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1. Introduction

A basic problem in the theory of quantization of chaotic Hamiltonians is that of the
behavior of the mass of eigenstates in the semiclassical limit. For the Hamiltonian which is
the geodesic motion on the tangent space of an arithmetic hyperbolic surface the equidis-
tribution of these masses has been established for some of the eigenstates [20], [25]. In
this paper we show that the mass of the continuous spectrum of the Laplacian on arithmetic
hyperbolic three manifolds becomes equidistributed in the large energy limit, that is, we
establish the ‘quantum unique ergodicity conjecture’ [22] for these states. As in [20] this
issue of equidistribution can be reduced to establishing subconvex estimates for GL2 auto-
morphicL-functions associated with corresponding imaginary quadratic fields, see [17] or
[18] for this reduction. The main result of this paper establishes these estimates.

We turn to a more detailed description of our results. We stick to a specific hyperbolic
three manifold, the results may be extended to any congruence subgroup of the Bianchi
groups [24].

LetK = Q(
√−1) andO = Z[

√−1] be its ring of integers. The group0 = SL2(O)
is a lattice in SL2(C) and acts discontinuously on the hyperbolic 3-space
H3 ∼= SL2(C)/ SU(2). The quotientX0 = 0 \ H3 is a non-compact hyperbolic 3-
manifold of finite volume (the Picard manifold). TheL2-spectrum of the Laplacian1
on functions onX0 consists of the continuous spectrum [1,∞) provided by the unitary
Eisenstein seriesE(w,1/2 + it), t ≥ 0, see (1.1) below, and a discrete spectrum cor-
responding to an orthonormal basis of eigenfunctionsφ0 = 1/

√
vol (X0) and cusp forms

φ1, φ2, . . . with eigenvalues 0< λ1 ≤ λ2 ≤ . . . . We parametrizeH3 asw = (y, z) ∈ H3,
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y > 0, z = x1 + ix2 ∈ C and SL2(C) acts onH3 by

g · w =
(
α β

γ δ

)
w = (y(g · w), z(g · w))

with

y(g · w) = y

|γ z+ δ|2 + |γy|2 , z(g · w) = (αz+ β)(γ z+ δ)+ αγ y2

|γ z+ δ|2 + |γ |2y2
.

Let

0∞ =
{(

1 m

0 1

)
,m ∈ O

}
⊂ 0

be the standard parabolic subgroup fixing the cusp at∞. The Eisenstein seriesE(w, s) is
defined for<s > 1 by

E(w, s) =
∑

g∈0∞\0
(y(g · w))2s . (1.1)

A Maaß cusp formφ(w) (such as one of theφj ’s above) has a Fourier expansion

φ(w) =
∑

06=ν∈O
c(ν)yKir(2π |ν|y)e(〈ν, z〉) (1.2)

where1φ+ (1+ r2)φ = 0,1 = y2(4∂z∂z+ ∂2
y )− y∂y . To each cusp formφ we associate

its standardL-function, which takes the form

L(s, φ) =
∑
(ν)6=0

c(ν)N(ν)−s . (1.3)

HereN(ν) = νν̄ and(ν) is the principal ideal generated byν. ThisL-function and its
twists by Grossencharacters satisfy functional equations as follows: Letλ((α)) = (α/|α|)4
be the basic Grossencharacter on ideals(α) of O. Then the twistedL-function is defined
as

L(s, φ ⊗ λn) :=
∑
(ν)6=0

c(ν)λn(ν)

N(ν)s
(1.4)

and is entire. The completedL-function

3(s, φ ⊗ λn) := π2s0

(
s + |4n| + ir

2

)
0

(
s + |4n| − ir

2

)
L(s, φ ⊗ λn) (1.5)

satisfies

3(1 − s, φ ⊗ λ−n) = 3(s, φ ⊗ λn).



