
HYDRODYNAMICS AND INFINITE-DIMENSIONAL
RIEMANNIAN GEOMETRY

JONATHAN EVANS

These are the notes from a propaganda-talk for the book of Arnold-Khesin called
“Topological Methods in Hydrodynamics” [1]. It also draws heavily from Khesin-
Wendt “The geometry of infinite-dimensional groups” [4].

1. Lie groups and the symplectic geometry of coadjoint orbits

Let G be a (possibly Frèchet) Lie group, g its Lie algebra and g∗ the dual of g
(the space of momenta). The latter is the space of continuous linear functionals on
g and as such is not naturally a Lie algebra (in the infinite dimensional case it need
not even be a Frèchet space). We will see that the Lie algebra structure on g shows
up geometrically on g∗ as a Poisson structure.

Theorem 1. g∗ admits a Poisson bracket

{, } : C∞(g∗)× C∞(g∗)→ C∞(g∗)

i.e. an R-bilinear, antisymmetric form which satisfies the Jacobi identity and such
that {f,−} is a derivation for any f . Such a derivation defines a vector field
on g∗ called vf , the Hamiltonian vector field associated to f and the span of the
Hamiltonian vector fields gives an integrable distribution on g∗ whose integral leaves
are the orbits of the coadjoint action of G on g∗. These inherit a natural symplectic
structure.

In the infinite dimensional case we need to take care. We must restrict attention
to regular functions f ∈ C∞(g∗) whose derivative df : g∗ → R is in the subspace
g ⊂ g∗∗.

Proof. The Poisson bracket is defined by

{f, g}(m) := 〈m, [df, dg]〉
where m ∈ g∗, 〈, 〉 is the natural pairing g∗ × g→ R and df and dg are considered
as elements of g. This makes sense if we restrict to regular functions because then
the Poisson bracket is both well-defined and regular.

The Jacobi identity implies integrability of the distribution on g∗ spanned by
Hamiltonian vector fields. To identify the leaves with coadjoint orbits, let vh be a
Hamiltonian vector field on g∗, m ∈ g∗ and f a regular function on g∗.

df(vh) = vh(f)m
= {h, f}(m)

= 〈m, [dh, df ]〉
= 〈m, addhdf〉
= 〈ad∗dhm, df〉
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so that vh = ad∗dh. Therefore the span of the Hamiltonian vector fields at m is
precisely the tangent space to the coadjoint orbit through m at m. The Poisson
structure gives us a symplectic structure

Ω(vf , vg) = {f, g}

on Hamiltonian vector fields and hence on the leaves of the Poisson structure. �

2. Geodesics on groups

2.1. The Euler-Arnold equation. We now restrict to finite dimensional groups
and consider the following problem. Let E be a positive definite quadratic form on
g. Using left translation we can generate a left-invariant metric (also written E)
on G which coincides with E on the tangent space at the identity. Write A for the
musical isomorphism

A : g→ g∗.

We are interested in the geodesic flow of this metric on TG. Let γ be a geodesic
in TG. Left translation gives a family of vectors L−1

γ(t)γ̇(t) in g. Here’s how you
should think of this:

Example 1. Let G = SO(3). This is the space of configurations of a rigid body in
R3 with fixed centre of mass. The left translation of the velocity vector of a geodesic

˙γ(t) back to the origin is just “how the body sees its angular velocity”.

We will further obfuscate by passing to the dual space g∗. This corresponds to
“how the body sees its angular momentum”.

Theorem 2. If γ is a geodesic of this metric then m(t) = Aγ̇(t) satisfies the
Euler-Arnold equation

dm

dt
= −ad∗A−1mm

Notice that E can be considered as a function on g∗:

E(m) = 〈m,A−1m〉

whose differential at m is dE(m) = A−1m. Therefore the Euler-Arnold equation is
just the Hamiltonian flow of this function on the space g∗.

