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On Squares of Eigenfunctions for the

Hyperbolic Plane and a New Bound on Certain L-Series

Yiannis N. Petridis

1 Introduction

Various applications of L-series require knowledge of their behavior on their critical line.

One usually needs to know the location of the poles and the various gamma factors that

appear in the functional equation of the L-series. In [9] Sarnak treats the special case

of the Rankin-Selberg convolution L(φ ⊗ φ, s) without such knowledge, where φ is an

L2-eigenfunction of the Laplace operator on the surface Γ \ H, Γ a cofinite subgroup of

SL(2,R). The following bound is proved in [9]

∫ T+1

T

|(φ2, E(z,1/2 + it))|2 dt � (T log T )2e−πT (1)

as T → ∞. The notation � means that the left-hand side is (for sufficiently large T )

less than a constant multiple of the right-hand side. Here E(z, s) is the Eisenstein series

corresponding to a cusp of Γ . Equation (1) implies that the Fourier coefficients an of an

arbitrary Maaß cusp form φ satisfy the bound

|an| �ε,φ |n|5/12+ε (2)

for all ε > 0. Here ∆φ+ (1/4 + λ2)φ = 0, λ ∈ R or λ ∈ i[−1/2,1/2], and φ has the following

Fourier expansion at the cusp S1 × [a,∞) with coordinates x, y:

φ(x+ iy) =
∑
n =0

any
1/2Kiλ(2π|n|y)e2πinx. (3)
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We can naturally assume that φ is real-valued and λ = ±i/2, since we are not interested

in the constant eigenfunction.

In [9] the case of compact surfaces is discussed as well. If theφk form an orthonor-

mal basis for L2(Γ \ H), Γ a cocompact subgroup of SL(2,R), and ∆φk + (1/4 + r2
k)φk = 0,

then

(φ2, φk) � (rk log rk)e
−πrk/2 (4)

as j → ∞.

In the case that φ is a holomorphic cusp form of even integral weight k > 2, Good

[4] proved that an � nk/2−1/6 for arbitrary cofinite subgroups of SL(2,R). We see that (2)

falls short of the corresponding bound for the holomorphic cusp forms. This raises the

issue of improving (1), (2), and (4). In this work we prove the following.

Theorem 1. If Γ is a cocompact subgroup of SL(2,R) and λ = 0, i.e., the eigenvalue

corresponding to φ is not 1/4, then

(φ2, φk) � r
1/2
k e−πrk/2 (5)

as k → ∞.

Theorem 2. If Γ is a cofinite subgroup of SL(2,R) and the eigenvalue corresponding to

φ is not 1/4, then there exists an ε > 0 such that

∫ t+ε
t

|(φ2, E(z,1/2 + is))|2 ds � te−πt (6)

as t → ∞.

Corollary 1. The Fourier coefficients an of a Maaß cusp form φ satisfy

|an| �ε,φ |n|2/5+ε (7)

for all ε > 0.

If Γ is an arithmetic group of a special kind, like SL(2,Z), much better bounds

than (7) are known; see Bump et al. [1]. Even in these cases the bounds do not prove the

Ramanujan conjecture |an| � |n|ε. In [9] Sarnak suggests that the Ramanujan conjecture

may hold for arbitrary cofinite subgroups and is not a special feature of arithmetic. This

makes improvements on (2) and (7) interesting to pursue. The method used to prove the

theorems follows the same steps as [9]. Section 3 provides an outline of the method.



       

Eigenfunctions for the Hyperbolic Plane 113

The restriction λ = 0, which follows from iλ ∈ Z/2, is purely technical. Lemma 1

does not apply for the eigenvalue 1/4. Equation (2.17) in [9], which gives the analytic

continuation of the hypergeometric function, fails for iλ ∈ Z/2. This problem first showed

up in Helgason [5] and Lewis [6]. However, even in the case λ = 0, the sequence bn in

(11) increases at most polynomially in n; see Mazzeo [7, Th. 7.3]. The author has not

investigated the order of growth of the bn that follows from [7, Th. 7.3] for λ = 0. In

any case, a generic cofinite or cocompact subgroup of SL(2,R) does not have 1/4 in its L2

spectrum; see [8].