Vol. 1, 2001 Quantum unique ergodicity for SL2(O)\H3 and estimates forL-functions 279

The Phragmen-Lindelöf principle [3] or the approximate functional equation, see [14],
implies for a fixed cusp formφ the bound

L(1/2 + it , φ ⊗ λn) �ε,φ (1 + |n+ it |)1+ε, ε > 0 (1.6)

for L(s, φ ⊗ λn) on its critical line. This bound will be referred to as the convexity bound.

THEOREM 1.1. Fix φ as above. Then

(i) for m fixed we have

L(1/2 + it , φ ⊗ λm) �m,φ (1 + |t |)159/166,

(ii) for t fixed

L(1/2 + it , φ ⊗ λm) �t,φ (1 + |m|)159/166.

REMARK 1.2. The dependence of the implied constants on the eigenvalue parameterr

andm in (i) andr andt in (ii) are polynomial inm andr (respectivelyt andr). Also there
is nothing special about the exponents, which can somewhat be improved by the methods
below.

Our application to quantum unique ergodicity mentioned earlier uses part (i) only. As is
shown in [17], [18] (i) implies the following equidistribution result.

Let µt be the measures onX0 (quantum mechanical densities) that correspond to the
Eisenstein series, i.e., the continuous states masses, defined as follows

µt = |E(w,1/2 + it)|2 dvol(w). (1.7)

Note that the energy (eigenvalue) corresponding toE(w,1/2 + it) is 1+ t2.

THEOREM 1.3. For K1 andK2 compact Jordan measurable subsets ofX0 we have

lim
t→∞

µt(K1)

µt (K2)
= vol(K1)

vol(K2)
.

The setsK1 andK2 can be taken to be geodesic balls for instance. Theorem 1.3 asserts
that the continuous spectrum ofX0 is ‘quantum ergodic’ and confirms the general conjecture
in [22] in this case. It is the main result of the paper.

As with all the recent developments concerning subconvexity estimates forL-functions
[12], [5], [25], [15], we use families. We establish an averaged version of the expected
sharp bound, that is the Lindelöf Hypothesis:

L(1/2 + it , φ ⊗ λm) �ε (|t + im| + 1)ε
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over a sufficiently small family. With this and positivity, the subconvexity estimates follow.
For the case at hand it was shown in [23] that

∑
|m|≤T

∫ T

−T
|L(1/2 + it , φ ⊗ λm)|2 dt � T 2 logT . (1.8)

Note that the inequality (1.8) recovers (1.6) when we drop all but one term and use the fact
that the other terms are positive. We proceed by reducing the size of this averaging. We
show that forR76/83 ≤ H ≤ R andε > 0 we have

∑
R−H≤|m+2it |≤R+H

∫
|L(1/2 + it , φ ⊗ λm)|2 dt � (RH)1+ε . (1.9)

Thus (1.9) establishes the Lindelöf bound in the mean over this family. Note that for
technical reasons we maintain radial symmetry in|m + 2it |. Theorem 1.1 follows from
(1.9) withH = T 76/83. The crucial point is the extension of (1.8) in the form (1.9) with
H a power ofT less than 1. This involves facing off-diagonal terms in the analysis, which
is a familiar feature with such subconvexity bounds. The burden of this estimation is then
transferred to cancellations in sums of products of the shifted coefficientsc(α). Precisely
we have the following theorem.

THEOREM 1.4. Fix a cusp formφ. For h ∈ O, h 6= 0 the Dirichlet series

Dφ(s, h) =
∑

α,α+h6=0

c(α)c(α + h)

N(α)s
(1.10)

extends to an analytic function in the regionσ = <s > 11/18and satisfies the estimate

Dφ(s, h) �ε |h|11/9+ε(|t | + 1)+ (|t | + 1)11/2|h|1−2σ+2/9+ε (1.11)

in this region.

REMARK 1.5. Note that the Rankin-Selberg method implies the bound∑
N(α)≤X

|c(α)|2 �φ X.

