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Spectral Deformations and Eisenstein Series

Associated with Modular Symbols

Yiannis N. Petridis

1 Introduction

Let f(z) be a holomorphic cusp form of weight 2 for the cofinite discrete subgroup Γ of

SL2(R). In [5, 6] Goldfeld introduced Eisenstein series associated with modular symbols.

It is defined as

E∗(z, s) =
∑

γ∈Γ∞ \Γ

〈γ, f〉�(γz)s, (1.1)

where for γ ∈ Γ the modular symbol is given by

〈γ, f〉 = −2πi
∫γz0

z0

f(τ)dτ. (1.2)

Here z0 is an arbitrary point in H. The aim is to study the distribution of the modular

symbols. Goldfeld conjectured in [6] that

∑
c2+d2≤X

〈γ, f〉 ∼ R(i)X, (1.3)

where R(z) is the residue at s = 1 of E∗(z, s), and we sum over the elements in Γ with

lower row (c, d). In fact, he conjectured corresponding statements for the more general

Eisenstein series associated with modular symbols Em,n(z, s), see (1.16). If we take f(z)
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to be a Hecke eigenform for Γ0(N) and Ef is the elliptic curve over Q corresponding to it

by the Eichler-Shimura theory, then

〈γ, f〉 = n1(f, γ)Ω1(f) + n2(f, γ)Ω2(f), (1.4)

where ni ∈ Z and Ωi are the periods of Ef. The conjecture ni � Nk for |c| ≤ N2 and

some fixed k (Goldfeld’s conjecture) is equivalent to Szpiro’s conjecture D � NC for

some C, where D is the discriminant of Ef. This has been the motivation to look at the

distribution of modular symbols.

In [15] the analytic continuation of the Eisenstein series has been proved and

in [14] it is proved that the analytic continuation of them on the line�(s) = 1/2 has poles

at sj, where sj(1 − sj) are the eigenvalues of the Laplace operator on Γ \ H. A functional

equation was also found. The action of Hecke operators on the Eisenstein series was

studied in [4].

One of the problems is that the Eisenstein series is not a modular form in the

classical setting, that is, it is not invariant or transforms nicely under the action of Γ .

In fact, it transforms as

E∗(γz, s) = E∗(z, s) − 〈γ, f〉E(z, s), (1.5)

where E(z, s) is the standard nonholomorphic Eisenstein series for Γ .

We study in this paper a new approach to this Eisenstein series. We consider

Eisenstein series with characters depending on a parameter ε and we notice that the

Eisenstein series with modular symbols is their derivative when ε = 0. We define

Eε(z, s) =
∑

γ∈Γ∞ \Γ

χε(γ)�(γz)
s, (1.6)

where χε is a one-parameter family of characters of the group defined by

χε(γ) = exp

(
− 2πiε

∫γz0

z0

f(τ)dτ

)
. (1.7)

This series is defined formally, because the character χ is not unitary. In practice, one

substitutes with a unitary character, by considering the real and imaginary part of the

holomorphic differential f(τ)dτ. In this case, convergence is guaranteed for �(s) > 1 by

comparison with the standard Eisenstein series. The Eisenstein series with character

transform as

Eε(γz, s) = χ̄ε(γ)Eε(z, s). (1.8)
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They satisfy functional equations

Eε(z, s) = φε(s)Eε(z, 1− s). (1.9)

In the domain of absolute convergence we see that

d

dε |ε=0
Eε(z, s) = E∗(z, s), (1.10)

by termwise differentiation. Also we differentiate (1.9) to get the functional equation

E∗(z, s) =
dφ(s)

dε

∣∣∣∣
ε=0

E(z, 1− s) + φ(s)E∗(z, 1− s). (1.11)

Here φ(s) is the (standard) scattering function for ε = 0.

Our first theoremdescribes the analytic properties of E∗(z, s). It gives a newproof

of the main result in [15] and another result in [14].

Theorem 1.1. (a) The Eisenstein series associated with modular symbols E∗(z, s) has

a meromorphic continuation in the whole complex plane and satisfies the functional

equation (1.11).

