show that a spherical line is the shortest path between two points
on the sphere.

Definition 4.21. Let Γ: [0, 1]→ R3 be a continuous function. Take a dissection T of [0, 1]:
0 = t0 < t1 < · · · < tN = 1 and let sT =

∑N−1
i=0 |Γ(ti)− Γ(ti+1)|. The length of Γ is defined

to be `(Γ) := supT sT (could be infinite).

Lemma 4.22. Suppose that Γ([0, 1]) ⊂ S2. Given a dissection, T , we define

s′T :=
N−1∑
i=0

d(Γ(ti),Γ(ti+1))

and define `′(Γ) = supT s
′
T . Then `(Γ) = `′(Γ).

Proof. Since a spherical line between two points is longer than the Euclidean line in the ambient
R3, we have sT ≤ s′T .

Note that if U is a finer dissection than T then the (usual Euclidean) triangle inequality implies
that sT < sU . Hence, when bounding sT from below we may assume that the dissection is
arbitrary fine.

For any ε and any dissection T , there exists a refinement such that |Γ(ti) − Γ(ti+1)| < ε for all
i. This is a consequence of the fact that Γ is a continuous function on a closed and bounded
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interval, so it is uniformly continuous, hence for any ε there exists a δ depending only on ε (not
on t) such that |Γ(t)− Γ(t+ δ)| < ε for all t.

Note that if P,Q lie on S2 at a spherical distance θ from one another then |P −Q| = 2 sin(θ/2).
Since 2 sin(θ/2)/θ → 1 as θ → 0, for any φ we have 1 − φ < 2 sin(θ/2)

θ for sufficiently small θ.
Therefore for a sufficiently fine dissection:

s′T ≤
1

1− φ
sT .

Overall, we have

sup
T
s′T ≤

1

1− φ
sup
T
sT ≤

1

1− φ
sup
T
s′T

for all φ. Hence supT s
′
T = supT sT .

Theorem 4.23. Suppose that Γ([0, 1]) ⊂ S2. Then `(Γ) ≥ d(Γ(0),Γ(1)) with equality if and
only if Γ([0, 1]) is the shortest spherical line between Γ(0) and Γ(1). We say that the shortest
spherical line is a geodesic.

Proof. This is immediate from the triangle inequality and the fact that `(Γ) = `′(Γ): if Γ(t) does
not lie on this spherical line for some t ∈ (0, 1) then the dissection T = {0 < t < 1} gives
s′T = d(Γ(0),Γ(t)) + d(Γ(t),Γ(1)) > d(Γ(0),Γ(1)), so `(Γ) = `′(Γ) ≥ s′T > d(Γ(0),Γ(1)).
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5 Möbius geometry

5.1 Stereographic projection

Definition 5.1. We define a map S : S2 \ {N} → C where N is the north pole as follows.
Take a point X = (x1, x2, x3) ∈ S2 \ {N} ⊂ R3 and consider the unique straight line
passing through N and X . Since x3 < 1 this line cannot be parallel to the {x3 = 0}-plane,
so it must intersect the {x3 = 0}-plane at a unique point (x, y). Define S(x1, x2, x3) =
x + iy. We call S the stereographic projection map. We extend S to the whole of S2 by
adding in a point at infinity of C and defining S(N) =∞.

More explicitly,

Lemma 5.2.
S(x1, x2, x3) =

x2 + ix3

1− x3

.

Proof. Here are two proofs:

(a) The line throughN = (0, 0, 1) andX = (x1, x2, x3) is tX+(1−t)N = (tx1, tx2, (1−t)+tx3).
This hits the (?, ?, 0)-plane when tx3 + 1 − t = 0, i.e. t = 1

1−x3
, at which point (x, y) =

(tx1, tx2) =
(

x1

1−x3
, x2

1−x3

)
.

(b) Consider the triangleONP where P = (x, y, 0) is the projection ofX . Consider the similar
triangle QNX ⊂ ONP where Q = (0, 0, x3). The height (ON ) of ONP is 1; the height
(QN ) ofQNX is 1−x3 thereforeONP = 1

1−x3
QNX . In particular, the x and y coordinates

of P are just the x and y coordinates of X rescaled by 1/(1− x3).

Lemma 5.3. There is an inverse map π : C ∪ {∞} → S2 given by π(∞) = N and

π(z) =

(
2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
, where z = x+ iy.

Proof. The line through (0, 0, 1) and (x, y, 0) is (tx, ty, 1− t) which intersects S2 when

1 = t2x2 + t2y2 + (1− t)2 = t2|z|2 + (1− t)2,

that is when t2(|z|2 + 1)− 2t = 0, or t = 2
1+|z|2 . Since 1− 2

1+|z|2 = |z|2−1
|z|2+1 , this gives

π(z) =

(
2x

1 + |z|2
,

2y

1 + |z|2
,
|z|2 − 1

|z|2 + 1

)
.

Example 5.4. If |z| = 1 then π(z) = (x, y, 0), so the unit circle is the stereographic projec-
tion of the circle {(x, y, 0) : x2 + y2 = 1}. If z = 0 then π(z) = (0, 0,−1), so the south pole
stereographically projects to the origin.
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Example 5.5. Consider the antipode −X := (−x1,−x2,−x3) of X = (x1, x2, x3). We have
S(−X) = −1

z̄
. To see this, observe that

S(−x1,−x2,−x3) =
−x1 − ix2

1 + x3

− 1

S(x1, x2, x3)
= − 1− x3

x1 − ix2

= − 1− x3

x2
1 + x2

2

(x1 + ix2)

=
1− x3

1− x2
3

(−x1 − ix2)

=
−x1 − ix2

1 + x3

.

Definition 5.6. The set C∞ := C ∪∞ is called the Riemann sphere.

Remark 5.7. Stereographic projection tells us it is a sphere. The name Riemann indicates
that it is a Riemann surface, a natural domain for doing complex analysis. This is not so
surprising on the big coordinate chart C, but what about near ∞? We can introduce a
coordinate w ∈ C on C∞ \ {0} such that w = 0 corresponds to the point ∞. All we
need to do is explain how these two coordinate charts are related on the overlap C \ {0},
where we now have two coordinates z and w. If we choose the coordinate w = 1/z
then it is clear that w = 0 corresponds to the point at infinity. Moreover, this coordinate
change z 7→ 1/z is holomorphic where it is defined, so holomorphic functions of z will
also be holomorphic functions of w and vice versa. It is this sense in which we can do
complex analysis globally on the Riemann sphere, by covering it with complex charts
with holomorphic transition maps.

5.2 Möbius transformations

Definition 5.8. A Möbius (or fractional linear) transformation of C ∪ {∞} is a map C ∪
{∞} → C ∪ {∞} which has the form z 7→ az+b

cz+d
with ad− bc 6= 0 (sending −d/c to∞ and

∞ to a/b). Write M for the group of all Möbius transformations.

We write

GL(2,C) =

{(
a b
c d

)
: a, b, c, d ∈ C, ad− bc 6= 0

}
.

Lemma 5.9. There is a homomorphism

GL(2,C)→M,

(
a b
c d

)
7→
(
z 7→ az + b

cz + d

)
.

The kernel consists of diagonal matrices
(
a 0
0 a

)
, a 6= 0.

Proof. Exercise.
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The Möbius group is therefore isomorphic to GL(2,C)/C∗. We call this the projective
linear group PGL(2,C).

Example 5.10. 1. Translation z 7→ z + a. This fixes∞.