Thus the seriesDφ(s, h) converges absolutely for<s > 1. The key is the analytic continu-
ation and the polynomial bounds int andh, as these give the desired cancellation in smooth
sums approximating

∑
c(α)c(α + h). In the analogous setting in the hyperbolic planeH2,

Good [11] was the first to establish such results for special formsφ and improve them in
[10]. His method involves bounds on〈yk|φ|2, φj 〉, whereφ is a holomorphic cusp form.
Later it was shown in [5] that one could establish such cancellation more generally inH2
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using a variant of Kloosterman’s method together with the Voronoi summation and Weil’s
bound on Kloosterman sums. The recent general triple products bounds for eigenfunctions,
see [26], [21] and [1], allow for a simple treatment of these sums. This is carried out in
Section 2. This method has the advantage (at least at present) of being general. In particular,
it can be applied to the case at hand as well as to general number fields, see [2]. It also
relatesDφ(s, h) directly to the spectrum ofL2(0 \H), see [27], thus allowing us to use
recent bounds towards the Ramanujan conjectures, see [19], [16].

REMARK 1.6. One should be able to deal with the more general series

Dφ(s, h,m) =
∑
α 6=0

c(α)c(α + h)

N(α)s
λm(α),

though we have not done so and, in fact, we have worked hard to avoid them. Indeed in order
to deal with the most generalL-functionL(s, φ), for φ a cusp form on GL2(K)\GL2(A),
whereK is an imaginary quadratic field, one needs to deal withm 6= 0 as well.

2. Poincaŕe series

This section is devoted to proving Theorem 1.4. Forh 6= 0, h ∈ O we define the
Poincaŕe series

Ph(w, s) =
∑

g∈0∞\0
y(g · w)2se(〈h, z(g · w)〉), (2.1)

wherew = (y, z). These functions are slight modifications of those introduced in [24] and
their analogs for the hyperbolic upper half plane were used for a similar purpose in [11].
They converge absolutely for<s > 1, as they are majorized byE(w, σ), and, moreover,
define analytic (ins) automorphic functions of moderate growth. For the fixed cusp form
φ(w) in Theorem 1.4 we consider the integral

I (s) =
∫
0\H3

φ(w)2Ph(w, s) dvol(w). (2.2)

This integral converges absolutely and defines an analytic function ofs for <s > 1. We
unfold as in the Rankin-Selberg method to get

I (s) =
∫ ∞

0

∫ 1

0

∫ 1

0
φ(w)2y2se(〈h, z〉) dx1dx2dy

y3

=
∑
ν

c(ν)c(ν + h)

∫ ∞

0
Kir(2π |ν|y)Kir(2π |ν + h|y)y2s dy

y
. (2.3)
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The integral may be evaluated, see [13, 6.576, 4] to give

I (s) = 0(s + ir)0(s − ir)0(s)2

8π2s0(2s)

×
∑
ν 6=0

c(ν)c(ν + h)

|ν|2s
∣∣∣∣ν + h

ν

∣∣∣∣
ir

F(s + ir, s,2s,1 − |1 + h/ν|2). (2.4)

LEMMA 2.1. The function

J (s) :=
∑
ν 6=0

c(ν)c(ν + h)

|ν|2s
∣∣∣∣ν + h

ν

∣∣∣∣
ir

F(s + ir, s,2s,1 − |1 + h/ν|2)

is analytic for<s > 11/8 and satisfies the bound

J (s) �ε (1 + |t |)11/2|h|1−2σ+2/9+ε

in this region.