Proof. Let g be a path in G. The condition that g is geodesic is the vanishing of
the first variation of the energy on paths with fixed endpoints:

0 = δ

∫
Eg(ġ, ġ)dt

= δ

∫
E(g−1ġ, g−1ġ)dt

= 2
∫
E(δ(g−1ġ), g−1ġ)dt

But

δ(g−1) = −g−1(δg)g−1

δ(g−1ġ) = g−1δġ − g(δg)g−1ġ

= (g−1δg)· + [g−1ġ, g−1δg]
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therefore

0 = 2
∫
E((g−1δg)·, g−1ġ)dt+ 2

∫
E1([g−1ġ, g−1δg], g−1ġ)dt

= −2
∫
E(g−1δg, (g−1ġ)·)dt+ 2

∫
E(adg−1ġ(g−1δg), g−1ġ)dt

Now recall that E(v, w) = 〈v,Aw〉 and Ȧ = 0 so that

0 = −
∫
〈g−1δg, (Ag−1ġ)· + ad∗g−1ġAg

−1ġ)dt

or (setting v = g−1ġ, m = Av)

ṁ = −ad∗vm.

�

2.2. Fluid flows. The interesting part comes when Arnold makes the following
leap of faith. Replace your finite-dimensional Lie group by the group of volume-
preserving diffeomorphisms of a Riemannian manifold (M, g). Replace left actions
everywhere by right actions. The Euler-Arnold equation becomes the Euler equa-
tion for an inviscid, incompressible fluid.

• Left action of rotations on SO(3) is rotation of the ambient space (including
the velocity vector) and hence preserves the kinetic energy E of a rigid
body. This gives a left-invariant metric on SO(3) suitable for Riemannian
geometry as above.

• Right action of diffeomorphisms on M is simply by relabelling of the fluid
particles. Hence the kinetic energy of the fluid is right-invariant.

• This leads to some sign changes.
The Lie algebra of SDiff(M) is the algebra of divergence-free vector fields

div(v) = Lvvol = 0

with the usual Lie bracket. The dual to this is the space of 1-forms modulo exact
1-forms. To see this, define the pairing

(α, v) 7→
∫
ιvµ ∧ α

where α is a 1-form and µ is the volume form on M . By the formulae of Stokes
and Cartan:

(df, v) = −
∫
fdιvµ = −

∫
fdiv(v)

so that exact 1-forms pair trivially with divergence-free vector fields. Let’s check
that the pairing is otherwise nondegenerate:

• If v 6= 0 then α = ?ιvµ pairs non-trivially with v.
• If (α, v) = 0 for all divergence-free vector fields v then we will construct

a function f for which α = df . It suffices to show that
∫
γ
α = 0 for any

piecewise smooth curve γ, for then we can define f(q) =
∫
η
α where η is a

curve connecting a fixed point p to q. But
∫
γ
α can be approximated by∫

α ∧ ιvµ where v is a divergence-free field supported in a ε-thick tubular
neighbourhood of γ with flux 1 across a Seifert surface of γ.
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The coadjoint action of SDiff(M) on Ω1/dΩ0 is just the pullback action. There-
fore the coadjoint action of the Lie algebra is given by

ad∗vu = Lvu

The Euler-Arnold equation therefore takes the form
˙[m] = −Lv[m]

Here v is the velocity vector field of the fluid and m is g-dual to v, i.e. A is the
musical isomorphism for the Riemannian metric g used to define the kinetic energy
of the fluid. Also, [u] denotes the class of u ∈ Ω1/dΩ0. Removing brackets gives

ṁ = −Lvm− df

for some function f (thought of as pressure). This dualises to the usual Euler
equations for an inviscid fluid

v̇ = −∇vv −∇f

The function f is chosen uniquely to solve the equation

div(∇vv) = −∆f

since then the vector field v̇ is divergence-free and hence tangent to SDiff(M).

2.3. Why? What do we gain from this beautiful rephrasing of the Euler equations?
• The change of viewpoint unifies motion of a rigid body and fluid motion

into a single framework. This is suggestive of generalisations. For example,
[5] the Maxwell-Vlasov equation of plasma physics fits into a similar picture
where G is the group of Hamiltonian symplectomorphisms of phase space
(and the Hamiltonian function is suitably chosen). As we will see later,
taking G to be the Virasoro extension of the diffeomorphism group of the
circle gives the KdV equation. Integrability of the KdV equation will be
easier to understand when seen in the setting of symplectic manifolds (i.e.
coadjoint orbits of the Virasoro group).
• There is a paper of Ebin-Marsden [2] which sets up the theory of the Eu-