2. Rotation z 7→ eiθz and more generally homothety/rescaling z 7→ λz, λ 6= 0. This
fixes 0 and∞.

3. Reciprocation z 7→ 1/z. This switches 0 and∞.

Theorem 5.11. 1. The Möbius group is generated by translations z 7→ z + a, homotheties
z 7→ λz and the map z 7→ 1/z

2. Möbius transformations send straight lines and circles to straight lines and circles.

3. Möbius transformations are conformal, that is if γ1 and γ2 are two curves meeting at a point
p with an angle θ then Aγ1 and Aγ2 meet at Ap with an angle θ.

Proof. The generation and conformality results are exercises. To prove the other two claims, it
suffices to check that they hold for generators. They are clear for translations and homotheties,
so it suffices to check them for the reciprocal map z 7→ 1/z.

Sending circles to circles/lines: Take a circle which does not pass through 0. If t 7→ a + beit is
a parametrisation of this circle (a ∈ C, b ∈ R>0, |a| 6= b) then we can rotate (sending straight
lines/circles to straight lines/circles and preserving angles) about the origin to assume that a ∈
R≥0. Then the circle intersects the real axis at a− b and a+ b. The centre of the circle 1/(a+ beit)

is therefore going to be halfway between 1/(a− b) and 1/(a+ b), i.e. at 1
2

(
1
a−b + 1

a+b

)
= a

a2−b2 .
So we need to check that

r(t) :=

∣∣∣∣ 1

a+ beit
− a

a2 − b2

∣∣∣∣
is constant. Computing, we get

r(t) =

∣∣∣∣ −ba2 − b2
b+ aeit

a+ beit

∣∣∣∣ =

∣∣∣∣ b

a2 − b2
a2 + b2 + 2ab cos t

a2 + b2 + 2ab cos t

∣∣∣∣ =
b

|a2 − b2|
.

Hence the image of the circle is a circle.

If the circle passed through 0 then it would have the form a(1 + eit) (after rotating to put its
origin on the positive real axis). The reciprocal is then 1

2a

(
1− i sin t

1+cos t

)
which is a (strangely

parametrised) vertical line at x = 1
2a .

Sending lines to circles/lines: We can rotate so that the line is vertical and intersects the real axis
at 0 or at a positive value. In the first case it is parametrised by it so its reciprocal is parametrised
by −i/t, so the imaginary axis is sent to itself. In the second case, we have seen that the vertical
line through 1

2a is the image under reciprocation of a circle. Since the reciprocal map is its own
inverse, the reciprocal map applied to a vertical line gives a circle.

Theorem 5.12. Given three distinct points z0, z1, z∞ in C ∪ {∞} there exists a unique Möbius
transformation τ such that τzk = k.

Proof. The following τ certainly works:

z 7→ z − z0

z − z∞
z1 − z∞
z1 − z0

.

There is therefore a transitive action of the Möbius group on ordered triples of distinct points in
C ∪ {∞}. We want to show that the stabiliser is trivial - if there were τ and τ ′ such that τzk = k
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and τ ′zk = k then τ−1τ ′zk = zk so if we can show that the stabiliser of (z0, z1, z∞) consists of
the identity then we get τ = τ ′. As the action is transitive, any two stabilisers are conjugate,
so it suffices to show that the stabiliser of (0, 1,∞) is trivial. So suppose τ(0) = 0, τ(1) = 1,
τ(∞) =∞. Then

0 =
a0 + b

c0 + d
= b/d, ∞ =

a

c

so c = b = 0 and 1 = a/d so a = d. Therefore τ(z) = az/a = z and τ is the identity.

5.3 Möbius transformations and stereographic projection

Definition 5.13. We get an action A : PGL(2,C) → Maps(S2, S2) of the Möbius group
PGL(2,C) on S2:

A(g)x = π(g(S(x))),

i.e. to find A(g)x, you stereographically project down to C, you apply a Möbius transfor-
mation, then you stereographically project back up to S2.

Definition 5.14. The subgroup SU(2) ⊂ GL(2,C) is the group of special unitary matri-

ces: A† = A−1, detA = 1. A matrix
(
a b
c d

)
is in SU(2) if and only if is has the form(

a b
−b̄ ā

)
(exercise). We write PSU(2) for the subgroup PGL(2,C), of Möbius transfor-

mations z 7→ az+b
−b̄z+ā .

Theorem 5.15. The action of PSU(2) on S2 is by rotations.

Proof. 1. The Möbius transformation z 7→ eiθz (a = eiθ/2, b = 0) acts as a rotation around the
x3-axis:

π(eiθS(x1, x2, x3)) = π

(
eiθ

x1 + ix2

1− x3

)
= π

(
x1 cos θ − x2 sin θ + i(x1 sin θ + x2 cos θ)

1− x3

)
= (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ, x3).

2. The Möbius transformation z 7→ z−1
z+1 (a = −b = 1/

√
2) acts as R(y, π/2).

3. These rotations generate SO(3), so we get the following: for any rotation R there exists a
Möbius transformation (not necessarily unique) such that A(g)x = R(x).

4. Now let g ∈ PSU(2). If g(0) = 0 then gz = eiθz and we have already seen that A(g)
is R(z, 2θ). Suppose therefore that g(0) = w 6= 0. Pick a rotation R such that Rπ(w) =
(0, 0,−1) = π(0) and a Möbius transformation h ∈ PSU(2) such that A(h)x = Rx. Then
hw = 0 and hence hg(0) = 0, so hgz = eiθz for some θ. Therefore gz = h−1eiθz and so
A(g) is a composition of A(eiθ) and A(h), both of which are rotations.

Remark 5.16. The rotation action of SU(2) here is the same as the rotation action of the
unit quaternions G via the isomorphism G ∼= SU(2) proved on Sheet 3.
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Lemma 5.17. If γ is a straight line in C then π(γ) is a circle in S2 passing through the north
pole. Conversely, if C is a circle on S2 which passes through the north pole then S(C) is a straight
line (passing through∞) in C ∪ {∞}.
Proof. If ` is a line in the {x3 = 0}-plane, consider the unique 2-plane containing the north pole N

and the line `. This intersects S2 in a circle which passes through N . It also contains the lines
we use to define the stereographic projection, therefore this circle is precisely the set of points
which stereographically project to `. Conversely, a circle on S2 passing through N is cut out
by a 2-plane passing through N , which is not parallel to {x3 = 0} and therefore intersects the
{x3 = 0}-plane in a line `.

Theorem 5.18. A curve γ ⊂ C ∪ {∞} is a circle (disjoint from ∞) or straight line (passing
through∞) if and only if π(γ) is a circle on S2 (respectively disjoint from N or passing through
N ).

Proof. Here are two proofs:

1. If γ is a straight line this equivalence follows from the lemma. Suppose that γ is a circle
and let C = π(γ). Apply a rotation R of S2 so that C passes through the north pole.
By Theorem 5.15, there exists a Möbius map τ ∈ PSU(2) such that S(R(π(γ))) = τ(γ),
so R(C) = π(τ(γ)). But γ is a circle, τ(γ) is a circle or straight line, and since the north
pole is in π(τ(γ)), γ must be a straight line. Therefore, by the lemma, R(C) = πτ(γ)
is a circle passing through the north pole. Rotations certainly send circles to circles, so
C = R−1(π(τ(γ))) is also a circle. Conversely, if C is a circle with projection γ = S(C),
you can rotate it to get a circle R(C) passing through the north pole, whose projection is
then a straight line γ′ = S(R(C)). If τ = S ◦ R ◦ π then S(R(C)) = τ(γ) = γ′ and hence
γ = τ−1(γ′) is a circle or straight line.