Proof. According to (2.4) we have

J (s) = 8π2s0(2s)

0(s + ir)0(s − ir)0(s)2
I (s). (2.5)

Now, whilePh(·, s) is not inL2(0\H3), it is of moderate growth and the expansion ofI (s)

via the Parceval formula is easily justified. We remark that〈Ph, φ0〉 = 0. We have

I (s) =
∞∑
j=1

〈φ2, φj 〉〈Ph(·, s), φj 〉 + 1

4π

∫ ∞

−∞
〈φ2, E(·,1/2 + it)〉

×〈Ph(·, s)E(·,1/2 + it)〉dt. (2.6)

We proceed to analyze the discrete spectrum sum, since the analysis of the continuous
spectrum is similar and, in fact, the bounds towards the Ramanujan conjecture used below
(cf (2.9)) are not needed, since the coefficients of the unitary Eisenstein series satisfy the
optimal Ramanujan bounds. In fact, one can explicitly write the Fourier expansion of the
Eisenstein series for the group0 = SL2(Z[

√−1]), see [8, 2.17, 2.18]

E(w, s) = 2y2s + 2π

2s − 1

ζK(2s − 1)

ζK(2s)
y2−2s

+ 4π2s

0(2s)ζK(2s)

∑
ω 6=0

|ω|2s−1σ1−2s(ω)yK2s−1(2π |ω|y)e2πi〈ω,z〉,
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whereζK(s) is the Dedekind zeta function of the number field,ω runs over the Gauss
integersZ[i] and

σs(ω) =
∑
(c)|(ω)

(N(c))s .

We have, see [13, 6.561, 16],

〈Ph, φj 〉 =
∫ ∞

0

∫ 1

0

∫ 1

0
φj (w)e(〈h, z〉)y2s dx1dx2dy

y3

= cj (h)

∫ ∞

0
y2s+1Kirj (2π |h|y)dy

y3

= cj (h)

|h|2s−1
22s−3(2π)1−2s0(s − 1/2 + irj /2)0(s − 1/2 − irj /2), (2.7)

where the Fourier expansion of theL2-normalizedφj is

φj (w) =
∑
ν 6=0

cj (ν)yKirj (2π |ν|y)e(〈ν, z〉).

We can assume that the orthonormal basisφj (w) consists of Hecke eigenforms. Denote
by λj (ν) the eigenvalue of the Hecke operatorTν , ν 6= 0. Proceeding as in [9] one has for
everyε > 0

|cj (ν)| �ε

|rj |ε |λj (ν)|
|0(1 + irj )| . (2.8)

We now invoke the strongest bounds towards the Ramanujan conjectures in this case [16]

|=rj | ≤ 2/9, |λj (ν)| �ε |ν|2/9+ε . (2.9)

Actually for0 = SL2(Z[i]) it is known that=rj = 0, see [7], however, for the more general
0 only (2.9) is known. Combining (2.7), (2.8), (2.9), (2.6) we deduce thatI (s) is analytic
for σ > 11/18 and satisfies

I (s) �ε |h|1−2σ+2/9+ε∑
j 6=0

|0(s − 1/2 + irj /2)0(s − 1/2 − irj /2)|
|0(1 + irj )| |〈φ2, φj 〉|.

(2.10)

Now the main result in [26] concerning the precise exponential decay inrj of 〈φ2, φj 〉
asserts that

|〈φ2, φj 〉| � (|rj | + 1)3e−π |rj |/2. (2.11)
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Using this in (2.10) together with Stirling’s formula for|0(1 + irj )|, we are lead to

I (s) �ε |h|1−2σ+2/9+ε∑
j

(1 + |rj |)5/2

× |0(s − 1/2 + irj /2)0(s − 1/2 − irj /2)|. (2.12)

Hence

J (s) �ε

∣∣∣∣ 0(2s)h1−2σ+2/9

0(s + ir)0(s − ir)0(s)2

∣∣∣∣∑
j

(1 + |rj |)5/2|0(s − 1/2 + irj /2)

×0(s − 1/2 − irj /2)|. (2.13)

Fors = σ+ it we use Stirling’s formula and the Weyl law for the distribution of eigenvalues∑
|rj |≤R

1 ∼ c0R
3

to get

J (s) �ε (1 + |t |)11/2|h|1−2σ+2/9+ε . (2.14)