ler equation rigorously in the framework of Riemannian geometry on a
Hilbert-Sobolev (i.e. L2

k) completion of the volume-preserving diffeomor-
phism group. From this point of view the equations are actually just the
1-parameter flow of a vector field on a Hilbert manifold and therefore well-
posed (short-time existence, smooth dependence on initial conditions, etc.).
Smooth initial conditions lead to smooth solutions so that the subgroup of
honest C∞-diffeomorphisms is preserved by the flow.
• One gets insight into stability analysis of fluid flows. Arnold heuristically

calculates sectional curvatures of the volume-preserving diffeomorphism
group and shows that usually they’re negative. Therefore the geodesic de-
viation equation implies that forecasts are extremely dependent on initial
conditions (in a quantifiable way) and hence unreliable.

3. The Virasoro group and the KdV equation

3.1. KdV as an Euler-Arnold equation. The Virasoro algebra is a central ex-
tension of vect(S1)

1→ R→ vir→ vect(S1)→ 1
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Since central extensions of Lie algebras are classified by elements of Lie algebra
cohomology H2(g; R) and when g = vect(S1) it is known that this cohomology
group is 1-dimensional [3]. Therefore the Virasoro algebra is the only non-trivial
central extension of vect(S1). This is an interesting story for another time. To cut
the story short, Lie bracket is given explicitly1 by

[(f∂x, a), (g∂x, b)] = (−[f∂x, g∂x],
∫
S1
f ′g′′dx)

and there is a Frèchet-Lie group with this as its Lie algebra (one can write it
explicitly, but we only ever work with the algebra). The dual vir∗ is the space of
pairs (udx2, c) where udx2 is a quadratic differential and c is a number, because
a quadratic differential pairs with a vector field to give a 1-form which can be
integrated, so the pairing vir∗ × vir→ R is

〈(udx2, c), (f∂x, a)〉 =
∫
S1
ufdx+ ac

We now try to understand the coadjoint action of the Virasoro algebra. This is
defined by

〈ad∗(f∂x,a)(udx
2, c), (g∂x, b)〉 = 〈(udx2, c), ad(f∂x,a)(g∂x, b)〉

so if ad∗(f∂x,a)(udx
2, c) := (vdx2, k), we get∫
S1
vgdx+ bk = 〈(udx2, c), [(f∂x, a), (g∂x, b)]〉

= 〈(udx2, c), (f ′g − g′f,
∫
S1
f ′g′′dx)〉

=
∫
S1

(f ′u+ f ′u+ fu′ + cf ′′′)gdx

so v = cf ′′′ + 2f ′u+ fu′, k = 0, i.e.

ad∗f∂x
(udx2, c) = (cf ′′′ + 2f ′u+ fu′, 0)

Theorem 3. Let H(f∂x, a) = 1
2

∫
S1 f

2dx+a2 be a right-invariant quadratic Hamil-
tonian function on vir. The Euler-Arnold equation is the KdV equation

u̇+ 3uu′ + cu′′′ = 0

Proof. The ‘musical isomorphism’ is given by A(u∂x, c) = (udx2, c) so the Euler-
Arnold equation is

du

dt
= −ad∗A−1(udx2,c)(udx

2, c)

= −3u′u− cu′′′

dc

dt
= 0

�

1Don’t ask me about signs.
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3.2. KdV as an integrable system. We will now try and understand the sense in
which the KdV equation is an integrable system. Recall that a Hamiltonian system
on a symplectic 2n-manifold M is completely integrable if it admits a collection of
n functions H1, . . . ,Hn (first integrals of the system) which

• are linearly independent almost everywhere,
• all Poisson commute with the Hamiltonian,
• and all Poisson commute with one another.

The fact that they Poisson commute with the Hamiltonian means they are pre-
served under the flow. This makes it easier to find solutions because they’re con-
fined to live on the (Lagrangian) orbits of the Hamiltonian Rn-action generated by
the functions. In fact, since the Hamiltonian is a linear combination of the first
integrals (since Lagrangians are minimal dimension coisotropic submanifolds) the
Hamiltonian system is linear on each orbit. If M is compact these must be tori by
the Arnold-Liouville theorem. In the example we’re interested in, however, M is
an infinite-dimensional coadjoint orbit of the Virasoro group. So we’re looking for
an infinite sequence of commuting Hamiltonians.