2. A circle in the plane is given by an equation (x−p)2+(y−q)2 = r2 which we can rearrange
as x2 + y2 − 2(px+ qy) + s = 0 where s = p2 + q2 − r2. Equivalently:

1

2
(x2 + y2 − 1)(1− s) +

1

2
(x2 + y2 − 1)(1 + s)− 2(px+ qy) = 0.

Dividing by x2 + y2 + 1 gives

1− s
2

x2 + y2 − 1

x2 + y2 + 1
+

1 + s

2
= p

2x

x2 + y2 + 1
+ q

2y

x2 + y2 + 1

which is now an inhomogeneous linear equation in the coordinates (x1, x2, x3) = π(x+iy).
Therefore π applied to this circle gives the intersection of S2 with the plane cut out by this
inhomogeneous linear equation, which is a circle.

Corollary 5.19. The Möbius group acts transitively on circles.

Proof. Three distinct points on S2 determine a unique 2-plane (at most two can be collinear!) which
cuts S2 in a circle; any circle on S2 is therefore determined by three points. The Möbius group
acts transitively on ordered triples of points, so to get a Möbius transformation taking C1 to C2,
fix ordered triples of points t1 ⊂ C1 and t2 ⊂ C2 and use the unique Möbius transformation
τ which sends t1 to t2. Since Möbius transformations send circles to circles, τ(C1) is a circle
passing through t2 and is therefore C2.

Theorem 5.20. If two great circles γ1, γ2 in S2 meet at a spherical angle θ then S(γ1) and S(γ2)
also meet at an angle θ. In other words, stereographic projection is a conformal map.
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Proof. Apply a rotation R so that Rγ1 and Rγ2 meet at the north pole. Let Rγk = Πk ∩ S2, k = 1, 2.
Then the stereographic projection of Rγk is `k = Πk ∩ {x3 = 0}. The angle between `1 and `2
equals the angle between Π1 and Π2, which equals the spherical angle between Rγ1 and Rγ2 by
definition. Now the γk = R−1Rγk meet at the same spherical angle because rotations preserve
angles (they are isometries). Moreover, the circles S(γk) = S(R−1Rγk) = R−1S(Rγk) = R−1`k
also meet at this angle because R−1 is a Möbius transformation, and Möbius transformations
are conformal.

5.4 Cross-ratios

So far we have only really seen how flabby Möbius geometry is. Unlike in Euclidean
geometry, any three points can be mapped to any other three points and there is no
notion of distance between points. However, Möbius geometry suddenly becomes rigid
beyond this point and the Möbius group does not act 4-transitively. To measure this, we
introduce the cross-ratio.

Definition 5.21. Given four distinct points z1, z2, z3, z4 ∈ C ∪∞, define the cross-ratio

[z1, z2; z3, z4] :=
(z1 − z3)(z2 − z3)

(z2 − z4)(z1 − z4)
.

Equivalently, the cross-ratio is σ(z3) where σ is the unique Möbius transformation such
that σ(z1) = 0, σ(z2) = ∞, σ(z4) = 1 (compare with the formula for σ in the proof of
3-transitivity).

Theorem 5.22. If τ is a Möbius transformation and z1, z2, z3, z4 are four points then

[τ(z1), τ(z2); τ(z3), τ(z4)] = [z1, z2; z3, z4].

First proof. It is clear that cross-ratio is preserved under translations and homotheties, because the
cross-ratio is a ratio (so unchanged by homothety) of terms which depend only on the difference
between pairs of points (so unchanged by translations). Since M is generated by translations,
homotheties and z 7→ 1/z, it suffices to check that the reciprocation map preserves cross-ratios:

1
z1
− 1

z3
1
z2
− 1

z3

1
z2
− 1

z4
1
z1
− 1

z4

=
(z3 − z1)(z4 − z2)

(z4 − z1)(z3 − z2)

1/z1z2z3z4

1/z1z2z3z4
= [z1, z2; z3, z4].

Second proof. Let σ be the unique Möbius map with σ(z1) = 0, σ(z2) = ∞, σ(z4) = 1. Then,
by definition, [z1, z2; z3, z4] = σ(z3). The Möbius map σ ◦ τ−1 is the unique Möbius transfor-
mation sending τ(z1), τ(z4), τ(z2) to 0, 1,∞, so [τz1, τz2; τz3, τz4] = σ(τ−1(τ(z3))0 = σ(z3) =
[z1, z2; z3, z4] as required.

This says that the cross-ratio is an invariant quantity under the action of the Möbius
group, in much the same way that distances are invariant under isometries in Euclidean
geometry. We can use the cross-ratio to answer the question: given four points z1, z2, z3, z4

and four points w1, w2, w3, w4, when is there a Möbius transformation τ with τzi = wi for
all i? The theorem above tells us that it is necessary for the cross-ratios [z1, z2; z3, z4] and
[w1, w2;w3, w4] to agree. In fact this is a sufficient condition: let σz be the unique Möbius
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transformation taking z1, z4, z2 to 0, 1,∞ and σw be the unique Möbius transformation
taking w1, w4, w2 to 0, 1,∞. Then [z1, z2; z3, z4] = σz(z3) and [w1, w2;w3, w4] = σw(w3). If
the cross-ratios agree then this implies σz sends z1, z2, z3, z4 to 0,∞, σz(z) = σw(w), 1 and
σ−1
w sends 0,∞, σw(w), 1 back to w1, w2, w3, w4, so σ−1

w ◦ σz is the required Möbius map τ
with τzi = wi.

Note that the order of z1, . . . , z4 matters here. If you want a Möbius transformation which
takes zi to ws(i) for some permutation s ∈ S4 then it is necessary and sufficient that one of
the 24 cross-ratios [zs(1), zs(2); zs(3), zs(4)] agrees with [w1, w2;w3, w4]. In fact, there is a trick
which allows us to reduce the number of computations by a factor of 6. Suppose without
loss of generality that z1 = 0, z2 = ∞, z4 = 1. Suppose τ is a Möbius transformation
which fixes {0, 1,∞} as a set but permutes these three points. Then

[τ(0), τ(∞); z3, τ(1)] = [0,∞; τ−1(z3), 1] = τ−1(z3)

because the cross-ratio is invariant under Möbius transformations. So once we have com-
puted [0,∞; z3, 1] we can find e.g. [∞, 0; z3, 1] by applying a suitable Möbius map τ which
stabilises the set {0, 1,∞} and does the correct permutation. What is the stabiliser of
{0, 1,∞}?

Lemma 5.23. The group of Möbius transformations fixing {0, 1,∞} setwise is isomorphic to the
symmetric group S3. Explicitly, it consists of the following six transformations:

T1z = z T2z = 1/z

T3z = 1− z T4z =
1

1− z

T5z = 1− 1

z
T6z =

z

z − 1
.

Proof. For every permutation s ∈ S3 we know there is a unique Möbius transformation Ts such that
Ts0 = s(0), Ts(1) = s(1) Ts(∞) = s(∞). Since composition of functions effects the composition
of the corresponding permutations, this shows that the group is actually isomorphic to S3. One
can check that the given transformations perform the desired permutations on {0, 1,∞}.

So the cross-ratio is a very effective invariant if we want to know when four points can be
mapped to four other points. For example, the condition that our points lie on a circle (or
straight line) is clearly preserved by Möbius transformations (as Möbius transformations
send circles/straight lines to circles/straight lines. One can phrase this very nicely in
terms of the cross-ratio:

Corollary 5.24. Four points lie on a circle if and only if their cross-ratio is real.

