
J. reine angew. Math. 579 (2005), 159—173 Journal für die reine und
angewandte Mathematik
( Walter de Gruyter

Berlin � New York 2005

The distribution of values of the Poincaré pairing
for hyperbolic Riemann surfaces

By Yiannis N. Petridis at New York and Morten S. Risager at Aarhus

Abstract. For a cocompact group of SL2ðRÞ we fix a non-zero harmonic 1-form a.
We normalize and order the values of the Poincaré pairing hg; ai according to the length of
the corresponding closed geodesic lðgÞ. We prove that these normalized values have a
Gaussian distribution.

1. Introduction

Let X be a di¤erentiable manifold. We have the pairing between homology and co-
homology:

H1ðX ;RÞ �H 1
dRðX ;RÞ ! R

and a projection f : G ¼ p1ðXÞ ! H1ðX ;ZÞ. Let h� ; �i be the composition of the two maps:

hg; ai ¼
Ð

fðgÞ
a:

We would like to study the distribution of the values of this for a fixed 1-form a. In previ-
ous work the authors [14], [17] have studied this problem for compact and finite volume
hyperbolic surfaces. In both articles we found as limiting distribution the normal Gaussian
distribution. However, the ordering of the group elements was not geometric: in [14] we
ordered the group elements by realizing G ¼ p1ðXÞ as a discrete subgroup of SL2ðRÞ, set-

ting g ¼ a b

c d

� �
and ordering g according to c2 þ d 2. In [17] the matrix elements are

ordered according to ða2 þ b2Þðc2 þ d 2Þ. In both cases the ordering appears to be forced
on us by the methods used: Eisenstein series associated with the problem in which the
group elements are naturally summed in the above-mentioned fashion. There is a more
natural geometric ordering. To every conjugacy class fgg corresponds a unique closed ori-
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ented geodesic of length lðgÞ. Let pðxÞ ¼Kffgg j g prime; lðgÞe xg. The prime number
theorem for closed geodesics states that

pðxÞ@ ex=xð1:1Þ

as x ! y and can be proved using the Selberg trace formula ([9], [2]). In this article we
consider the distribution of the values of the Poincaré pairing where we order the elements
of G according to the lengths lðgÞ.

Theorem 1.1. Let

½g; a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volðXÞ

2kak2lðgÞ

s Ð
fðgÞ

a:

Then

Kffggj ½g; a� A ½a; b�; lðgÞe xg
Kffggj lðgÞe xg ! 1ffiffiffiffiffiffi

2p
p

Ðb
a

e�t2=2 dt

as x ! y.

To prove this theorem we use the method of moments, see [12].

Our approach is quite traditional: the Selberg trace formula, via the Selberg zeta
function and its derivatives in character varieties. The geometric side gives us estimates for
sums of hg; ain ordered according to lðgÞ. The spectral side involves the spectrum of the
Laplace operator, as encoded in its resolvent RðsÞ ¼

�
Dþ sð1� sÞ

��1
. To extract informa-

tion from the spectral side, we use perturbations of the resolvent.

We follow the spirit of our previous work, which was motivated by the question of
finding the distribution and the moments of modular symbols. For this purpose Goldfeld
[5], [6] introduced Eisenstein series associated with modular symbols. In [17] the second
author introduced and studied the properties of hyperbolic Eisenstein series associated with
modular symbols. Our current work uses the Selberg zeta function and its derivatives in
various directions in character varieties. Such perturbations were first studied by Fay [4].

Remark 1.2. The study of the first moments

pðx; aÞ ¼
P

g Ap1ðXÞ
lðgÞex

Ð
fðgÞ

a

was initiated by Zelditch [23], [24] in relation to Bowen’s equidistribution theorem for
closed geodesics. He proved bounds of the form pðx; aÞ ¼ o

�
x=lnðxÞ

�
for a an automorphic

form (perpendicular to the constants). He treated also finite-area hyperbolic surfaces. The
technique in [23], [24] is the trace formula for the composition of two operators: standard
convolution with a point-pair invariant, followed by multiplication by a. Our work shows
how (in principle) one could get asymptotics for pðx; aÞ depending on the Laurent series of
the resolvent at s ¼ 1.
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Remark 1.3. Estimating the number of closed geodesics (periods of the geodesic
flow) with length less than x and certain constraints on its periods can be done using La-
lley’s theorem [11], see also [1], [19]. The constraints discussed in these articles restrict the
periods to lie in a compact interval, say, ½a; b�. In our theorem we roughly restrict the pe-
riods to lie in intervals ½a

ffiffiffiffiffiffiffiffi
lðgÞ

p
; b

ffiffiffiffiffiffiffiffi
lðgÞ

p
�. In [20] a Gaussian law similar to ours is stated, as

a consequence of [11] and [1]. Sharp [20] also gets a local limit theorem. The method in all
these papers is to use the thermodynamic formalism and as a consequence the results apply
to variable negative curvature. We stick to a more classical approach using the Selberg
trace formula and get more explicit results.