(b) For �(s) ≥ 1/2, the poles of E∗(z, s) are simple and contained in the set

{
1

2

}
∪
⋃
j

{
sj, s̄j

}
. (1.12)

(c) At a cuspidal eigenvalue sj(1−sj) of ∆ corresponding to the cusp forms φl(z),

l = 1, . . . ,N, the residue of E∗(z, s) is equal to

N∑
l=1

c

πsj
L

(
f⊗ φl, sj +

1

2

)
Γ

(
sj −

1

2

)
φl(z). (1.13)

Here c is a certain constant, Γ(s) is the Gamma function, and L(f ⊗ φl, s) is the Rankin-

Selberg convolution of f(z) with φl(z). �

We prove Theorem 1.1(a) in Section 2, (b) in Section 4, and (c) in Section 5.

It follows that the scattering functionφ∗(s) identified in [15, equation (0.3)] using

Kloosterman sums is given simply by

φ∗(s) = dφε(s)/dε (1.14)

at ε = 0 and its functional equation [15, Theorem 0.2] follows by the standard functional

equation for the scattering matrix φ(s)φ(1 − s) = 1 by differentiation. This gives the

following theorem, see also [2, Theorem 1].
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Theorem 1.2. Let i and j be cusps. The entries of dφε(s)/dε at ε = 0 are given by

φ∗
ij(s) = −2πi

∫ i
j

f(τ)dτ · φij(s). (1.15)
�

Since we are interested in the analytic continuation of Eisenstein series, we fol-

low the method of Colin de Verdière [3], which is the shortest known method. We notice

that at every step we can differentiate with respect to the parameter ε and that every-

thing remains meromorphic in s ∈ C.

Remark 1.3. Our method also allows to prove the meromorphic continuation of more

general Eisenstein series of the form

Em,n(z, s) =
∑
Γ∞ \Γ

〈γ, f〉m〈γ, g〉n�(γ · z)s (1.16)

for two cusp forms f, g of weight 2, which are relevant to the distribution of modular

symbols, as explained in [15, page 165]. See (2.3).

A corollary of our method is to show the following theorem.

Theorem 1.4. Assume that sj(1 − sj) has multiplicity one and the corresponding Maaß

cusp form is φj(z). If the value of the L-series L(f ⊗ φj, sj + 1/2) is nonzero, then the

perturbed Eisenstein series Eε(z, s) has a pole close to sj. �

The hypothesis

L

(
f⊗ φl, sj +

1

2

)

= 0 (1.17)

is the Phillips-Sarnak condition and appeared in [20, 21]. See Remark 6.1.

We also study the behavior of E∗(z, s) on vertical lines. We get the following

theorem.

Theorem 1.5. TheEisenstein series associatedwithmodular symbolsE∗(z, s) is bounded

on vertical lines with σ > 1/2. More precisely, for z ∈ K, a compact set, and for s bounded

away from the poles of φ(s) on (1/2, 1] the following estimate holds.

E∗(z, s)�K,σ 1. (1.18)
�

Remark 1.6. In fact Theorem 1.5 allows to improve the asymptotic formula (1.3), that

is, it gives an estimate for the remainder of the form O(Xa), with a < 1, using standard
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techniques in analytic number theory (contour integration). See the forthcoming article

of Goldfeld and O’Sullivan [7].

Remark 1.7. We introduce sums over closed geodesics γ with length l(γ) as follows:

πε(x) =
∑

l(γ)≤x
χε(γ). (1.19)

Then

d

dε

∣∣∣∣
ε=0

πε(x) = −2πi
∑

l(γ)≤x

∫
γ

f. (1.20)

The asymptotic behavior of the sums πε(x) can be understood using the Selberg trace

formula. To estimate their derivative one should differentiate the trace formula in ε.

On the other hand, to understand geodesics in homology classes as in [18], we integrate

the trace formula over the character variety.

The study of E∗(z, s) using perturbed Eisenstein series is a new application of

the spectral deformations used in [16, 19, 21]. Our contribution is to put the Eisenstein

series withmodular symbols into this framework.We avoid completely the Kloosterman

sums with modular symbols introduced and used in [6, 15].