This completes the proof of Lemma 2.1. ¨

To make effective use of Lemma 2.1 we first transform the Gauss hypergeometric function
using

F

(
a, b,2b,

4z

(1 + z)2

)
= (1 + z)2aF (a, a − b + 1/2, b + 1/2, z2),

see [13, 9.134, 3]. Hence

F(s + ir, s,2s,1 − |1 + h/ν|2) =
(

1 + |1 + h/ν|
2

)−2s−2ir

× F

(
s + ir, ir + 1/2, s + 1/2,

(1 − |1 + h/ν|)2
(1 + |1 + h/ν|)2

)
.

In this form we can expand the hypergeometric functions in its Taylor series uniformly for
1/2 ≤ <s ≤ 2 to get the bound(

1 + |1 + h/ν|
2

)−2s−2ir

(1 +O(|h/ν|)) = 1 +O(|h|(|s| + 1)/|ν|).

Also |1 + h/ν| = 1 +O(|h/ν|), hence

J (s) =
∑
ν 6=0

c(ν)c(ν + h)

|ν|2s +O

(∑
ν

|c(ν)c(ν + h)|h|(|s| + 1)

|ν|2σ+1

)
.
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We deduce that

J (s) = Dφ(s, h)+Gφ(s, h)

whereGφ(s) is analytic in<s > 1/2 and satisfies

Gφ(s) �ε |h|11/9+ε(|t | + 1) (2.15)

for σ ≥ 11/18. Combining Lemma 2.1 with (2.15) we conclude thatDφ(s, h) is analytic
in 11/18< σ ≤ 2 and satisfies the bound

Dφ(s, h) �ε |h|11/9+ε(|t | + 1)+ (|t | + 1)11/2|h|1−2σ+2/9+ε .

This completes the proof of Theorem 1.4.

3. Subconvexity

In this section we prove (1.9) after which Theorem 1.1 follows easily. Using the approxi-
mate functional equation forL(s, φ ⊗ λm), see [4], [14], and a dyadic smooth partition of
the sums in it we can boundL(1/2 + it , φ ⊗ λm) by at mostO(log |t + im|) sums of the
form

SX(t,m) =
∑
α

c(α)

N(α)1/2+it

(
α

|α|
)m

G

( |α|
X

)
(3.1)

whereG is a real-valued smooth function supported in, say, the interval(1/2,2) andX is
of size at mostR, where|m+ it | ≤ R. In fact it is the caseX is of sizeR that is the critical
case. Thus (1.9) follows if we can establish that for a fixed smoothψ ≥ 0, supported in
(1/2,2) with ψ(1) = 1, andR76/83 ≤ H ≤ R, the bound

A :=
∑
m

∫ ∞

−∞
ψ

( |m+ it | − R

H

)
|SX(t,m)|2 dt �ε (RH)

1+ε . (3.2)

We begin with the restrictionH 1/2 ≤ R ≤ H and write

α

|α| = e2πiθα , θα ∈ R/Z,

that is arg(α) = 2πθα.We have

A =
∑
α,β

G(|α|/X)G(|β|/X)c(α)c(β)|αβ|

×
∑
m

∫ ∞

−∞
ψ

( |m+ 2it | − R

H

)
e((θα − θβ)m+ it log(|α|/|β|)/π)dt. (3.3)
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Applying the Poisson summation formula inm we get

∑
m

ψ

( |m+ 2it | − R

H

)
e(m(θα − θβ))

=
∑
ν

∫ ∞

−∞
ψ

( |x + 2it | − R

H

)
e(x(θα − θβ)− νx)dx

= H
∑
ν

∫ ∞

−∞
ψ

(
|y + 2it/H | − R

H

)
e(H(θα − θβ − ν)y)dy

= H
∑
ν

ψ̂R,H,t (H(θα − θβ − ν)), (3.4)

where

ψR,H,t (y) = ψ(|y + 2it/H | − R/H).