Proof. This is an exercise.
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6 Hyperbolic geometry

6.1 Hyperbolic upper half-plane

Definition 6.1. Let H = {x + iy ∈ C : y > 0} denote the upper half-plane. Define the
hyperbolic length of a piecewise smooth path γ : [0, 1]→ H, γ(t) = x(t) + iy(t), to be

L(γ) :=

∫ 1

0

|γ̇|
Im(γ)

dt =

∫ 1

0

√
ẋ2 + ẏ2

y
dt

and the hyperbolic distance d(p, q) from p ∈ H to q ∈ H to be the infimum of L(γ) over
all piecewise smooth paths γ with γ(0) = p and γ(1) = q.

Remark 6.2. When we say “piecewise smooth” we mean there is a finite set of points
where the path is not smooth. When writing down the length integral we should really
separate the domain of the path into a finite collection of intervals where γ is smooth and
sum the integrals from each of these. For notational convenience we will not bother to
do this. The technical convenience of working with piecewise smooth paths is that if you
have two piecewise smooth paths γ1 from p to q and γ2 from q to r then the concatentation
is a piecewise smooth path from p to r.

6.2 PSL(2,R)

Lemma 6.3. A Möbius transformation Tz = az+b
cz+d

satisfies TH = H if and only if (up to
rescaling) a, b, c, d ∈ R and ad − bc = 1. We denote by PSL(2,R) the group of such Möbius
transformations.

Proof. If TH = H then T must also preserve the boundary of H, namely R∪{∞}. This means that
Tz ∈ R∪ {∞}whenever z ∈ R∪ {∞}. In particular, taking z = 0, 1,∞, we get three conditions

b

d
∈ R ∪ {∞}, a+ b

c+ d
=: n ∈ R ∪ {∞}, a

c
=: m ∈ R ∪ {∞}.

We first assume c, d 6= 0. By rescaling, we can set d = 1. We then have b ∈ R and a = mc
(m ∈ R). This gives mc + b = nc + n (n ∈ R) and hence c = (n − b)/(m − n) ∈ R. This means
a = mc ∈ R and hence all coefficients are real.

If c = 0 then d 6= 0 (as ad − bc 6= 0) and hence, after rescaling, we can assume that d = 1. Then
we get b ∈ R and a+ b ∈ R, which means that a ∈ R, and hence all coefficients are real.

If d = 0 then c 6= 0 and hence, after rescaling, we can assume c = 1. Then we get a ∈ R and
a+ b ∈ R, so again all coefficients are real.

Now we will show that if a, b, c, d ∈ R the upper half-plane is preserved by T precisely when
ad− bc > 0. After a rescaling, we can then assume that ad− bc = 1. We compute

Im

(
az + b

cz + d

)
= Im

(
(az + b)(cz̄ + d)

|cz + d|2

)
using the fact that c, d ∈ R, which gives

Im

(
az + b

cz + d

)
= Im

(
bcz̄ + adz

|cz + d|2

)
=

(ad− bc)Im(z)

|cz + d|2
.
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Therefore we see that, when ad− bc > 0, we have Im(z) > 0 if and only if Im(Tz) > 0 (i.e. when
ad− bc > 0 the upper half-plane is preserved) and that, when ad− bc < 0, the upper half-plane
is mapped to the lower half-plane.

Lemma 6.4. The Möbius transformations in PSL(2,R) preserve hyperbolic lengths of piecewise
smooth paths in H, i.e. T ∈ PSL(2,R) implies L(Tγ) = L(γ).

Proof. The group PSL(2,R) is generated by translations, z 7→ z + b (b ∈ R), homotheties (z 7→ λz,
λ ∈ R) and the map z 7→ −1/z. (Note that the homothety z 7→ λz comes from z 7→ az/d with
a =
√
λ, d = 1/

√
λ, so that ad− bc =

√
λ/
√
λ = 1). Therefore we only need to check the lemma

for these three types of Möbius maps.

For translations: if γ(t) = x(t) + iy(t) then Tγ(t) = u(t) + iv(t) = x(t) + b+ iy(t), so the length

of Tγ is
∫ 1

0

√
u̇2+v̇2

v dt =
∫ 1

0

√
ẋ2+ẏ2

y (u(t) = x(t) + b and v(t) = y(t)). Therefore L(Tγ) = L(γ).

For homotheties: if γ(t) = x(t) + iy(t) then Tγ(t) = λx(t) + iλy(t) so L(Tγ) =
∫ 1

0

λ
√
ẋ2+ẏ2

λy dt =

L(γ).

For z 7→ −1/z: we have d
dt

(
− 1
γ

)
= γ̇

γ2 and Im
(
− 1
γ

)
= Im

(
− γ̄
|γ|2

)
, soL(Tγ) =

∫ 1

0
|γ̇|
|γ|2

|γ|2
−Im(γ̄)dt =∫ 1

0
|γ̇|

Im(γ)dt = L(γ).

6.3 Geodesics in the hyperbolic upper half-plane

Definition 6.5. A hyperbolic line in the upper half-plane is either a vertical straight half-
line or a semicircle centred at a point in R. Equivalently, these are straight lines and
semicircles which intersect R at right angles.

We know that Möbius transformations send straight lines and circles to straight lines and
circles. We also know that if T ∈ PSL(2,R) then T preserves R∪{∞}. Moreover, Möbius
transformations preserve angles. Therefore if T ∈ PSL(2,R) and γ is a hyperbolic line
then Tγ is also a hyperbolic line. We get an action of PSL(2,R) on hyperbolic lines.

Lemma 6.6. Given two distinct points p and q in the upper half-plane there exists a unique
hyperbolic line through p and q.

Proof. If Re(p) = Re(q) then the lemma is clearly true: the only hyperbolic line passing through p
and q is a vertical half-line. Otherwise, the Euclidean straight line pq is not vertical and hence
the perpendicular bisector of pq intersects R at a unique point c. Since all points equidistant
from p and q lie on this bisector, if C is a semicircle centred on R passing through p and q then
it must be centred at c. The Euclidean radius of C is fixed to be the Euclidean distance cp = cq.
This determines a unique hyperbolic line through p and q.

Lemma 6.7. The group PSL(2,R) acts transitively on hyperbolic lines. Moreover, it acts tran-
sitively on pairs (γ, p) where γ is a hyperbolic line and p ∈ γ is a point.

Proof. We will show that for any hyperbolic line γ there is a T ∈ PSL(2,R) sending γ to the
imaginary upper half-axis δ. This is clear if γ is a vertical half-line {x = c, y > 0}: we can just
use Tz = z−c. If γ is a semicircle which intersects R at s and twith s < t then Tz = z−t

z−s sends t
to zero and s to∞ and hence sends γ to δ. Note that T has ad− bc = t− s > 0, so after rescaling
coefficients by 1/

√
t− s, we see that T ∈ PSL(2,R).
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Now suppose that p ∈ δ is a point. We want to show that, after a Möbius transformation in
PSL(2,R) we can assume p = i. The transformation Tz = z/(−ip) preserves δ (the imaginary
axis) because −ip ∈ R and it sends p to i.

Theorem 6.8. Let γ be a piecewise smooth path in the upper half-plane between two points p
and q. Let δ be the unique hyperbolic line segment connecting p and q. Then L(γ) ≥ L(δ) with
equality if and only if γ is a (monotonic) reparametrisation of δ.