2 Proof of the analytic continuation of E∗(z, s)

We first notice that E∗(z, s) is linear in the differential f(τ)dτ. So we can consider sepa-

rately the real and imaginary part of f(τ)dτ. Let wi be either of the two. We let

χiε(γ) = exp

(
− 2πiε

∫γz0

z0

wi

)
, (2.1)

which is now a unitary character of Γ . We define Eisenstein series

Eε
(
z, s,wi

)
=

∑
γ∈Γ∞ \Γ

χiε(γ)�(γ · z)s (2.2)

for �(s) > 1. More generally, one can define Eisenstein series depending on a vec-

tor of parameters �ε = (ε1, ε2, . . . , εm) and a vector of real-valued harmonic 1-forms

(w1, w2, . . . , wm) as

E�ε

(
z, s, �w

)
=

∑
γ∈Γ∞ \Γ

m∏
i=1

χiεi
(γ)�(γ · z)s. (2.3)
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The Eisenstein series (1.16) are linear combinations of their derivatives in εi, when we

set �ε = �0. For simplicity, we restrict our attention to one parameter and one cusp. We

drop the subscript i. The generalization to many cusps can proceed as in [13]. Using the

identification of harmonic cuspidal cohomologywith cohomologywith compact support,

see [1], we can assume that w is a compactly supported form. We consider the space

L2(Γ \ H, χ̄ε) of L2 functions which transform as

h(γ · z) = χ̄ε(γ)h(z), γ ∈ Γ (2.4)

under the action of the group. We introduce unitary operators

Uε : L
2(Γ \ H) −→ L2

(
Γ \ H, χ̄ε

)
(2.5)

given by

(
Uεh

)
(z) = exp

(
2πiε

∫z
z0

w

)
h(z). (2.6)

We set

Lε = U−1ε ∆Uε. (2.7)

The operators Lε on L2(Γ \ H) and ∆ on L2(Γ \ H, χε) are unitarily equivalent. Also Lε =

∆ outside the support of w. The cusp C is isometric to [b,∞) × R/Z with the metric

(dx2 + dy2)/y2, where b is sufficiently large. We can assume that supp(w) ∩ C = ∅. We

let h(y) ∈ C∞ (R+) be a function which is 0 for y ≤ b+ 1 and 1 for y ≥ b+ 2. Let

Ωε =

{
s ∈ C,�(s) >

1

2
, s(1− s) 
∈ Spec

(
Lε
)}

. (2.8)

Lemma 2.1. For s ∈ Ωε there exists a unique Dε(z, s) such that

(
Lε + s(1− s)

)
Dε(z, s) = 0,

Dε(z, s) − h(y)ys ∈ L2(Γ \ H).
(2.9)

Moreover, the functions

s −→ Dε(z, s), s −→ d

dε
Dε(z, s) (2.10)

are holomorphic in s ∈ Ωε and the function

ε −→ Dε(z, s) (2.11)

is real analytic. �
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Remark 2.2. The functions Dε(z, s) are not the Eisenstein series themselves. These are

Eε(z, s) = UεDε(z, s).

Proof. We write Dε(z, s) = h(y)ys + gε(z, s) with gε ∈ L2(Γ \ H). We set

Hε(z, s) = −
(
Lε + s(1− s)

)(
h(y)ys

)
(2.12)

and we see thatHε has compact support and depends holomorphically on s ∈ C and real

analytically in ε. The same is true for Ḣε(z, s) = −L̇ε(h(y)ys). For notational convenience

we put a dot to denote differentiation with respect to the parameter ε. As long as s(1−s)

is not in the spectrum of Lε, the equation (Lε+ s(1− s))gε(z, s) = Hε(z, s) can be inverted

to give

gε(z, s) =
(
Lε + s(1− s)

)−1
Hε(z, s) (2.13)

and gε ∈ H2(Γ \ H), the second Sobolev space. The resolvent is holomorphic outside the

spectrum of Lε and depends real analytically on the parameter ε, see [10, pages 66–67].

�

We define pseudo-Laplacian operators associated with Lε exactly as in [3, 11].