2 Some general remarks

A point-pair invariant is a K = SO(2) bi-invariant function k(r), where r is the hyperbolic

distance, and its Selberg-Harish-Chandra transform is given by

h(s) = 2π
∫∞

0
P−1/2+is(cosh r)k(r) sinh r dr; (8)

see Terras [11, 3.27, p. 149]. Here P−1/2+is(z) is the Legendre function of the first kind.

Let Γ be a cocompact or cofinite subgroup of PSL(2,R). We set

K(w,w′) =
∑
γ∈Γ

k(r(γw,w′)).

If k satisfies the conditions explained in Selberg [10, p. 60], then the series above defines

an operator K with integral kernel K(w,w′). The Fourier expansion of K(w,w′) is

K(w,w′) =
∞∑
k=0

h(rk)φk(w)φk(w′) +
∫∞

0
h(s)E(w,1/2 + is)E(w′,1/2 − is)ds, (9)

where the φk’s are an orthonormal basis of eigenfunctions for the discrete spectrum with

corresponding eigenvalues 1/4 + r2
k. If Γ is cocompact the integral term is absent.

The metric on the disc model B2 of hyperbolic space is 4|dz|2/(1−|z|2)2, z = x+ iy.

Denote an arbitrary eigenfunction on B2 by φ. Assume its eigenvalue is 1/4+λ2. We write

φ(r, θ) = ∑∞
−∞ fj(r)ei jθ. Then

fj(r) = b′
j tanh| j|(r/2)

(
cosh(r/2)

)−1−2iλ
F(1/2 + iλ+ | j|,1/2 + iλ,1 + | j|, tanh2(r/2))

for some constants b′
j.
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3 Outline of the proof

Assume Γ is cocompact. If K is an integral operator as in Section 2, then

||Kφ2||22 =
∞∑
j=0

|h(rj)(φ
2, φj)|2.

We will choose a family of operators Kt given by point-pair invariants kt(r) such that the

corresponding transforms localize at rj, i.e., |hrj (rj)| ≥ c for all sufficiently large rj, where

c is a constant independent of j. If we prove that ||Kt(φ2)||∞ � t1/2 exp(−πt/2), then

rk exp(−πrk) �
∞∑
j=0

∣∣hrk (rj)(φ2, φj)
∣∣2 ≥ ∣∣hrk (rk)∣∣2 ∣∣(φ2, φk)

∣∣2 ≥ c2
∣∣(φ2, φk)

∣∣2 ,
which implies that (φ2, φk) � r

1/2
k exp(−πrk/2) and proves Theorem 1. The choice of kt will

be explained later. The issue is to estimate the L∞ norm of Kt(φ2). Fix w ∈ H. We switch to

the disc model of hyperbolic space by a transformation that maps w to zero. All bounds

will be uniform in w.

For 0 ≤ r < ∞ we define B(r) = ∫
S1 |φ(r, θ)|2 dθ. We set

Cj(r) = (cosh(r/2))−1−2iλF(1/2 + iλ+ | j|,1/2 + iλ,1 + | j|, tanh2(r/2)). (10)

The functions tanh| j|(r/2)Cj(r) are the associated spherical functions. Parseval’s equality

then gives

B(r) =
∞∑
j=0

|bj|2 tanh2 j(r/2)|Cj(r)|2, (11)

where |bj|2 = |b′
j|2 + |b′

− j|2, j ≥ 0. The function B(r) extends on the real line as an even

function and, if |φ(r, θ)| ≤ M, then B(r) ≤ 2πM2. It extends to an analytic function for

|�r| < π/2; see Lemma 2. The crucial point is a lower bound of Cj(qj) as j → ∞ for a

certain sequence qj that gives a rather sharp bound on bj (see Lemma 1) and an upper

bound on Cj(r) as j → ∞ for all r with |�r| < π/2 (see Lemma 3). This lemma is a sharper

version of [9, Equation 2.21] and is the crucial new ingredient. Its proof is included in

Appendix A.