2. The Selberg zeta function

Let G be a discrete subgroup of PSL2ðRÞ with compact quotient X ¼ GnH. Here H is
the upper half-plane. The Selberg zeta function is defined as

Zðs; wÞ ¼
Q
fg0g

Qy
k¼0

�
1� wðg0ÞNðg0Þ

�s�k
�
;ð2:1Þ

where w is a unitary character of G and the product is over primitive conjugacy classes, i.e.
g0 is not a power of another element in G. The norm NðgÞ is defined as follows. We con-

jugate (in SL2ðRÞ) the hyperbolic matrix g to
m 0

0 m�1

� �
with m > 1. Then NðgÞ ¼ m2.

There is a simple relation between NðgÞ and lðgÞ: lðgÞ ¼ log
�
NðgÞ

�
. The product in (2.1)

converges absolutely for <ðsÞ > 1. We shall use the following convention: if in a product
or sum the group elements carry a subscript 0, then it extends over primitive elements/
conjugacy classes. If not, then it extends over all group elements/conjugacy classes. For our
purposes we need in fact a family of characters

wð� ; �Þ: G ! S1;

g 7! expð�i�hg; aiÞ:

We will denote the corresponding Selberg zeta functions by Zðs; �Þ. As in [8], Prop. 3.5, p.
56, 4.2, p. 67, we have the following splitting of Z 0ðs; �Þ=Zðs; �Þ:

Z 0ðs; �Þ
Zðs; �Þ ¼

P
fg0g

wðg0; �Þ ln
�
Nðg0Þ

�
Nðg0Þ

s þ A1ðs; �Þ þ A2ðs; �Þ;ð2:2Þ

where

A1ðs; �Þ ¼
P
fgg

wðg; �Þ ln
�
Nðg0Þ

�
NðgÞs½NðgÞ � 1�ð2:3Þ

and

A2ðs; �Þ ¼
P
fg0g

ln
�
Nðg0Þ

� wðg0; �Þ
2Nðg0Þ

�2s

1� wðg0; �ÞNðg0Þ
�s :ð2:4Þ

We have the following lemma based on [3]:
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Lemma 2.1.

hg; ai ¼
Ð

fðgÞ
a ¼ O

�
lnNðgÞ

�
;

where the implied constant depends on the group only.

Proof. We let F LH be the normal polygon with i in its interior. We may pick
generators g1; . . . ; gM such that gjðFÞ is a neighboring fundamental domain. We may write
every g A G as

g ¼
QkðgÞ
j¼1

gmj
; where mj A f1; . . . ;Mg:

We let C ¼ max
�
jhgj; aij

�� j ¼ 1; . . . ;M
�
. Clearly jhg; aijeCkðgÞ. We now quote [3], Satz

1, to conclude the existence of constants aG; bG such that

kðgÞe aG logða2 þ b2 þ c2 þ d 2Þ þ bG:ð2:5Þ

Here a; b; c; d are the entries of g.

Pick B > 0 such that Bf dði; xÞ for all x A F . Here dð� ; �Þ is the hyperbolic distance
in H. Such B exists since X is compact. Since lðgÞ ¼ inf

x AF
dðx; gxÞ we conclude from

dði; giÞe dði; xÞ þ dðx; gxÞ þ dðgx; giÞ ¼ dðx; gxÞ þ 2dði; xÞe dðx; gxÞ þ 2B

that dði; giÞe lðgÞ þ 2B. One may check that

cosh dði; giÞ ¼ 1þ ji � gij2

2=ðiÞ=ðgiÞ

 !
¼ a2 þ b2 þ c2 þ d 2

2
:

Hence

logða2 þ b2 þ c2 þ d 2Þ ¼ log
�
2 cosh

�
dði; giÞ

��
e log

�
2
�
cosh

�
lðgÞ þ 2B

���
¼ logðe logNðgÞþ2B þ e�logNðgÞ�2BÞ ¼ O

�
log
�
NðgÞ

��
which finishes the proof. r

Using Lemma 2.1 and [8], Prop. 2.5, we easily see that the series A1ðs; �Þ converges
absolutely for <ðsÞ > 0, that A2ðs; �Þ converges absolutely for <ðsÞ > 1=2 and the same
is true for the derivatives in � of all order for A1ðs; �Þ and A2ðs; �Þ. To apply the standard
methods of analytic number theory we study the series

Eðs; �Þ ¼
P
fg0g

wðg0; �Þ ln
�
Nðg0Þ

�
Nðg0Þ

sð2:6Þ
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and its derivatives at � ¼ 0

EðnÞðs; 0Þ ¼
P
fg0g

ð�iÞnhg0; ain ln
�
Nðg0Þ

�
Nðg0Þ

s :ð2:7Þ

We need to know the pole order at s ¼ 1 and the leading term in the Laurent expansion of
the derivatives in � of Z 0ðs; �Þ=Zðs; �Þ at � ¼ 0, and we need to control the derivatives as
functions of s on vertical lines for <ðsÞ > 1=2. The series (2.7) is similar to the Eisenstein
series twisted by modular symbols introduced by Goldfeld [5] and their holomorphic ana-
logues introduced by Eichler [3].

3. The automorphic Laplacian

The beautiful connection between the Selberg zeta function and the spectrum of the
automorphic Laplacian goes through the Selberg trace formula. We shall only briefly touch
upon this connection and refer to [8], [2], [18], [22] for further details.

We let

D ¼ y2
q2

qx2
þ q2

qy2

 !

be the Laplace operator for the upper half-plane. We consider the space

L2
�
GnH; wð� ; �Þ

�
of
�
G; wð� ; �Þ

�
-automorphic functions, i.e. functions f : H ! C where

f ðgzÞ ¼ wðg; �Þ f ðzÞ;

and

Ð
GnH

j f ðzÞj2 dmðzÞ:

Here dmðzÞ ¼ y�2 dx dy is the invariant Riemannian measure on H derived from the Poin-
caré metric ds2 ¼ y�2ðdx2 þ dy2Þ. We shall denote by k � k the usual norm in the Hilbert

space L2
�
GnH; wð� ; �Þ

�
. The automorphic Laplacian ~LLð�Þ is the closure of the operator

acting on smooth functions in L2
�
GnH; wð� ; �Þ

�
by Df . The spectrum of ~LLð�Þ is discrete and

�~LLð�Þ is nonnegative with eigenvalues

0e l0ð�Þe l1ð�Þe � � � ;

satisfying lim
n!y

lnð�Þ ¼ y,

Py
n¼1

lnð�Þ�2 < y;ð3:1Þ
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and

Kflnð�Þe lg@ volðGnHÞ
4p

l as l ! y:ð3:2Þ

The corresponding eigenfunctions ffnð�Þg
y
n¼0 may be chosen such that they form a com-

plete orthonormal family. The first eigenvalue is zero if and only if � ¼ 0 and in this case
it is a simple eigenvalue. We consider two additional spectral problems on GnH: the Di-
richlet problem and the Neumann (free boundary) problem. We denote their correspond-
ing eigenvalues by ln and mn respectively. Using the Rayleigh quotient we easily get:
mn e lnð�Þe ln for all �. This implies for the spectral counting functions

volðGnHÞ
4p

l@NDðlÞeN�ðlÞeNNðlÞ@
volðGnHÞ

4p
l as l ! y:ð3:3Þ

The resolvent ~RRðs; �Þ ¼
�
~LLð�Þ þ sð1� sÞ

��1
, defined o¤ the spectrum of ~LLð�Þ, is a Hilbert-

Schmidt L2
�
GnH; wð� ; �Þ

�
operator. It is holomorphic in s, and its operator norm may be

bounded as

k ~RRðs; �Þky e
1

dist
�
sðs� 1Þ; spec

�
~LLð�Þ

�� e 1

jtjð2s� 1Þ ;ð3:4Þ

where s ¼ sþ it, s > 1=2. We recall that for a compact operator, T , the singular values,
fbkg

y
k¼0, are defined as the square roots of the eigenvalues of T �T , i.e.