We set

Ha =
{
f ∈ H1(Γ \ H), f0|(a,∞ ) = 0

}
, (2.14)

where f0 is the zero Fourier coefficient at the cusp. We take a ≥ b+ 2. The operator Lε,a

is the Friedrichs extension of the restriction to H1(Γ \ H) of the quadratic form q(f) =∫ ‖∇Uεf‖2 to Ha. Intuitively we map f to L2(Γ \ H, χ̄ε) and we know that Lε is unitarily

equivalent to ∆ on this space. As in [11, 17], the operators Lε,a have compact resolvents

and depend real analytically on ε. Consequently, this is true for their resolvents Ra,ε(s) =

(Lε,a + s(1− s))−1 by standard perturbation theory, [10, pages 66–67]. We define

Fε(z, s) = h(y)ys +
(
Lε,a + s(1− s)

)−1(
Hε(z, s)

)
(2.15)

and we see that Fε is meromorphic in s and the same applies to

Ḟε(z, s) =
(
Lε,a + s(1− s)

)−1(
Ḣε(z, s)

)
+ Ṙa,ε(s)Hε(z, s). (2.16)

We notice that Lε,a does not change the nonzero Fourier coefficients and it removes the

zero Fourier coefficient at height y = a. For b < y < awe see that (Lε+s(1−s))Fε(z, s) = 0.
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Consequently, the zero Fourier coefficient F0,ε(z, s) of Fε(z, s) is of the form

F0,ε(z, s) = Aε(s)y
s + Bε(s)y

1−s (2.17)

for some holomorphic functions Aε(s), Bε(s), s 
= 1/2. The real analyticity of the expan-

sion in ε is also obvious, as follows from the definition of the Fourier coefficients. By

looking at height y = a in (2.15), we get

Aε(s)a
s + Bε(s)a

1−s = as, (2.18)

from which it follows that Aε(s) and Bε(s) are not identically 0 in s. We modify the

functions Fε(z, s) to relate them to the functions Dε(z, s) as follows. We define

F̃ε(z, s) = Fε(z, s) + χ[a,∞ ) (y)(Aε(s)ys + Bε(s)y
1−s − ys

)
. (2.19)

We notice that (Lε + s(1− s))F̃ε(z, s) = 0 for y ≥ a. If �(s) > 1/2 and s(1− s) 
∈ Spec(Lε),

all terms are in L2(Γ \ H) with the exception of h(y)ys + χ[a,∞ ) (y)(Aε(s)ys − ys), so

F̃ε(z, s) −Aε(s)h(y)y
s ∈ L2(Γ \ H) (2.20)

and, therefore,

F̃ε(z, s) = Aε(s)Dε(z, s) (2.21)

byLemma 2.1. Similarly,we see that F̃ε(z, s)−χ[a,∞ ) (y)Bε(s)y1−s ∈ L2(Γ\H) for�(s) < 1/2

and s(1− s) 
∈ Spec(Lε), so

F̃ε(z, s) = Bε(s)Dε(z, 1− s). (2.22)

From (2.21) and (2.22), we get the analytic continuation of Dε(z, s) and its functional

equation. As in [3] we see that Dε(z, s) does not have poles on �(s) = 1/2 (using the

Maaß-Selberg relations). The scattering matrix is

φε(s) =
Bε(s)

Aε(s)
. (2.23)

We mention the various formulas for the derivatives

dF̃ε(z, s)

dε
= Ḟε(z, s) + χ[a,∞ ) (y)(Ȧε(s)ys + Ḃε(s)y

1−s
)
, (2.24)

Ḋε(z, s) =
dA−1ε (s)

dε
F̃ε(z, s) +A−1ε (s)

dF̃ε(z, s)

dε
, (2.25)

Ėε(z, s) = U̇εDε(z, s) +UεḊε(z, s). (2.26)
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3 Proof of Theorem 1.2

We discuss the case of one cusp first. By [9, page 218, Remark 61] we know that φε(s) =

φ−ε(s). As a result φ̇0(s) = 0, being the derivative of an even function at ε = 0. Conse-

quently, by (1.14) we have φ∗(s) = 0.

We include a detailed proof of φε(s) = φ−ε(s) to facilitate the understanding of

the multiple-cusp case. Using the Bruhat decomposition Γ∞ \ Γ/Γ∞ , we can write the zero

Fourier coefficient as

ys +
∑

γ∈Γ∞ \Γ/Γ∞
∑
m∈Z

∫1
0

χε(γ)
ys

|cz+ cm+ d|2s
dx (3.1)

sinceχε(γSm) = χε(γ) asχε is a characterwithχε(S) = 1. Here S is the standardparabolic

generator. So

φε(s)y
1−s =

∑
γ∈Γ∞ \Γ/Γ∞

χε(γ)

|c|2s

∫∞
−∞

ys

|x2 + y2|s
dx. (3.2)

The integral canbe evaluated in termsof theGamma function tobey1−s
√
π Γ(s−1/2)/Γ(s),

see [8, equation (8.380.3)]. To show that φε(s) = φ(s, χ) = φ(s, χ̄) = φ−ε(s) it suffices to

notice that we can take as coset representatives in the Bruhat decomposition γ−1, where

γ ∈ Γ∞ \ Γ/Γ∞ and that γ−1 has lower left entry −c. The same calculation works for the

case of many cusps and the diagonal entries φii(s, χ) of the scattering matrix Φε(s). We

get φ̇ii(s) = 0.