Repeated integration by parts shows that

ψ̂R,H,t (ξ) =
∫ ∞

−∞
ψ

(√
y2 + 4t2/H 2 − R/H

)
e(−yξ) dy �N (|ξ | + 1)−N

for anyN ≥ 1. Hence, if we choose−1/2 ≤ θα − θβ ≤ 1/2, which we can assume, then
only the termν = 0 is significant in (3.4). That is

∑
m

ψ

( |m+ it | − R

H

)
e(m(θα − θβ))

=
∫ ∞

−∞
ψ

( |y + 2it | − R

H

)
e(y(θα − θβ)) dy +ON(H

−N).

Returning to (3.3) we have

A =
∑
α,β

G(|α|/X)G(|β|/X)c(α)c(β)|αβ| ×
∫ ∞

−∞

∫ ∞

−∞
ψ

( |y + 2it | − R

H

)

× e

(
(θα − θβ)y + it

π
log

|α|
|β|
)

dydt + small error,

which gives

A = H 2

2

∑
α,β

G(|α|/X)G(|β|/X)c(α)c(β)|αβ|
×ψ̂R,H (2π(θα − θβ)H,H log(|α|/|β|))+ small, (3.5)
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wherey/H = y1, 2t/H = x1 and

ψR,H (x1, y1) = ψ(|x1 + iy1| − R/H). (3.6)

In particularψR,H is radial in(x1, y1) and hence so is its Fourier transform̂ψ :

ψ̂R,H (ξ1, ξ2) = ψ̂R,H (|ξ |)
and so

ψ̂R,H (2π(θα − θβ), log(|α|/|β|)) = ψ̂R,H (| log(α/β)|). (3.7)

Integration by parts in the definition of the Fourier transform ofψR,H , see (3.6), gives

|ψ̂R,H (|ξ |)| �N

R

H
(1 + |ξ |)−N

for anyN ≥ 1 and

|ψ̂(ν)R,H (|ξ |)| �
(
R

H

)ν+1

(3.8)

for its ν-th derivative. From (3.7) we can write (3.5) as

A = H 2

2

∑
α,β

G(|α|/X)G(|β|/X)c(α)c(β)
|αβ| ψ̂R,H (H | log(α/β)|) (3.9)

with a small error. Hence, ifδ > 0 is arbitrarily small, the contribution to (3.9) of the terms
with | log(α/β)| ≥ Hδ−1 is negligible. Also|α| and|β| are of sizeX, so we have

A = H 2

2

∑
|α−β|�XHδ−1

G(|α|/X)G(|β|/X)c(α)c(β)|αβ| ψ̂R,H (H | log(α/β)|) (3.10)

with small error. The contribution to (3.10) of the diagonalα = β is

H 2

2

∑
α

G(|α|/X)2 |c(α)|2
|α|2 ψ̂R,H (0) �ε H

2XεR/H � (RH)1+ε . (3.11)

This is in agreement with the required bound (3.2). For the off-diagonal terms we have
X ≥ H 1−δ (otherwise there are essentially no such terms). We writeα = β + h with
h 6= 0. According to (3.10) we have

|h| � XHδ−1. (3.12)

We estimate the sum for each suchh. Let

S(h) =
∑
β

G(|β + h|/X)G(|β|/X)c(β)c(β + h)

|β(β + h)| ψ̂R,H (H | log(1 + h/β)|).
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From (3.12) we have

log(1 + h/β) = h/β +O(H 2δ−2).

Hence| log(1 + h/β)| = |h|/|β| +O(H 2δ−2) and|1 + h/β| = 1 +O(Hδ−1). Hence

S(h) =
∑
β

G(|β|/X +O(Hδ−1))G(|β|/X)c(β)c(β + h)

|β|2

×(1 +O(Hδ−1))ψ̂R,H (H |h|/|β| +O(H 2δ−1)).