Proof. Without loss of generality, using the action of PSL(2,R), we can assume that δ is the imag-
inary upper half-axis. Let p denote the point with Im(p) < Im(q). Again, using the action
of PSL(2,R), we can assume p = i so that q = si for some s > 1. Now the length of
γ(t) = x(t) + iy(t) is

L(γ) =

∫ 1

0

√
ẋ2 + ẏ2

y
dt ≥

∫ 1

0

|ẏ|
y
dt ≥

∫ 1

0

ẏ

y
dt = ln(s)

with equality if and only if ẏ ≥ 0 and ẋ = 0. When ẋ = 0 then the image of γ is contained in the
hyperbolic line δ and when ẏ ≥ 0 it is parametrised monotonically.

Recall that the hyperbolic distance d(p, q) between points p and q in the upper half-plane
is defined to be the infimum of the hyperbolic lengths of piecewise smooth paths con-
necting p and q. From the theorem above, we see that this is equal to the length of a
hyperbolic line segment between p and q.

Corollary 6.9. Let p, q be points in the hyperbolic upper half-plane and let γ be the unique hy-
perbolic line segment connecting them. Let q and b be the points where γ intersects R∪{∞} and
assume that the points occur in the order apqb along γ. Then

d(p, q) = ln[a, b; q, p],

where [a, p; b, q] denotes the cross-ratio of the four points.

Proof. We know that Möbius transformations preserve cross-ratios and that PSL(2,R) acts tran-
sitively on pairs (γ, p) where γ is a hyperbolic line and p ∈ γ is a point. Therefore, with-
out loss of generality, we can assume that γ is the imaginary upper half-axis, that p = i and
that q = is for some s > 1. In this case, a = 0 and b = ∞. We get that the cross-ratio is
[a, b; q, p] = [0,∞; is, i] = s and the hyperbolic length of the path γ(t) = i(1 + (s− 1)t) between
p and q is ∫ 1

0

|γ̇|
Im(γ)

dt =

∫ 1

0

s− 1

1 + (s− 1)t
dt = ln(s).

so L(γ) = ln[a, p; b, q].

Corollary 6.10 (Triangle inequality). We have d(p, r) ≤ d(p, q) + d(q, r) with equality if and
only if q lies on the hyperbolic line segment between p and r.

Proof. Let pq denote the unique hyperbolic line segment between p and q, etc. Then pq concatenates
with qr to give a piecewise smooth path, γ, from p to r whose length is d(p, q) + d(q, r). Since
d(p, r) is defined as an infimum, it must be less than this. If equality holds then, by the theorem,
γ is a monotonic parametrisation of pr. In particular, q lies on pr.

Corollary 6.11. If T is an isometry of (H, d) and C is a hyperbolic line then TC is also a hyper-
bolic line.

34



Proof. Pick any three points p, q, r on C such that q lies on the segment between p and r. Then
d(p, r) = d(p, q) + d(q, r), so d(Tp, Tr) = d(Tp, Tq) + d(Tq, Tr), so Tq lies on the segment of the
unique hyperbolic line segment C ′ between Tp and Tr. Since this applies for every q between
p and r we see that the segment of C between p and r is mapped by T to the segment of C ′

between Tp and Tr. Since this applies for all p, r, we deduce that TC = C ′.

6.4 Hyperbolic Gauss-Bonnet

Definition 6.12. The area of a region U in the hyperbolic upper half-plane is defined to
be the double integral

area(U) =

∫ ∫
U

dxdy

y2
.

If T ∈ PSL(2,R) then the area of TU equals the area of U ; it suffices to check that it is
true for the generators of PSL(2,R): for translations z 7→ z + b, b ∈ R, the integrand is
unchanged; for homotheties z 7→ az, a > 0, the numerator and denominator both pick
up a factor of a2, which cancels; for z 7→ −1/z it is an exercise.

Theorem 6.13. If U is a hyperbolic triangle with internal angles α, β, γ then

area(U) = π − α− β − γ.

In particular, the area of a hyperbolic triangle is bounded above by π and the sum of the internal
angles is also bounded above by π.

The theorem remains true if we allow the triangle to have vertices on the real axis or at
∞, in which case we consider the internal angle at that vertex to be zero (two hyperbolic
lines which meet at a point on R necessarily meet R at the same angle (π/2), hence meet
one another at an angle zero). Such a vertex is called an ideal vertex and an ideal triangle
is one whose vertices all lie on R ∪ {∞}. Such triangles necessarily have area π. In fact,
the proof of the theorem starts by assuming that one of the vertices is ideal.

Proof. In the first instance, assume that one of the vertices is ideal. By applying an isometry from
PSL(2,R), we can assume that this vertex is at ∞, so that two of the edges of the hyperbolic
triangle are vertical half-lines. By a further combination of translation and homothety, we can
assume that the third edge is the semicircle C centred at the origin with Euclidean radius 1. Let
a < b be the x-coordinates of the two vertical half-line edges. Then the area of U is

area(U) =

∫ b

a

∫ ∞
√

1−x2

dy

y2
dx =

∫ b

a

dx√
1− x2

This integral can be done by substituting x = cos θ (so θ is the angular coordinate on the semi-
circle C). We get

area(U) = cos−1(a)− cos−1(b).

It is easy to see from INSERT FIGURE HERE! that cos−1(a) = π − α and cos−1(b) = β, where α
is the internal angle between {x = a} and C, and β is the internal angle between {x = b} and C.
Thus, with the convention γ = 0 for the lines meeting at infinity, we get area(U) = π − α− β.

Now take the third vertex to sit at a point with finite height. By an isometry, we can still assume
that one of the edges is vertical (say {x = a}) and the third edge is C. Write p, q, r for the three
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vertices with x-coordinates a, b, a respectively. We see that the triangle pqr is the set-theoretic
difference between the triangles pq∞ and rq∞. Therefore the area is

area(pqr) = area(pq∞)− area(rq∞)

= π − α− β′ − π + α′ + (β′ − β)

and it is clear from THE FIGURE that γ = π − α′, which implies the result.

6.5 The hyperbolic disc

We now present another model for hyperbolic geometry: the hyperbolic disc. Consider
the Möbius transformations

S(z) =
i(1 + z)

1− z
, T (z) =

z − i
z + i

.

Let D = {z ∈ C : |z| ≤ 1}.

Lemma 6.14. SD = H and TH = D. Moreover T ◦ S = 1 = S ◦ T .

Proof. It is easy to check that T (S(z)) = z:

T (S(z)) =

i(1+z)
1−z − i
i(1+z)
1−z + i

=
i(1 + z)− i(1− z)
i(1 + z) + i(1− z)

=
2iz

2i
= z

so it suffices to check that SD = H. Since 1, i,−1 lie on the unit circle, we know that S sends the
unit circle to a circle or straight line passing through S(1) = ∞, S(i) = −1, S(−1) = 0 and the
unique circle/straight line through 0,−1,∞ is R. Therefore S(D) is either the upper or lower
half-plane. We also see that S(0) = i ∈ H, so we deduce that S(D) = H.

Definition 6.15. If γ : [0, 1] → D is a path in D, we define its hyperbolic length to be the
length of the path S ◦ γ : [0, 1]→ H in H.

Lemma 6.16. If γ is a path in D then its hyperbolic length is∫ 1

0

2|γ̇|
1− |γ|2

dt.