The main point in Lemma 1 is that if an eigenfunction φ does not increase more

than exponentially in the distance from the origin of the hyperbolic disc, then it corre-

sponds to a distribution on the boundary of the disc and Lemma 1 gives a bound on the

order, if φ is bounded, as long as iλ ∈ Z/2; see [5] and [6].
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4 Proof of Theorem 1

4.1

We state the lemmas mentioned in Section 3.

Lemma 1. Assume that iλ ∈ Z/2. Then the sequence bj in (11) is square integrable.

Proof. See Helgason [5, Th. 4.24, p. 66] and Lewis [6].

Lemma 2. The function B(r) extends in the strip |�r| < π/2 as an even analytic function

of r and satisfies the bound

B(r) � | cosh(r/2)|4.

Proof. We have

B(r) =
∞∑
j=0

|bj|2 tanh j(r/2)tanh j(r/2)Cj(r)Cj(r).

We note that the hypergeometric function F(a, b, c, z) is holomorphic in the region |z| < 1

and that the map z = tanh
(
r/2

)
is a conformal map from |�r| < π/2 to |z| < 1. By Lemma 1

it is enough to show that |C(r)| � | cosh(r/2)|2. This is equivalent to (12) in the following

lemma, which captures the behavior of the hypergeometric function in (10) for large j.

Lemma 3. The following bound holds for |z| < 1:

∣∣∣(1 − z)3/2+iλF
(
1/2 + iλ+ j,1/2 + iλ,1 + j, z

)∣∣∣ � 1. (12)

We also have for t > 0

∣∣∣(1 − z)3/2F
(
1/2,1/2,1 − it, z

)∣∣∣ � 1. (13)

The proof of Lemma 3 is included in Appendix A.

Remark 1. On the horizontal lines r = x + i
(
π/2 − 1/t

)
and r = x − i

(
π/2 − 1/t

)
, x ∈ R,

we have the bound

B(r) � e2|x|. (14)



      

116 Yiannis N. Petridis

4.2

We now come to the choice of the point-pair invariants kt(r):

kt(r) = tP−1/2+it(cosh r) sinh2
r

cosh8(r)
. (15)

Remark 2. The intuition behind the choice of the point-pair invariants is as follows:

The inversion formula for the Harish-Chandra transform

k(r) = 1

2π2

∫∞

0
h(λ)P−1/2+iλ(cosh r)|c(λ)|−2 dλ,

where c(λ) is the Harish-Chandra c function, suggests that in order to localize ht(λ) at

t, say ht(λ) = δt(λ), kt(r) has to be essentially P−1/2+it(cosh r)|c(t)|−2. One sees that |c(t)| is

asymptotic to π−1/2t−1/2; see Appendix B. However, since we do not want to work with

distributions and need to define integral operators as in Section 2, we use a factor to

make kt(r) rapidly decreasing. We choose it to be sinhm
r/ coshn

r, for m and n natural

numbers. These point-pairs are smooth at r = 0 and can be odd or even functions of r and

have order of vanishing at zero as high as needed by adjusting m and n. These options

are important in order to generalize to the other rank-one symmetric spaces. Moreover,

the fact that we incorporate, in the point-pair invariants, the spherical function allows

us to avoid the fractional integral in [10]. With the exception of the odd-dimensional

real hyperbolic spaces, all other rank-one spaces have Harish-Chandra transform that

involves fractional integration and multiple integrals; see Venkov [12, p. 31].

We need to know that the point-pair invariants (15) are of moderate growth.