T �T f ¼
Py
k¼1

b2
kð f ;ckÞck; b1 f b2 f � � � > 0;

where fckg
y
k¼0 forms a complete orthonormal family. When T is symmetric the singular

values are the absolute values of the eigenvalues of T . The p-norm is defined by

kTkpp ¼
Py
k¼0

b
p
k :

When p ¼ 2 this is the Hilbert-Schmidt norm and when p ¼ 1 this is the trace norm.

We shall need a bound on the Hilbert-Schmidt norm of the resolvent. We let
s ¼ sþ it.

Lemma 3.1. For fixed s > 1=2 the Hilbert-Schmidt norm of the resolvent is bounded

as jtj ! y. More precisely

k ~RRðs; �Þk2 eO
�
ð2s� 1Þ�1�ð3:5Þ

as t ! y. The involved constant depends only on the group G.

Proof. Let lnð�Þ ¼ 1=4þ rnð�Þ2 with rnð�Þ A RþW iRþ. Then

sð1� sÞ � lnð�Þ ¼ �
�
ðs� 1=2Þ2 þ rnð�Þ2

�
:
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Hence

k ~RRðs; �Þk22 ¼
Py
n¼0

1

jðs� 1=2Þ2 þ rnð�Þ2j2
ð3:6Þ

¼
Py
n¼0

1��ðs� 1=2Þ þ i
�
tþ rnð�Þ

���2��ðs� 1=2Þ þ i
�
t� rnð�Þ

���2 :
For rnð�Þ A iRþ all individual summands are less than t�4 and, since there can only be fi-
nitely many small eigenvalues, the sum over small eigenvalues is O�ðt�4Þ.

For 0e rnð�Þe 2t the individual summands are less than
�
ðs� 1=2Þt

��2
and (3.3)

says that there are Oðt2Þ elements in the sum. Hence

P
0ernð�Þe2t

1

jðs� 1=2Þ2 þ rnð�Þ2j2
¼ O

�
ðs� 1=2Þ�2�:

When rnð�Þ > 2t we have rnð�Þ � t > rnð�Þ=2 and hence the individual terms in the
sum may be bounded by rnð�Þ�4. We therefore have

P
rnð�Þ>2t

1

jðs� 1=2Þ2 þ rnð�Þ2j2
e 4

P
rnð�Þ>2t

1

rnð�Þ4
¼ Oðt�2Þ

which finishes the proof. (We have again used (3.3) for the last equality.) r

We fix z0 A H and introduce unitary operators

Uð�Þ: L2ðGnHÞ ! L2
�
GnH; wð� ; �Þ

�
;ð3:7Þ

f 7! exp

�
i�
Ðz
z0

a

�
f ðzÞ:

We then define

Lð�Þ ¼ U�1ð�Þ~LLð�ÞUð�Þ;ð3:8Þ

Rðs; �Þ ¼ U�1ð�Þ ~RRðs; �ÞUð�Þ:ð3:9Þ

This ensures that Lð�Þ and Rðs; �Þ act on the fixed space L2ðGnHÞ. It is then easy to verify
that

Lð�Þh ¼ Dhþ 2i�hdh; ai� i�dðaÞh� �2ha; ai;ð3:10Þ �
Lð�Þ þ sð1� sÞ

�
Rðs; �Þ ¼ Rðs; �Þ

�
Lð�Þ þ sð1� sÞ

�
¼ I :ð3:11Þ

Here

h f1 dzþ f2 dz; g1 dzþ g2 dzi ¼ 2y2ð f1g1 þ f2g2Þ;

dðp dxþ q dyÞ ¼ �y2ðpx þ qyÞ:
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We notice that dðaÞ ¼ 0. We notice also that

Lð1Þð�Þh ¼ 2ihdh; ai� 2�ha; ai;ð3:12Þ

Lð2Þð�Þh ¼ �2ha; ai;ð3:13Þ

LðiÞð�Þh ¼ 0; when if 3:ð3:14Þ

(We use superscript ðnÞ to denote the n’th derivative in �.) Fix k > 1. The resolvent and the
Selberg zeta function are connected through the following identity, see [8], Theorem 4.10,
p. 72:

1

1� 2s

Z 0

Z
ðs; �Þ � 1

1� 2k

Z 0

Z
ðk; �Þð3:15Þ

¼
Py
n¼0

1

sð1� sÞ � lnð�Þ
� 1

kð1� kÞ � lnð�Þ

� �

� volðGnHÞ
2p

Py
k¼0

1

sþ k
� 1

kþ k

� �
:

We note that by the Hilbert identity

Rðs; �Þ � Rðk; �Þ ¼ �
�
sð1� sÞ � kð1� kÞ

�
Rðs; �ÞRðk; �Þð3:16Þ

the di¤erence of resolvents is the product of two Hilbert-Schmidt operators. Hence, by the
inequality

kSTk1 e kSk2kTk2ð3:17Þ

we conclude that Rðs; �Þ � Rðk; �Þ is of the trace class. We can therefore define the trace

tr
�
Rðs; �Þ � Rðk; �Þ

�
¼
Py
n¼0

��
Rðs; �Þ � Rðk; �Þ

�
cn;cn

�
:ð3:18Þ

We note that this enables us to write (3.15) in the form

1

1� 2s

Z 0

Z
ðs; �Þ � 1

1� 2k

Z 0

Z
ðk; �Þ ¼ tr

�
Rðs; �Þ � Rðk; �Þ

�
þQðsÞ;ð3:19Þ

where QðsÞ is the last sum in (3.15) (note that Rðs; �Þ � Rðk; �Þ and ~RRðs; �Þ � ~RRðk; �Þ have
the same trace). It is this identity that we shall study to obtain information about the ana-
lytic properties of (2.7).

We want to see how this behaves as jtj ! y. It is easy to see ([8], p. 80) that if
s ¼ sþ it then for fixed s > 0 we have QðsÞ ¼ Oðlog tÞ. From (3.5) and (3.17) we conclude
that when s > 1=2

tr
�
Rðs; �Þ � Rðk; �Þ

�
¼ Oðt2Þ:ð3:20Þ

(By more careful estimates one may prove OðtÞ. See [8], Eq. (4.8).) Note that when � ¼ 0
this proves that Eðz; sÞ grows at most like Oðt3Þ on vertical lines s > 1=2 (see (2.2)). We
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wish to prove something similar for EðnÞðs; �Þ. To obtain this we di¤erentiate (3.11) in � and
get

RðnÞðs; �Þ ¼ �
Pn�1

i¼0

n

i

� �
RðiÞðs; �ÞLðn�iÞð�ÞRðs; �Þð3:21Þ

¼ �
Pn
i¼1

n

i

� �
Rðs; �ÞLðiÞð�ÞRðn�iÞðs; �Þ:

This is naturally the second Neumann series for the resolvent. We use LðiÞð�Þ ¼ 0 for if 3,
which reduces (3.21) to

Rð1Þðs; �Þ ¼ �Rðs; �ÞLð1Þð�ÞRðs; �Þ;

RðnÞðs; �Þ ¼ �
 

n

1

� �
Rðs; �ÞLð1Þð�ÞRðn�1Þðs; �Þð3:22Þ

þ n

2

� �
Rðs; �ÞLð2Þð�ÞRðn�2Þðs; �Þ

!
:

We need the following lemma:

Lemma 3.2. The operators Rðs; �ÞLðiÞð�Þ;LðiÞð�ÞRðs; �Þ are bounded and their norms

grow at most polynomially for s on a fixed line <ðsÞ ¼ s > 1=2. More precisely we have

kRðs; �ÞLð1Þð�Þky ¼ OðjtjÞ; kLð1Þð�ÞRðs; �Þky ¼ OðjtjÞ;ð3:23Þ

kRðs; �ÞLð2Þð�Þky ¼ Oðjtj�1Þ; kLð2Þð�ÞRðs; �Þky ¼ Oðjtj�1Þ:ð3:24Þ

Proof. The claim in (3.24) follows easily from (3.4) and the fact that Lð2Þð�Þ is
bounded since it is just a multiplication operator on a compact set. The first claim in (3.23)
follows from the second since

kRðs; �ÞLð1Þð�Þky ¼
		�Rðs; �ÞLð1Þð�Þ

��		
y

¼ kLð1Þð�ÞRðs; �Þky:

To prove the remaining case we use Sobolev s-norms, k � kH s and the fact that for any sec-
ond order elliptic operator P there exists a c 0 such that

kukH 2 e c 0ðkuk þ kPukÞ:

We shall use P ¼ Lð�Þ. Hence

		Lð1Þ�Rðs; �Þ�u		e ckRðs; �ÞukH 1

e ckRðs; �ÞukH 2

e c 0
�
kRðs; �Þuk þ kLð�ÞRðs; �Þuk

�
¼ c 0

�
kRðs; �Þuk þ ksð1� sÞRðs; �Þuþ uk

�
where we have used (3.11). The result now follows from (3.4). r
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Theorem 3.3. For fixed s ¼ <ðsÞ the di¤erence

RðnÞðs; �Þ � RðnÞðk; �Þ

is of the trace class and the trace grows at most polynomially in jtj ¼ j=ðsÞj. For 1=2 < se 1
we have

tr
�
RðnÞðs; �Þ � RðnÞðk; �Þ

�
¼ Oðjtjnþ2þeÞ:

Proof. Clearly jtrð�Þje k � k1. From (3.22) it is clear that RðnÞðs; �Þ is a linear com-

bination of terms of the form Rðs; �Þ
Qm
i¼1

�
Lkið�ÞRðs; �Þ

�
where ki A f1; 2g: It is also clear that

one of the terms is a constant times Rðs; �Þ
�
Lð1Þð�ÞRðs; �Þ

�n
and that none of the products

have more than n terms. We shall prove by induction that

				Rðs; �ÞQm
i¼1

�
Lkið�ÞRðs; �Þ

�
� Rðk; �Þ

Qm
i¼1

�
Lkið�ÞRðk; �Þ

�				
1

¼ Oðjtj2þnÞ

for me n. The case n ¼ 0 is (3.20). In the general case we add and subtract

Rðs; �Þ
Qm
i¼1

�
Lkið�ÞRðk; �Þ

�
and find

				Rðs; �ÞQm
i¼1

�
Lkið�ÞRðs; �Þ

�
� Rðk; �Þ

Qm
i¼1

�
Lkið�ÞRðk; �Þ

�				
1

e

				Rðs; �Þ
�Qm

i¼1

�
Lkið�ÞRðs; �Þ

�
�
Qm
i¼1

�
Lkið�ÞRðk; �Þ

��				
1

þ
				�Rðs; �Þ � Rðk; �Þ

�Qm
i¼1

�
Lkið�ÞRðk; �Þ

�				
1

e kRðs; �ÞLkmky
				Rðs; �ÞQm�1

i¼1

�
Lkið�ÞRðs; �Þ

�
� Rðk; �Þ

Qm�1

i¼1

�
Lkið�ÞRðk; �Þ

�				
1

þ kRðs; �Þ � Rðk; �Þk1
				Qm
i¼1

�
Lkið�ÞRðk; �Þ

�				
y

:

We quote Lemma 3.2 and use the induction hypothesis. This completes the induction. We
conclude that

kRðnÞðs; �Þ � RðnÞðk; �Þk1 ¼ Oðjtj2þnÞ: rð3:25Þ

Equation (2.2) together with the fact that all derivatives in � of A1ðs; �Þ and A2ðs; �Þ
are absolutely convergent for <ðsÞ > 1=2 enables us to conclude from Theorem 3.3 that the
function EðnÞðs; �Þ grows at most polynomially in t on every fixed vertical line s > 1=2.

4. The pole at sF 1

In this section we identify the pole order and the leading term of EðnÞðsÞ ¼ EðnÞðs; 0Þ at
s ¼ 1. (In EðnÞðs; �Þ;Rðs; �Þ and LðnÞð�Þ we shall often omit 0 from the notation when we put
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� ¼ 0.) We note that EðsÞ has a first order pole with residue 1 at this point as is easily seen
from (3.15). Since

d n

d�n
1

1� 2s

Z 0

Z
ðs; �Þ � 1

1� 2k

Z 0

Z
ðk; �Þ

� �����
�¼0

¼ tr
�
RðnÞðsÞ � RðnÞðkÞ

�
ð4:1Þ

equation (3.22) and the fact that RðnÞðsÞ is holomorphic in <ðsÞ > 1 enables us to conclude
that the left-hand side is holomorphic in <ðsÞ > 1.

