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Projective varieties

• A symplectic form is a closed, nondegen-

erate 2-form.

• Such a form is present on the complex pro-

jective space, the Fubini-Study form ωFS,

and pulls back to give a symplectic form

ωV any smooth subvariety V ⊂ CPn.

• Deforming the subvariety to V ′ you actually

get (by an argument of Moser) a diffeomor-

phism φ : V → V ′ such that ωV = φ∗ωV ′.

• So we can use the microscope of symplec-

tic topology to examine projective varieties,

introducing objects which are natural from

the point of view of symplectic topology

but maybe not from the pure algebra.
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Today we’ll be looking through the other end

of this microscope to see what algebraic geom-

etry suggests about the symplectic topology of

some simple varieties.

• First I will explain what kind of objects the

symplectic structure gives you,

• Then I will review how they arise in an

algebro-geometry context by introducing the

symplectic version of Picard-Lefschetz the-

ory.

• Then I’ll give some examples and theorems

which illustrate what I mean about looking

through the other end of the microscope.
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Symplectic objects

What kind of objects does the symplectic form

allow us to define?

• Symplectomorphisms: these are diffeomor-

phisms φ : V → V such that φ∗ωV = ωV and

they form an infinite-dimensional group

Symp(V, ωV ) ⊂ Diff(V )

The component group π0(Symp(V, ωV ) is

called the symplectic mapping class group

and is often much bigger than its image in

the smooth mapping class group π0(Diff(V )).
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• Lagrangian submanifolds: these are sub-

manifolds L ⊂ V of real dimension dimC V
on which ω|L = 0. The space of Lagrangian

submanifolds L is an infinite-dimensional

subspace of the space S of all submani-

folds and its component set π0(L) is of-

ten much bigger than the image of its in-

clusion in π0(S) (two Lagrangian subman-

ifolds can be isotopic as smooth submani-

folds but not through a path of Lagrangian

submanifolds).

Today we will restrict attention to Lagrangian

spheres (we’ll see why in a moment). The

main object of today’s talk is π0(L). We’ll

see an example (due to Seidel) where it’s very

large (in a way suggested by algebraic geom-

etry) and we’ll see an example (due to me)

where it’s very small (ditto).
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Families

Both of these objects arise naturally in projec-
tive geometry.

• Suppose V → V → S is a family of smooth
subvarieties of CPn parametrised by some
base S.

• Define a connection on this family by set-
ting the horizontal spaces to be the sym-
plectic orthogonal complements of the tan-
gent spaces to the fibres (the symplectic
orthogonal complement of a linear subspace
A ∈ TpV is the set of vectors v such that
Ω(v, w) = 0 for all w ∈ TpV where V is the
fibre).

• Here the 2-form Ω on V is just the pullback
of ωFS along the (fibrewise injective) map
V → CPn.

5



• Parallel transport with respect to this con-

nection along a path γ : [0,1] → S gives

diffeomorphims Φγ : Vγ(0) → Vγ(1) which

are symplectic i.e. Φ∗γωVγ(1)
= ωVγ(1)

. In

particular, transport around loops gives a

symplectic monodromy representation

π1(S)→ π0(Symp(V, ωV ))

• Now consider a nodal degeneration V → C,

that is a family of varieties such that all

fibres away from 0 are smooth and the fibre

at zero contains a single nodal singularity

(locally modelled on {
∑
x2
i = 0} ⊂ Ck). We

can define parallel transport along paths γ :

[0,1)→ C where γ(t)→ 0 as t→ 1 and ask

how the parallel transport diffeomorphisms

behave in the limit.
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Theorem 1 (Lefschetz, Seidel) In the limit

a Lagrangian sphere in V is crushed to a point:

this is called the vanishing cycle. The symplec-

tic monodromy around the unit circle is (iso-

topic to) a Dehn twist in this sphere.