We show that kt has majorant k1(x, y) = te−(13/2)r. It is enough to study the behavior of

P−1/2+it(cosh r) for r ∈ R. The Legendre function of the first kind P−1/2+it(z) is real for z

real. Formula (26) in [2, p. 128] gives

P−1/2+it(cosh r) = 1√
π

Γ (−it)
Γ (1/2 − it)

e(1/2−it)r

(e2r − 1)1/2
F

(
1/2,1/2,1 + it,

1

1 − e2r

)
(16)

+ 1√
π

Γ (it)

Γ (1/2 + it)

e(1/2+it)r

(e2r − 1)1/2
F

(
1/2,1/2,1 − it,

1

1 − e2r

)

for r > (1/2) ln 2. We also have F(1/2,1/2,1 + it,1/(1 − e2r)) = 1 + ξ(t, r), for r > ln 2 and

t > 1, where

|ξ(t, r)| ≤ 2e−2r. (17)

This follows from the series expansion of the hypergeometric function. We note that the

bound on ξ(t, r) is independent of t. From (16) we deduce that P−1/2+it(cosh r) �t e
−1/2r, as

r → ∞.
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4.3

Now we prove that ht(t) ≥ c0 for all t sufficiently large, i.e., the Selberg-Harish-Chandra

transform of kt localizes at t. Using (8) and the fact that the spherical function

P−1/2+it(cosh r) is real, we get for m sufficiently large

1

π
ht(t) ≥ t

∫∞

m

[
P−1/2+it(cosh r)

]2
(cosh r)−5 dr,

where m is to be determined later, independently of t. The issue is to show that the

integral giving ht(t), which is positive and decreases as t → ∞, decreases at most like

1/t and not more quickly. Using (16) and (17) we get

ht(t) ≥ t

∫∞

m

Γ2(−it)
Γ2(1/2 − it)

1

cosh5
r

e(1−2it)r

e2r − 1

(
1 + ξ(t, r)

)2
dr (18)

+ t

∫∞

m

Γ2(it)

Γ2(1/2 + it)

1

cosh5
r

e(1+2it)r

e2r − 1

(
1 + ξ(t, r)

)2
dr

+ 2t
∫∞

m

Γ (−it)Γ (it)

Γ (1/2 − it)Γ (1/2 + it)

1

cosh5
r

er

e2r − 1

(
1 + ξ(t, r)

)
(1 + ξ(t, r))dr.

The idea suggested by the asymptotics of P−1/2+it(cosh r) is that the main contribution

comes from the integral

∫∞

m

1

cosh5
r

er

e2r − 1
dr ≥ 1

6
e−6m.

By expanding the products and the squares in equation (18), we get nine integrals, which

we estimate using (17). Those containing ξ(t, r) or its conjugate are � e−8m. The integrals

∫∞

m

e(1±2it)r

(e2r − 1) cosh5
r
dr

are estimated by t−1e−6m using an integration by parts. The asymptotic behavior of the

gamma function Γ (x+ iy) for large |y|,

lim
|y|→∞

|Γ (x+ iy)|eπ|y|/2|y|1/2−x = (2π)1/2 (19)

(see [2, (6),p. 47]), implies that the absolute value of the gamma factors in (18) is asymptotic



      

118 Yiannis N. Petridis

to 1/t. We now choose m sufficiently large and use the triangle inequality and (18) to

deduce that

lim inf
t→∞

ht(t) > 0, (20)

which concludes the claims about the choice of the point-pair invariants.

4.4

We come back to estimate the L∞ norm of Kt(φ2). We have, by using polar coordinates,

K(φ2)(w) = I =
∫∞

0
kt(r)B(r) sinh r dr =

∫∞

0

tP−1/2+it(cosh r)

cosh8(r)
B(r) sinh3

r dr.

Formula 3.3.1 (3) in [2, p. 140] gives

π−1i coth(tπ)
(
Q−1/2+it(z) −Q−1/2−it(z)

) = P−1/2+it(z), (21)

where Qν(z) is the Legendre function of the second kind. We split the integral in equa-

tion (21) as I1 and I2 to get

I = I1 − I2 =
∫∞

0

it

π
coth(tπ)

Q−1/2+it(cosh r)

cosh8(r)
B(r) sinh3

r dr (22)

−
∫∞

0

it

π
coth(tπ)

Q−1/2−it(cosh r)

cosh8(r)
B(r) sinh3

r dr.