Remark 3.1. In general, for a group Γ with many cusps, Φε(s) = Φ−ε(s)
T . By differenti-

ation we get that Φ∗(s) is skew-symmetric, which already gives [15, Proposition 4.2].

In the case of many cusps the ij-entry of the scattering matrix is given by

φij,ε(s) =
√
π

Γ

(
s−

1

2

)
Γ(s)

∑
γ∈Γ∞ \Γ/Γ∞

χε
(
σ−1i σjγ

)
|c|2s

. (3.3)

Here σj maps the j cusp to i∞ and σi maps the i cusp to i∞. Since χε is a character we

can write χε(σ−1i σj)χε(γ) and differentiate to get

φ∗
ij(s) =

(
− 2πi

∫σ−1
i σjz0

z0

f(τ)dτ

)
φij(s) + φ̇ii(s). (3.4)

But we have shown that φ̇ii(s) = 0. Since φ∗(s) does not depend on z0, we take z0 to be

the j cusp.
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4 Poles of E∗(z, s)

It is clear from (2.16) and (2.21) that we get potential poles for E∗(z, s) at the eigenvalues

of Lε,a or at the poles of the scatteringmatrix. The eigenvalues of Lε,a come in two types,

[3]. Any cusp form for ε = 0 is an eigenfunction of L0,a for all a, as its zero Fourier coeffi-

cient is identically zero. These are the eigenvalues of type (I). The eigenvalues of type (II)

correspond to noncuspidal eigenfunctions: for �(sj) ≥ 1/2, sj 
= 1/2 we must have

asj + φ0
(
sj
)
a1−sj = 0. (4.1)

For sj = 1/2 the condition is φ0(1/2) = −1 and φ ′
0(1/2) = −2 loga. For details see

[3, page 93]. Recall that φ0(s) is the (standard) scattering function φ(s). It is inconve-

nient to work with Lε,a, so we try to characterize the poles of E∗(z, s) in terms of the

eigenvalues of ∆.

Lemma 4.1. If sj does not correspond to a cuspidal eigenvalue of∆ on L2(Γ \H) andφ0(s)

does not have a pole at sj, then E∗(z, s) is regular at sj. �

Proof. If A0(sj) = 0, then (2.18) implies that B0(sj) 
= 0. But then φ0(s) has a pole at sj.

Consequently, A0(sj) 
= 0 for all a large, so we do not get a pole from the contribution of

A−1ε and dA−1ε /dε in (2.25). We also need to arrange that we do not get a pole from the

resolvent of L0,a for some a, see (2.16). We need to exclude the eigenvalues of type (II).

Then all the formulas become regular at sj. Notice that, by the second Neumann series

for the resolvent [10, pages 66–67],

Ṙε(z) = −Rε(z)LεRε(z), (4.2)

so the derivative of the resolvent in (2.16) is regular away from the eigenvalues of Lε.

However, the conditions (4.1) are satisfied for a discrete set of values of positive a. Once

an a is chosen (sufficiently large) not satisfying (4.1), for small enough ε, Lε do not have

eigenvalue close to sj. �

This lemma proves part (b) in Theorem 1.1.