We recall that close to s ¼ 1

RðsÞ ¼
Py
i¼�1

Riðs� 1Þ i; R�1 ¼ �P0ð4:2Þ

and that RðsÞ � R�1ðs� 1Þ�1 is holomorphic in <ðsÞ > h. Here h ¼ <ðs1Þ, s1ð1� s1Þ ¼ l1
is the first small eigenvalue, and P0 f ¼ h f ; volðGnHÞ�1=2i volðGnHÞ�1=2 is the projection
of f to the zero eigenspace.

To understand the meromorphic structure of (4.1) at s ¼ 1, we must understand the
meromorphic structure of RðnÞðsÞ. The crucial observation is that

Lð1ÞP0 ¼ 0; P0L
ð1Þ ¼ 0:ð4:3Þ

The first equality follows from the fact that Lð1Þ is a di¤erentiation operator while P0

projects to the constants. The second equality follows from the first by using that both op-
erators are selfadjoint. Using this we can now prove:

Lemma 4.1. For nf 0, RðnÞðsÞ has a singularity at s ¼ 1 of at most order ½n=2� þ 1. If
n ¼ 2m the singularity is of order mþ 1 and the ðmþ 1Þ-term in the expansion around s ¼ 1
is

ð2mÞ!
2m

ð�1ÞmR�1ðLð2ÞR�1Þm:

Proof. The claim about n ¼ 0 is contained in (4.2). The proof is induction in n but
for clarity we do n ¼ 1; 2 by hand. Using (3.22) and (4.2) we see that Rð1Þðs; 0Þ has a pole of
at most second order and that the singular part is

R�1L
ð1ÞR�1ðs� 1Þ�2 þ ðR0L

ð1ÞR�1 þ R�1L
ð1ÞR0Þðs� 1Þ�1:

But this is zero by (4.3). Hence Rð1ÞðsÞ is regular at s ¼ 1.

For n ¼ 2 we note that by (4.2) and (4.3), RðsÞLð1Þ is regular. Hence we find that the
first term in

Rð2ÞðsÞ ¼ �
 

2

1

� �
RðsÞLð1ÞRð1ÞðsÞ þ 2

2

� �
RðsÞLð2ÞRðsÞ

!

is regular. By (4.2) the second term is of at most order two with leading term

� 2

2

� �
R�1L

ð2ÞR�1.
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In the general case we note that, since RðsÞLð1Þ is regular the first term in

RðnÞðsÞ ¼ �
 

n

1

� �
RðsÞLð1ÞRðn�1ÞðsÞ þ n

2

� �
RðsÞLð2ÞRðn�2ÞðsÞ

!

has at most a pole of the same order as Rðn�1ÞðsÞ. By (4.2) the second term has a pole of
order at most one more than that of Rðn�2ÞðsÞ. The claim about the order of the pole fol-
lows. The claim about the leading term also follows once we note that

2m

2

� �
. . .

6

2

� �
4

2

� �
2

2

� �
¼ ð2mÞ!

2m
: r

Using this we can now prove the following theorem. Let kak2 ¼
Ð

GnH
ha; ai dmðzÞ.

Theorem 4.2. The function EðnÞðsÞ is identically zero for n odd. If n ¼ 2m the function

EðnÞðz; sÞ has a pole of order mþ 1 and the leading term is

ð�1Þm ð2mÞ!kak2m

volðGnHÞm :

Proof. For n odd the group elements g and g�1 contribute opposite values in (2.7).
When n is even, we notice that by (3.19) and (2.2) the leading term of EðnÞðsÞ is minus the
leading term of tr

�
RðnÞðsÞ � RðnÞðkÞ

�
. Using the above lemma, (2.2) and the fact that the

derivatives of A1ðsÞ and A2ðsÞ are holomorphic in <ðsÞ > 1=2 we immediately get the claim
about the pole orders. The calculation of the leading term follows from the observation
that

Py
k¼0

�
R�1ðLð2ÞR�1Þmck;ck

�
¼ �

�
ðLð2ÞR�1Þmc0;c0

�

¼ ð�1Þmþ1

volðGnHÞm

 Ð
GnH

�2ha; ai dmðzÞ
�m

: r

5. Calculating the moments

We are now ready to prove Theorem 1.1. The proof uses the method of asymptotical
moments precisely as in [14], [17]. From Theorem 4.2, Theorem 3.3 and Lemma 2.1 we
may conclude, using a more or less standard contour integration argument (see [14], [17] for
details), that as T ! y