Remark 1. A function on g∗ which Poisson-commutes with every function is called
a Casimir function. By definition it is constant on the coadjoint orbits. The fact
that there might be an infinite number of Casimir functions (as is indeed the case
for ideal fluids in even-dimensional manifolds) has no bearing on the integrability
or otherwise of the Euler-Arnold flow. First integrals are only interesting if they’re
non-constant on the coadjoint orbits.

Let us write {, } for the standard Lie-Poisson bracket on g∗. This is given by

{f, g}(m) = 〈[dfm, dgm],m〉

Given a point m0 ∈ g∗ we can define a corresponding constant Poisson bracket by

{f, g}0(m) = 〈[dfm, dgm],m0〉

and linear combinations of these Poisson brackets

λ{, }+ µ{, }0

are also Poisson brackets. We have seen that the KdV equation gives the Hamil-
tonian flow of a quadratic Hamiltonian H on vir∗ with respect to the standard
brackets. We also have

Lemma 1. The KdV equation is the Hamiltonian flow of the function

Q(udx2, c) =
1
2

∫
S1

(−u3 + c(u′)2)dx

with respect to the constant Poisson bracket at ( 1
2dx

2, 0).
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Proof. We have

{Q,F}0(m) = 〈[dQm, dFm], (
1
2
dx2, 0)〉

= 〈addQm
dFm, (

1
2
dx2, 0)〉

= 〈dFm, ad∗dQm
(
1
2
dx2, 0)〉

dQm =
(
δQ

δu
,
δQ

δc

)
ad∗dQm

(
1
2
dx2, 0) =

δQ

δu

′

Now
δQ

δu
= −3

2
u2 − cu′′

so the Hamiltonian vector field generated by Q with respect to the Poisson bracket
{, }0 is

du

dt
= −3uu′ − cu′′′

dc

dt
= 0

which is the KdV equation. �

Now we perform the following amusing construction. We say a vector field has
1-Hamiltonian A if it’s the Hamiltonian vector field associated to the function A
on g∗ by the Poisson brackets {, }0. We say a vector field has 2-Hamiltonian B if
it’s the Hamiltonian vector field associated to the function B on g∗ by the Poisson
brackets {, }. The 2-Hamiltonian H2 = H generates the KdV vector field which has
1-Hamiltonian H3 = Q. The 2-Hamiltonian H3 = Q generates a vector field which
has 1-Hamiltonian H4. The 2-Hamiltonian H4 generates a vector field which has
1-Hamiltonian H5 and so forth.

Lemma 2. The Hamitonians thus constructed Poisson commute (for either set of
brackets).

Proof. Suppose j > i.

{Hi, Hj} = {Hi+1, Hj}0
= −{Hj , Hi+1}0
= −{Hj−1, Hi+1}
= {Hi+1, Hj−1}

This eventually reaches either {Hk, Hk} = 0 or {Hk, Hk+1} = {Hk+1, Hk+1}0 = 0.
Similarly for {, }0. �

For this construction to make sense we need to check that the vector field with
2-Hamiltonian Hk is indeed 1-Hamiltonian. This is where the condition that linear
combinations of Poisson brackets are still Poisson brackets will come in (an integra-
bility condition). Instead of doing this (which I can’t find written down anywhere)
we will construct all the Hamiltonian functions at once. To do this we will need
the following observation. Form the Poisson bracket {, }λ = {, }0 + λ{, } and pick
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a Casimir function hλ for this bracket which varies analytically in λ with power
series

hλ =
∞∑
i=0

λihi

The fact that hλ is a Casimir translates into

0 = {hλ, f}λ = {
∑

λihi, f}0 + λ{
∑

λihi, f}

and equating coefficients this gives

{h0, f}0 = 0, {hi, f}0 = −{hi−1, f}
The only tricky part is in finding a Casimir whose h2 and h3 terms are the ones
we wrote down above. The trick is to identify vir∗ with the space of differential
operators c∂2

x +u−λ and to observe that the monodromy of a differential operator
(an element of SL(2,R)) is conjugated by the Virasoro coadjoint action. Its trace
is therefore a Casimir analytic in λ. I won’t go into details. Instead, see Khesin-
Wendt’s beautiful new book [4].
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