Proof. The hyperbolic length of γ is

L(S ◦ γ) =

∫ 1

0

∣∣ d
dt (S(γ(t)))

∣∣
Im(S(γ(t)))

dt
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The numerator is: ∣∣∣∣ ddt (Sγ(t))

∣∣∣∣ =

∣∣∣∣ ddt
(

1 + γ

1− γ

)∣∣∣∣
=

∣∣∣∣ γ̇

1− γ
− −γ̇(1 + γ)

(1− γ)2

∣∣∣∣
=

∣∣∣∣ (1− γ)γ̇ + (1 + γ)γ̇

(1− γ)2

∣∣∣∣
=

2|γ̇|
|1− γ|2

and the denominator is

Im

(
i(1 + γ)

1− γ

)
= Im

(
i(1 + γ)(1− γ̄)

|1− γ|2

)
= Im

(
i(1− |γ|2 + γ − γ̄

|1− γ|2

)
=

1− |γ|2

|1− γ|2

so the integral becomes ∫ 1

0

2|γ̇|
1− |γ|2

dt

as desired.

Example 6.17. (Exercise:) Let r > 0 be a real number and consider the path γ : [0, 1]→ D,
γ(t) = rt, from γ(0) = 0 to γ(1) = r. The hyperbolic length of this path is 2 tanh−1(r).
That is, the point tanh(a/2) lives a hyperbolic distance a from the origin. This allows us
to show that hyperbolic circles look like Euclidean circles (just as in the case of spherical
geometry). See Question Sheet 8.

Suppose that g : H → H is an element of PSL(2,R), in particular an isometry of H. We
see that T ◦ g ◦ S is an isometry of D. Which Möbius transformations arise this way?

Lemma 6.18. The Möbius transformations

z 7→ mz + n

n̄z + m̄

with |m|2 − |n|2 = 1 act by hyperbolic isometries of D.

Proof. Suppose that g(z) = az+b
cz+d is an isometry of H in PSL(2,R) (so a, b, c, d ∈ R and ad−bc = 1).

Then T ◦ g ◦ S is an isometry of D. Computing:

T (g(S(z))) =

ai 1+z1−z+b

ci 1+z1−z+d
− i

ai 1+z1−z+b

ci 1+z1−z+d
+ i

=
ai(1 + z) + b(1− z) + c(1 + z)− id(1− z)
ai(1 + z) + b(1− z)− c(1 + z) + id(1− z)

=
(c− b+ i(a+ d))z + (b+ c+ i(a− d))

(−b− c+ i(a− d))z + (−c+ b+ i(a+ d))

=
kz + `

−¯̀z − k̄
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where k = c− b+ i(a+ d) and ` = b+ c+ i(a− d). We see that

|k|2 − |`|2 = (c− b)2 + (a+ d)2 − (b+ c)2 − (a− d)2

= 4(ad− bc)
= 4

If we set m = ik/2 and n = i`/2 then we get

T (g(S(z))) =
mz + n

n̄z + m̄

where |m|2 − |n|2 = 1, as required.

6.6 Hyperbolic trigonometry

In this subsection, ∆ will be a hyperbolic triangle whose vertices are at A, B, C, with
respective internal angles α, β, γ, and whose sides BC, CA, AB have hyperbolic lengths
a, b, c respectively.

For simplicity, we will work in the disc model of hyperbolic 2-space. Note that without
loss of generality we can use the isometric action of PSL(2,R) to put A = 0, B = r ∈ R,
C = seiα (because PSL(2,R) preserves lengths and angles). We know that r = tanh(c/2)
and s = tanh(b/2) (by the exercise in the previous section).

Lemma 6.19 (Hyperbolic cosine rule). We have cosh(a) = cosh(b) cosh(c)−cos(α) sinh(b) sinh(c).

Proof. We know that

cosh(a) =
1 + tanh2(a/2)

1− tanh2(a/2)
.

Moreover, the Möbius transformation −z+rrz−1 translates the vertex B to the origin and the line

segment BC to a straight line segment connecting 0 to r−seiα
rseiα−1 , so by Example 6.17 we get

tanh(a/2) =
|r − seiα|
|rseiα − 1|

.

Overall this gives

cosh(a) =
|rseiα − 1|2 + |r − seiα|2

|rseiα − 1|2 − |r − seiα|2
.

Using |rseiα− 1|2 = (rs cosα− 1)2 + r2s2 sin2 α and |r− seiα| = (r− s cosα)2 + s2 sin2 α we get

cosh(a) =
1− 2rs cosα+ r2s2 + r2 + s2 − 2rs cosα

1− 2rs cosα+ r2s2 − r2 − s2 + 2rs cosα

or

cosh(a) =
(r2 + 1)(s2 + 1)− 4rs cosα

(1− r2)(1− s2)

Finally, since r = tanh(c/2) and s = tanh(b/2), we have 1+r2

1−r2 = cosh(c), 1+s2

1−s2 = cosh(b) and
2r

1−r2 = sinh(c), 2s
1−s2 = sinh(b), which means that

cosh(a) = cosh(b) cosh(c)− cos(α) sinh(b) sinh(c).
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Lemma 6.20 (Hyperbolic sine rule). (Exercise) We have sinh(a)
sin(α)

= sinh(b)
sin(β)

= sinh(c)
sin(γ)

.

Proof. Using the cosine rule,

sinh(b) sinh(c) cos(α) = cosh(b) cosh(c)− cosh(a)

we get

sinh2(b) sinh2(c) sin2(α) = sinh2(b) sinh2(c)(1− cos2(α))

= sinh2(b) sinh2(c)− (cosh(b) cosh(c)− cosh(a))2

Multiplying this out and using cosh2− sinh2 = 1 we get

sinh2(b) sinh2(c) sin2(α) = 2 cosh(a) cosh(b) cosh(c)− sinh2(a)− sinh2(b)− sinh2(c)− 2.

This is symmetric in a, b, c so the same argument gives

sinh2(b) sinh2(c) sin2(α) = sinh2(c) sinh2(a) sin2(β) = sinh2(a) sinh2(b) sin2(γ)

which yields the sine rule on dividing by sinh2(a) sinh2(b) sinh2(c).

Corollary 6.21. If T is an isometry and γ and δ are hyperbolic lines which intersect at p ∈ H at
an angle θ then Tγ and Tδ intersect at Tp at an angle θ.

Proof. Let ∆ be a hyperbolic triangle with sides γ, δ and ε for some hyperbolic line ε. Then the image
T∆ is another hyperbolic triangle and the side lengths are preserved since T is an isometry. By
the hyperbolic cosine formula, the angles are determined by the side lengths, which implies the
lemma.

6.7 Isometries

Example 6.22 (PSL(2,R)). We have already seen that the group PSL(2,R) of Möbius
transformations acts by isometries of the hyperbolic upper half-plane.

Example 6.23 (Hyperbolic reflection). Let γ be a hyperbolic line. We will construct a
nontrivial isometry Rγ of hyperbolic space which fixes all points on γ. We will call this
the reflection in γ.

Claim: Given a point p 6∈ γ there is a unique hyperbolic line C through pwhich intersects
γ orthogonally.

Let T ∈ PSL(2,R) be a Möbius transformation such that Tγ = δ where δ is the imaginary
upper half-axis. Now the hyperbolic lines intersecting the imaginary axis orthogonally
are the semicircles centred at 0. Precisely one of these, C ′, passes through Tp. Now
C := T−1C ′ is the required hyperbolic line: still intersects γ orthogonally because Möbius
transformations preserve angles. To see uniqueness, if there were another hyperbolic line
D satisfying the claim then TD would be another semicircle centred at 0 passing through
p, which is not possible.