5 Residues of E∗(z, s) at cuspidal eigenvalues

Let sj be such that sj(1 − sj) is a cuspidal eigenvalue of ∆. The formula for Lε has been

used in [16, 19] and is given by

Lεu = ∆u− 4πiε〈du,w〉− 4π2ε2|w|2Hu+ 2πiε(δw)u. (5.1)
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Here δ(pdx+qdy) = −y2(px+qy), 〈pdx+qdy, fdx+gdy〉 = y2(pf̄+qḡ) and |pdx+qdy|2H =

y2(|p|2+ |q|2). The difference in the signs is due to the fact that we use −w in the formula

in [16, page 113]. We have

(
Lε + s(1− s)

)
Dε(z, s) = 0 (5.2)

away from the poles of Dε(z, s). We differentiate it and evaluate at ε = 0 to get

(
L0 + s(1− s)

)
Ḋ0(z, s) = −L̇0D0(z, s). (5.3)

It follows from (2.21) and (2.23) that the zero Fourier coefficient of Dε(z, s) is

ys + φε(s)y
1−s. (5.4)

Since φ̇0(s) = 0, by Theorem 1.2, Ḋ0(z, s) is in Ha. We can substitute L0 with L0,a to get

(
L0,a + s(1− s)

)
Ḋ0(z, s) = −L̇0D0(z, s). (5.5)

As in Section 4 we can assume that we chose a in such a way that L0,a does not have

a type (II) eigenvalue at sj(1 − sj). For s(1 − s) 
∈ Spec(L0), �(s) > 1/2 we can introduce

the resolvent to get

Ḋ0(z, s) = −R0(s)L̇0D0(z, s), (5.6)

where R0(s) = (L0+s(1−s))−1. The residueA(z) of Ḋ0(z, s) at sj, which is the same as the

residue of Ė0(z, s) by (1.10) and (2.26) is the residue of R0,a(s) at sj applied to−L̇0D0(z, s).

We recall that D0(z, s) is regular at sj. The resolvent kernel for L0,a has an expansion

at sj of the form

rL0,a

(
z, z ′, s

)
=

1

s(1− s) − sj(1− sj)

N∑
l=1

φl(z)φl
(
z ′
)
+ analytic at sj, (5.7)

where φl(z), l = 1, . . . ,N are an orthonormal basis of cusp forms at sj.

As a result the residue A(z) is given by

A(z) =
4πi

2sj − 1

N∑
l=1

φl(z)

∫
Γ\H

φl
(
z ′
)〈
dD0

(
z ′, sj

)
, w
〉
dµ
(
z ′
)

−
2πi

2sj − 1

N∑
l=1

φl(z)

∫
Γ\H

φl
(
z ′
)
(δw)D0

(
z, sj

)
dµ
(
z ′
)
,

(5.8)
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where dµ(z) is the invariant hyperbolic measure dxdy/y2. This residue is independent

of a. We can change w in its cohomology class, even though Uε depends on it. Conse-

quently, we can approximate α, the real or the imaginary part of the differential f(z)dz

by a family wl, supported in a compact set Kl with Γ \ H = ∪Kl and with convergence in

the Sobolev space H1. Then

lim
l

∫
Γ\H

φj(z)
〈
dD0

(
z, sj

)
, wl

〉
dµ(z) =

∫
Γ\H

φj(z)
〈
dD0

(
z, sj

)
, α
〉
dµ(z),

lim
l

∫
Γ\H

φj(z)
(
δwl

)
D0

(
z, sj

)
dµ(z) =

∫
Γ\H

φj(z)(δα)D0

(
z, sj

)
dµ(z).

(5.9)

Since α is harmonic, δα = 0. Since the modular symbol is linear, while 〈·, ·〉 is antilinear
in the second variable, we take α = f(z)dz. By linearity, we are left to compute

∫
Γ\H

φj(z)
〈
dD0

(
z, sj

)
, f(z)dz

〉
dµ(z) =

∫
Γ\H

φj(z)y
2f(z)Ez̄

(
z, sj

)
dµ(z), (5.10)

since dD0(z, s) = ∂zD0(z, s)dz + ∂z̄D0(z, s)dz̄ and 〈f1dz + f2dz̄, g1dz + g2dz̄〉 = 2y2(f1g1 +

f2g2).