The Legendre functions of the second kind Q
µ
ν(z) and the Legendre functions of the first

kind P
µ
ν (z) are not single-valued in the plane. One must introduce a cut from −∞ to 1.

However, when µ is an even integer, we can reduce the cut for Pµν (z) to (−∞,−1]; see [2,

p. 143]. We see that in the strip |�r| < π/2, the cut [0,1] corresponds to i[−π/2, π/2] and

that the conformal map z = cosh r opens the cut [0,1] so that approaching [0,1] from above

(below) corresponds to approaching i[0, π/2] (i[−π/2,0]). We denote the new branches of

Q
µ
ν(z) when we go around the branch point one clockwise (counterclockwise) by Q

µ
ν(z,1−)

(Qµ
ν(z,1+)). The relation between Q

µ
ν(z), Qµ

ν(z,1±), and P
µ
ν (z) is described by the equations

Qµ
ν(z,1−) − e−iµπQµ

ν(z) = πieiµπPµν (z)

Qµ
ν(z,1+) − eiµπQµ

ν(z) = −πieiµπPµν (z); (23)

see [2, 3.3.2 (19), p. 142].
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In (23) we subtract and pass to the limit µ → 0 to get

Qν(z,1+) −Qν(z,1−) = −2πiPν(z). (24)

Now we shift the contour of integration for I1, I2 as follows: For I1 (I2) we first go along

the negative real axis from zero to −∞ and on the lower (upper) cut of the plane, called

the path γ1 (γ3), and then along the line γ2 (γ4) given by the equation r = x− i
(
π/2 − 1/t

)
(r = x+ i(π/2 − 1/t)). We set

Q̃−1/2±it(cosh r) =
{

Q−1/2±it(cosh r), �r ≥ 0,

Q−1/2±it(cosh r,1∓), �r < 0.

Then

I = −
∫0

−∞

it

π
coth(tπ)Q−1/2+it(cosh r,1−)

B(r) sinh3
r

cosh8
r

dr

+
∫0

−∞

it

π
coth(tπ)Q−1/2−it(cosh r,1+)

B(r) sinh3
r

cosh8
r

dr

+
∫
γ2

−
∫
γ4

.

Moreover,

I =
∫∞

0

it

π
coth(tπ)

[
Q−1/2−it(cosh r,1+) −Q−1/2+it(cosh r,1−)

] −B(r) sinh3
r

cosh8
r

dr (25)

+
∫
γ2

−
∫
γ4

,

because B(r) is even. Since

P−1/2−it(cosh r) = 1

π
tan(−1/2 − it)π

[
Q−1/2−it(cosh r) −Q−1/2+it(cosh r)

]
for r > 0, we get by analytic continuation when we cross the cut i[0, π/2]

P−1/2−it(cosh r) = 1

π
tan(−1/2 − it)π

[
Q−1/2−it(cosh r,1+) −Q−1/2+it(cosh r,1+)

]
,

which gives, together with (24), (25),

I =
∫
γ2

−
∫
γ4

(26)

+
∫∞

0
tP−1/2−it(cosh r)

B(r) sinh3
r

cosh8
r

dr

−
∫∞

0

it

π
coth(tπ)(−2πi)P−1/2+it(cosh r)

B(r) sinh3
r

cosh8
r

dr.
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Since P−1/2−it(z) = P−1/2+it(z) (see [2, 3.3.1 (1), p. 140]) we get from (26)

I = etπ − e−tπ

2(etπ + e−tπ)

(∫
γ2

−
∫
γ4

)
.