Using (3.8) withν = 1 we get

S(h) =
∑
β

G(|β|/X)2c(β)c(β + h)

N(β)
ψ̂R,H (H |h|/|β|)+O(H 2δ−1R2/H 2). (3.13)

Finally we can write the first sum as follows

∑
β

G(|β|/X)2c(β)c(β + h)

N(β)
ψ̂R,H (H |h|/|β|)

= 1

2πi

∫
<s=2

X2sDφ(h, s + 1)Bh,H,X(s)ds, (3.14)

where

Bh,H,X(s) =
∫ ∞

0
ψ̂R,H (H |h|/(Xy))G(y)2y2s dy

y
. (3.15)

For−1 ≤ σ ≤ 2 we integrate by partsN times in (3.15) and use (3.8) to get

Bh,H,X(σ + it) �N,ε (|t | + 1)−N(R/H)N+1+ε .

Now we shift the contour in (3.14) to<s = −7/18 + ε1, whereε1 is arbitrarily small.
According to Theorem 1.4 we pick up no poles. Moreover, if we apply the bounds from
Theoren 1.4 we obtain

S(h) � H 2δ−3R2 +
∫ ∞

−∞
X−7/9(|t | + 1)−N(R/H)N+1+ε

× (|h|11/9+ε(|t | + 1)+ (|t | + 1)11/2) dt. (3.16)

Having gained the key cancellation from Theorem 1.4 we now proceed with somewhat
crude estimations. We takeN = 7 in (3.16) and get

S(h) � H 2δ−3R2 +X−7/9(R/H)8+ε |h|11/9+ε .
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We sum onh satisfying (3.12) to see that the off-diagonal contribution toA is

� H 2δ−1R2XHδ−1 +H 2(XHδ−1)20/9+εX−7/9(R/H)8+ε

� R3+ε/H 2 + R85/9+ε/H 74/9.

This satisfies the desired boundO((RH)1+ε) as long as

H ≥ R76/83. (3.17)

This bound for the off-diagonal contributions together with the bound for the diagonal
contribution (3.11) proves (3.2). As pointed out at the beginning of this section this implies
(1.9). Applying (1.9) withH = T 76/83 shows that form fixed∫ T+1

T−1
|L(1/2 + it , φ ⊗ λm)|2 dt �ε T

159/83+ε . (3.18)

A standard argument, see [12], allows us to go from such mean-value estimates to the
pointwise estimate

|L(1/2 + it , φ ⊗ λm)| �ε T
159/166+ε . (3.19)

Actually we were very generous (or crude) in the estimations (3.13 ) and (3.17). One can
easily improve the exponents, but, rather than doing so, we remark that this would lead to
the removal of theε in (3.19). This then proves Theorem 1.1, part (i). Part (ii) is deduced
in the same way.
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[11] Good, A., Beiträge zur Theorie der Dirichletreihen, die Spitzenformen zugeordnet sind.J. Number Theory
13 (1981) no. 1, 18–65.

[12] Good, A., The square mean of Dirichlet series associated with cusp forms.Mathematika29 (1982) no. 2,
278–295 (1983).

[13] Gradshteyn, I. S. andRyzhik, I. M., Table of Integrals, Series and Products, Fifth edition, Alan Jeffrey,
ed., Academic Press, San Diego, 1994.

[14] Huxley, M. N., The large sieve inequality for algebraic number fields. II. Means of moments of Hecke
zeta-functions.Proc. London Math. Soc. (3)21 (1970), 108–128.

[15] Iwaniec, H. andSarnak, P., Perspectives on the Analytic Theory ofL-functions.To appear in Geom.
Funct. Anal.

[16] Kim, H. H. andShahidi, F., Cuspidality of Symmetric Powers with Applications.Preprint, 2000.
[17] Koyama, S., Arithmetic quantum chaos and quantum ergodicity.Analytic number theory (Kyoto, 1995).
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