A Dehn twist in a Lagrangian sphere is a par-

ticular explicit symplectomorphism first writ-

ten down by Arnold. It acts as the antipo-

dal map on the Lagrangian sphere and is com-

pactly supported near the sphere. We may as

well define it to be the monodromy of a nodal

degeneration. It is easy to see that the sphere

should be Lagrangian: the parallel transport

diffeomorphisms are symplectic and the limit-

ing set is just a point (on which the symplectic

form vanishes).
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Setting

The setting can be summarised as follows:

• Projective varieties have symplectic struc-

tures,

• Families of varieties have symplectic paral-

lel transport maps,

• The monodromy of a loop is a symplecto-

morphism,

• The vanishing cycle of a nodal degenera-

tion of varieties can be represented as a

Lagrangian sphere.
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The questions we want to understand are:

Question 1 Is the symplectic monodromy

π1(S)→ π0(Symp(V, ωV ))

injective? Surjective?

Question 2 Are there Lagrangian spheres which

do not arise via nodal algebraic degenerations

of V or does this construction capture them

all?

Today we’re mostly interested in Question 2.
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Example

The example to have in mind is the following.

• Take k ≤ 8 (labelled) points in general po-

sition in CP2 (no three on a line, no six

on a conic,...) and blow them up, using (a

multiple of) the anticanonical linear system

to embed into CPn. You get a projective

variety which I’ll denote by Dk.

• You get a family S by varying the points

(up to automorphisms PGL(3,C) of CP2).

• Since automorphisms act 4-transitively the

first interesting case is D5 and already π1(S)

is highly nontrivial (it’s the group of pure

5-strand braids on S2 modulo its centre).
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• When you move the points out of general

position (e.g. when two collide) you get

a nodal degeneration (maybe after a base

change) which gives a Lagrangian sphere.

• The simplest interesting case is D2, bring-

ing the two points together along a line.

There is exactly one way to do this, so we

get a preferred Lagrangian sphere (up to

isotopy through Lagrangian spheres), i.e.

a preferred component in π0(L).
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Theorem 2 (E.) Fix a homology class A ∈
H2(Dk; Z) for k = 2,3,4 which could poten-

tially contain a Lagrangian sphere (i.e. A2 =

−2 and ω · A = 0). Then there is a unique

Lagrangian sphere in that homology class up

to isotopy through Lagrangian spheres. Put

another way, the space L(A) of embedded La-

grangian spheres representing the homology

class A is path-connected.

This theorem builds on earlier work of Richard

Hind who proved a similar statement for the

quadric surface S2 × S2. Let us contrast this

theorem with the following observation of Sei-

del.

Theorem 3 (Seidel) In D5 for a homology class

A with A2 = −2, ω·A = 0 we have |π0(L(A))| =
∞.
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To see this, we observe that the symplectic
monodromy of our family S (from varying the
points) is

1. generated by Dehn twists in the vanishing
cycles we have constructed,

2. injective as a map π1(S)→ π0(Symp(D5)),

3. infinite (i.e. |π1(S)| =∞).

To see (1) just observe that the space

Conf`,g5 CP2/Aut

of configurations of five labelled (`) points in
general position (g) in CP2 can be partially
compactified by allowing precisely the kinds of
configurations in special position we used to
construct our Lagrangian spheres and that the
partial compactification has no π1 left.
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To see (2) is harder and requires pseudoholo-

morphic curves. The idea is to look at the

smooth conic through the five points: this

gives a map (actually a homeomorphism)

κ : S = Conf`,g5 CP2/Aut→ Conf`5CP1/Aut

We can mimic this on the level of pseudoholo-

morphic curves: any compatible almost com-

plex structure J ∈ J on D5 admits six embed-

ded pseudoholomorphic curves E1, . . . , E5, C rep-

resenting the five exceptional homology classes

of the blow-up and the homology class of the

proper transform of the conic. Ei∩C is a trans-

verse intersection in a single point by positivity

of intersections.
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This gives a map

BSymp0(D5) = J /Symp0(D5)→ Conf`5CP1/Aut

here the subscript 0 means “acting trivially on

homology” and the object on the left is the

classifying space for symplectic fibre bundles

(because J is contractible and the group acts

freely). Now the family V → S from before

is classified by a map S → BSymp0(D5) and

the map κ from before factors (up to homo-

topy) through this map, proving (2) (in fact

the classifying map is a homotopy equivalence

[E.], another symplectic theorem suggested by

algebraic geometry).
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We therefore have knotted Lagrangian spheres.