Let q be the intersection point C ∩ γ. There is a unique point p′ ∈ C such that d(p′, q) =
d(p, q) and p 6= p′. Define Rγ(p) = p′.
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Lemma 6.24. Let γ be a hyperbolic line. If T is an isometry of hyperbolic space such that Tp = p
for all p ∈ γ then either = id or T = Rγ .

Proof. Let T be such an isometry and let p 6∈ γ be a point. By the claim above there is a unique
hyperbolic line C through p which intersects γ orthogonally and, if q denotes the intersection
point C ∩ γ then there are two precisely distinct points p and p′ such that d(p, q) = d(p′, q).
Now TC must be another hyperbolic line intersecting γ orthogonally and passing through q, so
TC = C. Moreover, d(p, q) = d(Tp, Tq) = d(Tp, q) so Tp = p or Tp = p′.

This means that each point p 6∈ γ is mapped to either itself (p) or to its reflection (p′). We need
to prove that we cannot have two different points p, q such that Tp = p and Tq = q′ (so either
every point is mapped to itself, or every point is mapped to its reflection, rather than some
points being mapped to themselves and some being mapped to their reflections).

Let’s start by proving this for all points in the subset H+ = {x + iy ∈ C : x, y > 0}. The same
proof will work for H−.

Let U = {p ∈ H+ : Tp = p} and U ′ = {p ∈ H+ : Tp = p′}. The sets U and U ′ partition
H+. We will show that U and U ′ are open sets. Since H+ cannot be partitioned into disjoint
nonempty open subsets (it is connected) one of these sets must be empty, so either every point
is mapped to itself or every point is mapped to its reflection.

Claim: U = {p ∈ H+ : Tp = p} and U ′ = {p ∈ H+ : Tp = p′} are open sets.

Suppose that r is a point in the ball Bε(p) for some 0 < ε < d(p, p′)/3. Then

d(p, r) = d(Tp, Tr) = d(p, Tr)

which means d(p, Tr) < ε. However, d(p, p′) ≤ d(p, r′) + d(r′, p′) by the triangle inequality and
since r′ = Rγr, p′ = Rγp, we have d(r′, p′) < ε. Therefore d(p, p′)− ε ≤ d(p, r′), so 2ε ≤ d(p, r′).
Therefore Tr 6= r′ since d(p, Tr) = ε 6≥ 2ε. So Tr = r for all r ∈ Bε(p).

This tells us that the open ball Bε(p) is contained in U , hence U is an open set.

Now we know that either every point in H+ is fixed by T or every point in H+ is reflected by
T (and the same for H−). To finish the proof, we need to show that if the points in H+ are fixed
then the same is true for points in H− (and if the points in H+ are reflected then the same is true
for points in H−). So suppose for a contradiction that every p ∈ H+ is fixed and every q ∈ H−

is reflected. Then, since p ∈ H+ implies p′ ∈ H−, we see that

d(p, p′) = d(Tp, Tp′) since T is an isometry
= d(p, p) since Tp = p, Tp′ = p

= 0

which is a contradiction, since p 6= p′ if p ∈ H+.

Theorem 6.25. The isometry group of the hyperbolic upper half-plane is PSL(2,R)∪RδPSL(2,R),
where δ is the imaginary upper half-axis.

Proof. Let T be an isometry. Let S ∈ PSL(2,R) be such that STδ = δ and that STi = i. We see (by
replacing T with ST ) that without loss of generality we can assume that Ti = i and that Tδ = δ.

How does T act on δ? Let q = si ∈ δ be such that s > 1; we have d(i, q) = d(Ti, T q) = d(i, T q) =
ln s so there are two possible positions for Tq: it could be at is or at i/s (these are the two points
on δ which have hyperbolic distance ln s from i). By applying z 7→ −1/z we can switch these
two points, so without loss of generality we can assume that Tsi = si for some fixed s. Now a
point on δ is determined by its distance from i and its distance from si (ti and i/t have distance
ln s + ln t and ln s − ln t from si). Therefore we are assuming without loss of generality that T
fixes δ pointwise.
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Now by the previous lemma, T is either the identity or Rδ . This completes the proof.

6.8 A historical note

When Euclid gave the first axiomatic development of geometry he started with a series of
five reasonable-sounding postulates which he subsequently assumed to prove theorems:

• There is a unique line between any two points.

• A line can be extended indefinitely.

• Any two right angles are congruent.

• One can construct a circle with any given radius and centre.

• Parallel postulate: Given a line ` and a point p not on the line, there is a unique line
`′ through p not intersecting `.

The last postulate was seen as too complicated and for two thousand years there were
attempts to show that it followed from the previous five. Observe that in spherical geom-
etry the parallel postulate fails (any two spherical lines intersect), but some of the other
postulates look a bit dubious too (one cannot construct a spherical circle with arbitrary
radius and one cannot extend a spherical line indefinitely because it comes back and
repeats itself3).

In hyperbolic geometry, the parallel postulate fails in a more drastic way: given a hy-
perbolic line ` and a point p not on it, there are infinitely many lines through p which
do not intersect `. Precisely one of these intersects ` at an ideal point in R ∪ ∞, but the
others are completely disjoint from it (even at infinity in hyperbolic space). We say that
two lines are parallel if they intersect at infinity, and ultraparallel if they do not intersect
even there. The other four axioms all hold in hyperbolic geometry, which means that the
parallel postulate is independent of axioms 1–4.

Hyperbolic geometry was discovered in the late 1820s/early 1830s, independently by
Lobachevsky and by Bolyai. Bolyai was so obsessed with the parallel postulate that his
father (also a mathematician) told him (in Hungarian)

“For God’s sake, I beseech you, give it up. Fear it no less than sensual passions because it too may
take all your time and deprive you of your health, peace of mind and happiness in life.”

For that reason, we swiftly move on.

3The unique line through two points also looks dubious because there are many lines through antipodal
pairs of points; however, if one takes a quotient of the sphere by identifying pairs of antipodal points then
one obtains a spherical-like geometry on a space called RP 2 which satisfies the first axiom
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7 Classification of hyperbolic isometries

Theorem 7.1. A non-identity isometry A ∈ PSL(2,R) of hyperbolic space fits into one of the
three following classes:

• A has one fixed point in R ∪ {∞} (parabolic)

• A has two fixed points in R ∪ {∞} (hyperbolic)

• A has two complex conjugate fixed points in C, one in H and one in −H (elliptic)

Moreover, A is hyperbolic/parabolic/elliptic if |Tr(A)| is greater than/equal to/less than 2.

Proof. Let A =

(
a b
c d

)
with ad− bc = 1.

A has a fixed point at infinity if and only if c = 0.

If A has a fixed point at infinity, it can have another real fixed point:

az + b = z ⇒ z = b/(1− a)

provided a 6= 1. Moreover, we see that A =

(
a b
0 1/a

)
. We also have |Tr(A)| =

∣∣a+ 1
a

∣∣which

has a minimum at a = ±1, where |Tr(A)| = 2. So if c = 0 we deduce that A can be either
parabolic or hyperbolic when the trace is 2 or > 2.

If we assume c 6= 0 then∞ is not a fixed point and there are fixed points whenever

cz2 + dz − az − b = 0

which means

z =
a− d

2c
±
√

(a+ d)2 − 4(ad− bc)
2c

.

These roots are either real and coincide (if |Tr(A)|2 = (a + d)2 = 4) or real and distinct (if
|Tr(A)| > 2) or complex conjugates of one another if |Tr(A)| < 2.