P
fg0g

Nðg0ÞeT

hg0; ai
n logNðg0Þð5:1Þ

¼
ð2mÞ!kak2m

m! volðGnHÞm TðlogTÞm þO
�
TðlogTÞm�1�; n ¼ 2m;

0; n ¼ 2mþ 1:

8><
>:

Petridis and Risager, Poincaré pairing, Riemann surfaces170



Let now

½g; a� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

volðGnHÞ
2 log

�
NðgÞ

�
kak2

s
hg; ai:ð5:2Þ

We then define the random variable XT with probability measure

PðXT A ½a; b�Þ ¼Kffg0g jNðg0ÞeT ; ½g0; a� A ½a; b�g
Kffg0g jNðg0ÞeTg :ð5:3Þ

We want to calculate the asymptotical moments of these, i.e. find

MnðXTÞ ¼
1

Kffg0g jNðg0ÞeTg
P
fg0g

Nðg0ÞeT

½g0; a�
nð5:4Þ

as T ! y. We note that by the prime number theorem for closed geodesics (or (5.1)) the
denominator is asymptotically T=logT . By partial summation we have

P
Nðg0ÞeT

½g0; a�
n ¼ volðGnHÞn=2

kakn2n=2

P
Nðg0ÞeT

hg0; ai
n logNðg0Þ

1

log
�
Nðg0Þ

�n=2þ1

¼ volðGnHÞn=2

kakn2n=2 logðTÞn=2þ1

P
Nðg0ÞeT

hg0; ai
n logNðg0Þ þO

�
log
�
logðTÞ

��
:

This may be evaluated by (5.1). We find

MnðTÞ !
ð2mÞ!
m!2m

; if n ¼ 2m;

0; otherwise.

8<
:

We notice that the right-hand side coincides with the moments of the Gaussian distribution.
Hence by a classical result due to Fréchet and Shohat (see [12], 11.4.C) we may conclude
that

PðXT A ½a; b�Þ ! 1ffiffiffiffiffiffi
2p

p
Ðb
a

exp � x2

2

� �
dx as T ! y:

This is almost Theorem 1.1. The only di¤erence is that here we are only counting the prime
geodesics. Let m > 0 be a lower bound for the lengths of the closed geodesics on GnH.
Define

fnðTÞ ¼
P
fgg

NðgÞeT

hg; ain;

PnðTÞ ¼
P
fg0g

Nðg0ÞeT

hg0; ai
n

Petridis and Risager, Poincaré pairing, Riemann surfaces 171



i.e. the first sums over all conjugacy classes, while the second sums only over the primitives.
Since every conjugacy class may be written uniquely as the power of a primitive one, we use
hgm0 ; ai ¼ mhg0; ai and Nðgm0 Þ ¼ Nðg0Þ

m to see that

fnðTÞ ¼ PnðTÞ þ
P½logT=log m�

m¼2

mnPnð
ffiffiffiffi
T

m
p

Þ:ð5:5Þ

The sum is clearly O
�
ðlogTÞnþ1Pnð

ffiffiffiffi
T2

p
Þ
�
. Using partial integration as above it is not dif-

ficult to see that

PnðTÞ@ 1

logT

P
fg0g

Nðg0ÞeT

hg0; ai
n logNðg0Þ:ð5:6Þ

Hence by (5.5) and the bound on the sum we have also PnðTÞ@ fnðTÞ. Playing the same
trick backwards we find that (5.1) is true also if we sum over all conjugacy classes and not
only primitive ones. Doing the same argument as that following (5.1) we arrive at Theorem
1.1.

Remark 5.1. We conclude by remarking that we could have proved a distribution
result for the Poincaré pairing between the homology classes and a fixed complex holo-

morphics 1-form f ðzÞ dz instead of a harmonic 1-form a. In this case the combinatorics
involved would become more di‰cult as one needs to introduce an n-parameter family of
character instead of wð� ; �Þ. One finds that if we define

½g; f ðzÞ dz� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

volðGnHÞ
2 log

�
NðgÞ

�
k f ðzÞ dzk2

s
hg; f ðzÞ dzi

and define the random variable YT with probability measure

PðYT A RÞ ¼Kffgg jNðgÞeT ; ½g; f ðzÞ dz� A Rg
Kffgg jNðgÞeTgð5:7Þ

where RLC is a rectangle, then

PðYT A RÞ ! 1

2p

Ð
R

exp � x2 þ y2

2

� �
dx dy as T ! y:
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