It’s not too hard to check that the spheres

in the above example are smoothly isotopic,

but we have shown they’re not Lagrangian iso-

topic (otherwise the Dehn twists they gener-

ate would be isotopic). We can visualise the

Lagrangian spheres via κ by allowing pairs of

points on CP1 to come together along a path

(this corresponds to a degeneration where two

points in CP2 come together). Non-isotopic

paths should give non-isotopic Lagrangians.
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We now discuss the proof of Theorem 2, which

claims that in Dk (k ≤ 4) the space L(A) is con-

nected for each homology class A which could

contain a Lagrangian 2-sphere. Lagrangian

isotopy classifications come in two distinct flavours:

• Local: A neighbourhood of a Lagrangian

L is known to be symplectomorphic to a

neighbourhood of L inside its cotangent

bundle (Weinstein) so the local question is

the Arnold conjecture on nearby Lagrangians:

is every (exact) Lagrangian Hamiltonian iso-

topic to the zero-section? In the case of

S2, any Lagrangian S2 is exact and Hamil-

tonian isotopy is just Lagrangian isotopy,

so the conjecture is settled by the follow-

ing theorem of Hind:

Theorem 4 (Hind) Any Lagrangian sphere

in T ∗S2 is Lagrangian isotopic to the zero-

section.
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• Global: Can we use this local knowledge

to prove path-connectedness of L(A) in a

closed manifold? Hind actually already did

this for S2×S2, where he had the luxury of

foliations by pseudoholomorphic spheres. We

will do it for D2, D3 and D4 where we still

have the luxury of many pseudoholomor-

phic spheres, but not foliating.



Disjoining from divisors

The idea is to find a divisor DA ⊂ Dk (depend-
ing only on the homology class) such that

• Dk \DA is symplectomorphic to a bounded
subset of T ∗S2,

• Any Lagrangian sphere in the homology
class A can be made disjoint from DA by
an isotopy through Lagrangian spheres.

To see the relevant divisors, note that Dk is
biholomorphic to the blow-up of S2 × S2 at
k − 1 points. Recall that S2 × S2 splits as a
neighbourhood of the diagonal (a holomorphic
sphere) and a neighbourhood of the antidiago-
nal (a Lagrangian sphere). Blow up k−1 points
on the diagonal and take DA to be the total
transform of the diagonal: its complement is
still a neighbourhood of the antidiagonal!
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To perform the disjunction, we will proceed in

reverse.

• We will find a family DA(t) of configura-

tions of symplectic spheres (“pseudoholo-

morphic divisors”) such that DA(0) = DA
and DA(1) is disjoint from L.

• Now a standard theorem from symplectic

topology due to Banyaga allows us to ex-

tend such an isotopy of spheres to a global

family of symplectomorphisms φt, i.e. φt(DA) =

DA(t).

• Then the family Lt = φ−1
t (L) is an isotopy

of Lagrangian spheres joining L to a La-

grangian sphere L1 disjoint from DA.
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For simplicity I will show you how to disjoint

L from a very special kind of divisor, namely

a single curve E with E2 = −1 and c1(E) = 1

(an exceptional curve). This actually suffices

for D4. The general case is not much harder.

Theorem 5 For any monotone symplectic 4-

manifold X (think D2, D2, D4), any symplectic

exceptional sphere E can be disjoined from a

Lagrangian sphere L if E · L = 0 in homology.
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Aside

This theorem has been considerably generalised

by Li and Wu in a recent preprint. The mono-

tonicity assumption is replaced by Kodaira di-

mension −∞, E by any symplectic sphere and

disjunction by (geometric intersection with L

equal to homological intersection). This has

some great consequences and is probably the

final step in the story of Lagrangian spheres in

Del Pezzo surfaces. The ideas are very similar

to the ones I will sketch here.
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Neck-stretching

• The idea is to find a family of almost com-

plex structures Jt on Dk and to let E(t)

be the unique Jt-holomorphic sphere rep-

resenting the homology class E.

• The fact that there is a unique embedded

Jt-holomorphic sphere representing an ex-

ceptional class in a monotone 4-manifold

is due to the positivity of intersections be-

tween pseudoholomorphic curves in four di-

mensions (not obvious, but easy).
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• The family Jt is obtained by stretching the

neck around L. You take some fixed, stan-

dard complex structure on a neighbour-

hood of L (which, recall, looks like a sub-

set of T ∗S2) and then stretch it out in a

translation-invariant way in a neck around

the boundary of the neighbourhood.