Lemma 7.2. A parabolic isometry is conjugate to
(

1 b
0 1

)
. A hyperbolic isometry is conjugate

to
(
a 0
0 1/a

)
. An elliptic isometry is conjugate to

(
cos θ − sin θ
sin θ cos θ

)
.

Proof. If p is a real fixed point of A then let T ∈ PSL(2,R) be such that Tp = ∞. We see that

TAT−1 fixes Tp = ∞. Therefore TAT−1 is
(
a b
0 1/a

)
for some a, b. We saw already that this

has either one (a = 1) or two (b = 0) fixed points. This deals with the parabolic and hyperbolic
cases. For the remaining case, let p be the fixed point of A in H and let T ∈ PSL(2,R) be such
that Tp = i. Then TAT−1 fixes i, so

i =
ai+ b

ci+ d

which means ai + b = −c + di. Comparing real and imaginary parts gives b = −c and a = d.
The determinant is then ad − bc = a2 + b2 = 1, so there exists a θ such that a = cos θ = d and
b = sin θ = −c. This completes the elliptic case.
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PICTURES OF THE ACTION OF HYPERBOLIC, PARABOLIC AND ELLIPTIC TRANS-
FORMATIONS ON THE UPPER HALF-PLANE AND THE DISC.

There is a similar classification of elements of PSL(2,C), where the additional elements
are called loxodromic, having Tr(A)2 in C \ [0, 4]. These are conjugate to z 7→ kz for some
k ∈ C∗\U(1). The classification essentially boils down to finding the Jordan normal form
of the corresponding 2-by-2 matrix.

7.1 Hyperboloid model

There is one final model of hyperbolic space I want to introduce, but to do that I need to
introduce the notion of Minkowski spacetime, the geometry underlying special relativity.

Definition 7.3. Let c > 0 be a constant which we think of as the speed of light. Minkowski
spacetime Rn,1 is just a vector space of dimension n+1 (n directions of space, one of time)
equipped with the notion of “spacetime interval” instead of distance. The spacetime
interval between two points p = (t, x1, . . . , xn) and q = (t′, x′1, . . . , x

′
n) is

s2(p, q) = −c2(t− t′)2 +
n∑
i=1

(xi − x′i)2.

Note that if there is a light ray connecting p to q then s(p, q) = 0. We say that two points
are “timelike separated” if s(p, q) < 0 and “spacelike separated” if s(p, q) > 0.

In relativity theory, the only assumption is that the speed of light is the same no matter
what your frame of reference (as long as you are following inertial motion, i.e. mov-
ing under the influence of your own inertia, not accelerated by an external force). Two
observers (maybe moving relative to one another) will both agree on the fact that there
is a light ray passing from p to q (points in spacetime), which happens if and only if
s(p, q) = 0. Therefore to change coordinates between two frames of reference one should
allow linear transformations which preserve the spacetime interval. In other words, both
observers (moving or not) will see a light ray going from p to q so both will measure
s(p, q) = 0. Such linear maps are called Lorentz transformations; the group of Lorentz
transformations is written O(n, 1).

Example 7.4. n = 1, c = 1. For example, the transformations

A =

(
cosh θ sinh θ
sinh θ cosh θ

)
preserve the spacetime interval s(0, (t, x)) = s(0, A(t, x)):

s(0, A(t, x)) = −(cosh2 θt2 + sinh2 θx2 + 2 cosh θ sinh θxt) + (cosh2 θx2 + sinh2 θt2 + 2 cosh θ sinh θxt)

= (−t2 + x2)(cosh2 θ − sinh2 θ)

= s(0, (t, x)).
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These are called Lorentz boosts, and correspond to changing from a rest frame to a frame
moving with velocity c tanh θ. If we take a point (t0, x0) and act on it using Lorentz boosts,
it will trace out all points on the upper branch of the hyperbola −t2 + x2 = −t20 + x2

0.

If γ(τ) = (t(τ), x1(τ), . . . , xn(τ)) is a path in spacetime whose tangent vector is always
timelike (i.e. −c2ṫ2 + ẋ2

1 + · · ·+ ẋ2
n < 0) then we define the proper time along γ to be∫ √∣∣−c2ṫ2 + ẋ2

1 + · · ·+ ẋ2
n

∣∣dτ.
Indeed, physically this is interpreted as (c times) the amount of time experienced by an
observer moving along the path γ. This integral can be performed in any inertial frame
of reference, so for example, if γ is a straight line path (inertial motion) then one can use
a Lorentz transformation to bring the observer moving along γ to rest, so that in these
new coordinates γ(τ) = (τ, 0, . . . , 0) and we see that the integral is precisely cτ .

Similarly, if a path γ is spacelike we can define the “proper distance” using the same
formula (it now has a different physical interpretation, because observers moving along
spacelike curves are moving faster than light, so “proper time” would be imaginary for
them).

Definition 7.5 (The hyperboloid model of hyperbolic space). Consider the upper hyper-
boloid in Minkowski 3-space with c = 1:

Y = {−t2 + x2 + y2 = −1, t > 0} ⊂ R2,1.

Note that tangent vectors to the hyperboloid are always spacelike. If γ is a path on the
hyperboloid, we can define L(γ) to be the proper distance along γ.

Theorem 7.6. The upper hyperboloid equipped with with proper distance is isometric to the
hyperbolic disc.

Proof. Consider the stereographic projection F : Y → D (projecting from the point (t, x, y) =
(−1, 0, 0)). In coordinates this is F (t, x, y) = x+iy

1+t . We will see that points on the upper hy-
perboloid are sent to the interior of the unit disc D and that this map relates the proper distance
on Y to the hyperbolic distance on D.

First, to see that the hyperboloid goes to the disc, we note that∣∣∣∣x+ iy

1 + t

∣∣∣∣2 =
x2 + y2

(1 + t)2
=

t2 − 1

(1 + t)2
=
t− 1

t+ 1

and since t ≥ 1, this is less than 1.

To relate the metrics, we consider a path γ(τ) = (t(τ), x(τ), y(τ)) in Y . Since x2 + y2 = t2− 1 we
get

xẋ+ yẏ = tṫ

and if we let u = x/(1 + t), v = y/(1 + t) be the real and imaginary parts of the stereographic
projection then (denoting d/dτ by a dot) we have u̇ = ẋ/(1 + t) − xṫ/(1 + t)2, v̇ = ẏ/(1 + t) −
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yṫ/(1 + t)2. Therefore

u̇2 + v̇2 =
ẋ2 + ẏ2

(1 + t)2
+
x2 + y2

(1 + t)4
ṫ2 − 2

(xẋ+ yẏ)dt

(1 + t)3

=
ẋ2 + ẏ2

(1 + t)2
+

t− 1

(t+ 1)3
ṫ2 − 2tṫ2

(1 + t)3

=
ẋ2 + ẏ2 − ṫ2

(1 + t)2

Finally,

1− u2 − v2 =
(1 + t)2 − (x2 + y2)

(1 + t)2
=

2 + 2t

(1 + t)2
=

2

1 + t

so
4(u̇2 + v̇2)

(1− u2 − v2)2
= −ṫ2 + ẋ2 + ẏ2.

Therefore the hyperbolic length of the stereographically projected path u(τ) + iv(τ) is the same
as the Minkowski length of the path γ in Y .

Hyperbolic lines now correspond to sections of the hyperboloid Y with planes in R2,1

passing through the origin. These planes are called Lorentz planes and the intersection
with the hyperboloid gives a geodesic hyperbola (another name for hyperbolic line, the
hyperbolic version of great circles).
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