5.1 Relation with Rankin-Selberg convolutions

We analyze the integral

I(s) =

∫
Γ\H

φj(z)y
2f(z)Ez̄(z, s)dµ(z), (5.11)

where E(z, s) = D0(z, s). For �(s) sufficiently large, we can differentiate the series

E(z, s) =
∑

γ∈Γ∞ \Γ

�(γz)s (5.12)

to get

Ez̄(z, s) =
is

2

∑
γ∈Γ∞ \Γ

�(γz)s−1(cz+ d)
−2
. (5.13)

We can unfold as in the Rankin-Selberg method for modular forms of different weight

to get

is

2

∑
γ∈Γ∞ \Γ

∫
Γ\H

φj(z)
y2

|cz+ d|4
f(z)(cz+ d)2

ys−1

|cz+ d|2s−2
dµ(z), (5.14)
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since Ez̄(z, s) has weight (0, 2). We then get

I(s) =
is

2

∫
Γ∞ \H

φj(z)y
2f(z)ys−1 dµ(z). (5.15)

We write Fourier expansions for φj(z) and f(z)

φj(z) =
∑
n�=0

any
1/2Ksj−1/2

(
2π|n|y

)
e2πinx, (5.16)

where Kν(y) is the MacDonald Bessel function, and f(z) =
∑

n>0 bne
2πinz. Using

[8, equation (6.621.3), page 733] we get

I(s) =
is

2

∑
n>0

a−nbn

(2πn)s+1/2

√
π2−1/2

2s
Γ(s+ sj)Γ(s− sj + 1)

Γ(s+ 1)
. (5.17)

We denote the Rankin-Selberg convolution of f and φj as L(f⊗ φj, s). We use the dupli-

cation formula for the Gamma function, plug in s = sj, and multiply by 4πi/(2sj − 1)

to get

−

√
π

2πsj(2sj − 1)
L

(
f⊗ φj, sj +

1

2

)
Γ

(
sj +

1

2

)
(5.18)

which gives Theorem 1.1(c) and agrees up to a constant with [14, Theorem 5.4].

6 Proof of Theorem 1.4

If the value L(f⊗ φj, sj + 1/2) 
= 0, then Ḋ0(z, s) has definitely a pole at sj. Since D0(z, s)

is regular at sj, the functions Dε(z, s) should have poles sj(ε) converging to sj, as ε → 0.

Remark 6.1. According to [20], a pole of the perturbed Eisenstein series can occur if

a cusp form eigenvalue becomes a scattering pole. This is so because for small ε the

total multiplicity of the singular set in a small disc around sj remains constant. Our

result creates the scattering pole out of the Phillips-Sarnak condition (1.17) without the

use of the singular set. If we can show that a pole of Dε(z, s) close to the unitary axis

forces a type (II) eigenvalue for Lε,a for some a, then we would have a new proof of the

destruction of cusp forms under (1.17).

7 Proof of Theorem 1.5

For simplicitywe assume thatwe have only one cusp andwefixσ = �(s) > 1/2. It follows

from theMaaß-Selberg relations, as in [12, Lemma 8.8], that the scattering functionφε(s)
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is bounded for �(s) ≥ 1/2 and away from the finite number of poles in the interval

(1/2, 1]. For the McDonald-Bessel function Ks(x) the integral representation

Ks(x) =

∫∞
0

e−x cosh t cosh(st)dt, (7.1)

see [8, equation (8.432.1), page 968], gives

∣∣Ks(x)∣∣ ≤ e−x/2Kσ(2) (7.2)

for x ≥ K. This together with the polynomial bound on the Fourier coefficients of

Eisenstein series gives

Eε(z, s)�z y
σ + |φ(s)|y1−σ +Oσ(1) = Oz,σ(1). (7.3)

Similarly ∂xEε(z, s) �z 1. The estimates can clearly be made uniform in z on compact

sets. For ∂yEε(z, s) we study K ′
s(x). Differentiating the integral in (7.2), we get

∣∣K ′
s(x)

∣∣ ≤ e−x/2
∣∣K ′
σ(2)

∣∣. (7.4)

This implies that

∂yEε(z, s)�z |s|yσ−1 + |φ(s)||1− s|y−σ +Oz(1). (7.5)

The estimates (7.3) and (7.5) show that both Eε(z, s) and (1/|t|)dEε(z, s) are bounded on

vertical lines for σ > 1/2. By (5.1) and (5.6), we get

Ḋ0(z, s) = −R0(s)
(
− 4πi

〈
dD0(z, s), w

〉
+ 2πi(δw)D0(z, s)

)
. (7.6)

The bounds for D0(z, s) = E0(z, s) and its differential together with the fact that L̇

has compact support give a polynomial bound for the L2-norm of L̇D0(z, s) in the t

aspect. Since

‖R(z)‖ ≤ 1

dist(z,SpecA)
(7.7)

for the resolvent of a general self-adjoint operator A on a Hilbert space and dist(s(1 −

s),SpecL0,a) ≥ |t|(2σ− 1) we get

Ḋ0(z, s)�σ
|s|

|t||2σ− 1|
. (7.8)
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We last notice that the above estimate, together with (7.3) and (2.26), finish the proof of

the theorem.