• “Stretch” means that the neck becomes

longer and longer relative to the metric ob-

tained using ω and Jt.

23



Such degenerations of almost complex struc-

tures are considered in symplectic field the-

ory and the limits of Jt-holomorphic curves as

t → ∞ have been studied intensively since the

work of Hofer. The compactness theorem of

Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder tells

us that in the limit the curve Et breaks up

into various “finite-energy curves” with differ-

ent levels:

• one in T ∗L,

• one in the complement of L,

• possibly some intermediate cylindrical lev-

els which look like an infinite neck.
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All of these levels are potentially noncompact

curves but the “finite-energy” condition I al-

luded to means that they are well behaved

asymptotically: they asymptote to Reeb or-

bits at infinity. Reeb orbits in our case are just

(possibly multiple covers of) geodesics in the

cotangent bundle (with respect to the round

metric on S2).

The hope is to show that E∞ has no com-

ponent in T ∗L: then by the nature of the con-

vergence used in BEHWZ (Gromov-Hofer con-

vergence), Et must be disjoint from L for suf-

ficiently large t.
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When E has c1(E) = 1 it is easy to show

that the X \ L-level of E∞ is connected and

not multiply-covered: one can define a first

Chern class relative to the boundary and differ-

ent components contribute positively to c1 by

monotonicity of X (positive area implies posi-

tive Chern class), but 1 is the smallest integer.
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One can also show that for generic choice of

family Jt the asymptotic Reeb orbits of E∞ ∩
X \ L are distinct and simple (i.e. no multiple

covers). This is a combination of transversality

results none of which are harder than transver-

sality for simple closed holomorphic curves in

standard Gromov-Witten theory:

• multiply-covered Reeb orbits give negative

expected dimension and the underlying curve

is simple;

• distinctness can be achieved by looking at

the asymptotic evaluation map to the space

of Reeb orbits and ensuring transversality

of this map with the multidiagonal.
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Now suppose that E∞ ∩ T ∗S2 is nonempty. It
must consist of finite energy planes with sim-
ple distinct Reeb orbits (planes only in order
to ensure that E∞ has genus 0). But such
planes are easily classified: think of T ∗S2 as a
neighbourhood of the antidiagonal in S2 × S2.
This is the same as collapsing the Reeb orbits
to points (which now form the diagonal). The
finite energy curves compactify to holomorphic
spheres in S2 × S2 which intersect the diago-
nal once transversely and these come in two
families: α = S2 × {?} and β = {?} × S2 which
intersect the antidiagonal L homologically as
α · L = 1 and β · L = −1. Since E · L = 0
we need the same number of α and β planes
to cancel out the homological intersection. So
if E∞ ∩ T ∗L 6= ∅ then there is at least one α

plane and one β plane with different asymp-
totics. But then they intersect (transversely)
inside T ∗S2 and E∞ is not embedded. The
nature of Gromov-Hofer convergence implies
that Et is not embedded for large t and this
contradicts the fact that all Et are embedded.
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Summary

To sum up, we have shown how to disjoin a

Lagrangian sphere from an exceptional sphere.

The same methods work to disjoin Lagrangian

spheres from certain well-chosen divisors DA
in D2, D3 and D4 whose complements are sym-

plectomorphic to T ∗S2 and where we can ap-

ply Hind’s isotopy uniqueness (which is proved

by similar, more involved neck-stretching argu-

ments) to show that the space of Lagrangians

in the homology class A (L(A)) is connected.

In particular, all the Lagrangian spheres arise

as vanishing cycles of nodal degenerations.
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In D5 there is no such divisor and indeed we

saw that knotting (disconnectedness of L(A))

can occur. However, the recent preprint of

Li and Wu (coupled with some work of mine

on the symplectic mapping class group of D5)

actually allows one to prove that all the La-

grangian spheres arise as vanishing cycles of

nodal degenerations in this case as well and

I’m optimistic that the question will soon be

answered affirmatively for all blow-ups of CP2

using their work (and some input on the map-

ping class group).

It is interesting to note that Corti-Smith have

examples in dimension six of Lagrangian 3-

spheres which do not arise as vanishing cycles

of algebraic degenerations, and that the meth-

ods I have outlined are absolutely confined to

four dimensions.
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