Acknowledgments

The author would like to acknowledge the financial support of the Max-Planck-Institut für Math-

ematik during the completion of this project. The author would like to thank G. Chinta for helpful

discussions, C. O’Sullivan for motivating Theorem 1.5, and P. Sarnak for a critical reading of the

manuscript.

References

[1] A. Borel, Stable real cohomology of arithmetic groups. II, Manifolds and Lie Groups, Prog.

Math., vol. 14, Birkhäuser, Massachusetts, 1981, pp. 21–55.

[2] G. Chinta and D. Goldfeld, Grössencharakter L-functions of real quadratic fields twisted by

modular symbols, Invent. Math. 144 (2001), no. 3, 435–449.

[3] Y. Colin de Verdière, Pseudo-laplaciens. II, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 87–

113.

[4] N. Diamantis and C. O’Sullivan, Hecke theory of series formed with modular symbols and

relations among convolution L-functions, Math. Ann. 318 (2000), no. 1, 85–105.

[5] D. Goldfeld, The distribution of modular symbols, Number Theory in Progress, Vol. 2

(Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, pp. 849–865.

[6] , Zeta functions formedwithmodular symbols, Automorphic Forms, Automorphic Rep-

resentations, and Arithmetic, Proc. Symp. Pure Math., vol. 66, AmericanMathematical Society,

Rhode Island, 1999, pp. 111–121.

[7] D. Goldfeld and C. O’Sullivan, Estimating additive character sums for Fuchsian groups, in

preparation.

[8] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press,

Massachusetts, 1994.

[9] D. A. Hejhal, The Selberg Trace Formula for PSL(2,R). Vol. 2, Lecture Notes in Mathematics,

vol. 1001, Springer-Verlag, Berlin, 1983.

[10] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren der mathematischen

Wissenschaften, vol. 132, Springer-Verlag, Berlin, 1976.

[11] P. D. Lax and R. S. Phillips, Scattering Theory for Automorphic Functions, Annals of Mathe-

matics Studies, vol. 87, Princeton University Press, New Jersey, 1976.

[12] W.Müller, Spectral theory for Riemannianmanifoldswith cusps and a related trace formula,

Math. Nachr. 111 (1983), 197–288.

[13] , Spectral geometry and scattering theory for certain complete surfaces of finite vol-

ume, Invent. Math. 109 (1992), no. 2, 265–305.

[14] C. O’Sullivan, Properties of Eisenstein series formed with modular symbols, Ph.D. thesis,

Columbia University, 1998.



1006 Yiannis N. Petridis

[15] , Properties of Eisenstein series formed with modular symbols, J. Reine Angew. Math.

518 (2000), 163–186.

[16] Y. N. Petridis, Perturbation of scattering poles for hyperbolic surfaces and central values of

L-series, Duke Math. J. 103 (2000), no. 1, 101–130.

[17] R. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of PSL(2,R), Invent. Math. 80

(1985), no. 2, 339–364.

[18] , Geodesics in homology classes, Duke Math. J. 55 (1987), no. 2, 287–297.

[19] , The spectrum of Fermat curves, Geom. Funct. Anal. 1 (1991), no. 1, 80–146.

[20] , Perturbation theory for the Laplacian on automorphic functions, J. Amer. Math. Soc.

5 (1992), no. 1, 1–32.

[21] , Cusp forms for character varieties, Geom. Funct. Anal. 4 (1994), no. 1, 93–118.

Yiannis N. Petridis: Department of Mathematics and Statistics, McGill University, 805 Sherbrooke

Street West, Montreal, QC, Canada H3A 2K6

Current address: Centre de Recherches Mathématiques, Université de Montréal, Case postale 6128,

Succursale Centre-ville, Montréal (Québec) H3C 3J7, Canada

E-mail address: petridis@math.mcgill.ca

mailto:petridis@math.mcgill.ca