Therefore, it is enough to prove that

∫
γ

it

π
coth(tπ)Q̃−1/2±it(cosh r)

B(r) sinh3
r

cosh8
r

dr = O(t1/2e−(π/2)t)

where γ is γ2 (γ4) respectively. Since B(r) is real for real r > 0, we have B(r) = B(r) on the

strip |�r| < π/2, and we see that the integrand C(r) in
∫
γ2

satisfies C(r) = D(r), where D(r)

is the integrand for
∫
γ4

. So it is enough to look at
∫
γ4

D(r)dr. We have

Q−1/2−it(cosh r) =
√
π/2

Γ (1/2 − it)

Γ (1 − it)

eitr√
sinh r

F

(
1/2,1/2,1 − it,

1

1 − e2r

)

for r > (1/2) ln 2 [2, 3.2 (44), p. 136]. This formula holds by analytic continuation in the

domain: {r | π/4 < �r < π/2,−∞ < �r < ln 2} ∪ {r | −π/4 < �r < π/2,�r ≥ ln 2}. On this

domain we have
∣∣1/(1 − e2r)

∣∣ < 1, so we can apply (13). On the lineγ4 we have | sinh r| � e|x|,

|F(1/2,1/2,1 − it,1/(1 − e2r))| � |1 − e−2r|3/2 � e3|x|, | cosh r| � e|x| for t > 3/π. Using (19),

(14) we finally get

∫
γ4

it

π
coth(tπ)Q̃−1/2−it(cosh r)

B(r) sinh3
r

cosh8
r

dr � t1/2e−(π/2)t
∫∞

−∞
e−|x|/2dx,

which gives the result. This completes the proof of Theorem 1.

5 Noncompact surfaces

We need the following property of the point-pair invariants kt(r) defined in (15).

Claim. There exist ε > 0, ε0 > 0, and t0 > 0 such that |ht(s)| ≥ ε0 for all t ≥ t0 and

|s− t| < ε.

This property is proved in Appendix B.

The spectral decomposition of the integral kernel in this case is given by (9).

Parseval’s identity now gives

‖|Kϕ2||22 =
∞∑
j=0

|h(rj)|2|(ϕ2, ϕj)|2 + 1

4π

∫∞

0
|h(s)|2|(ϕ2, E(z,1/2 + is))|2 ds. (27)

The rest of the proof remains unchanged, and we look now at the integral on the right-
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hand side of (27) over the short interval [t, t + ε] to deduce (6) and complete the proof of

theorem 2. In order to study the Fourier coefficients of Maaß cusp forms for Γ , we follow

the method used in [4, p. 546] to study the Fourier coefficients of holomorphic cusp forms.

We define ψU, U sufficiently large, to be a nonnegative C∞-function on R with

ψU(τ) =
{

1, if τ ≤ 1 − 1/U,

0, if τ ≥ 1 + 1/U,

and ψ
( j)
U (τ) � Uj for j = 0,1, . . .. We will work with the Mellin transform of ψU given by

RU(s) = ∫∞
0 ψU(τ)τs−1 dτ for σ = �s > 0. We have

RU(s) = 1

s
+O

(
1

U

)
. (28)

Integration by parts gives

RU(s) = (−1) j

s(s+ 1) · · · (s+ j− 1)

∫∞

0
τs+ j−1ψ

( j)
U (τ)dτ � 1

|s|
(

U

1 + |s|
) j−1

(29)

for j = 1,2, . . .. The estimates (28) and (29) are uniform for σ bounded. Now by interpola-

tion it is easy to see that for all c ≥ 0 we have

RU(s) � 1

|s|
(

U

1 + |s|
)c

(30)

again uniformly for σ bounded. We assume the Maaß cusp form φ(z) has the Fourier ex-

pansion (3) at the cusp and its eigenvalue is 1/4 + λ2. The L-series D(s) = ∑ |an|2|n|−s
converges absolutely for �s > 2 by the Hecke bound an = O(|n|1/2). The Rankin-Selberg

method provides the analytic continuation of D(s) to the whole plane. A standard argu-

ment gives

D(s) = 2πsΓ (s)

Γ (s/2)2Γ (s/2 + iλ)Γ (s/2 − iλ)

∫
Γ\H

φ2E(z, s)dz. (31)

On the critical line �s = 1/2 the factor f(s) = 2πsΓ (s)Γ (s/2)−2Γ (s/2 + iλ)−1Γ (s/2 − iλ)−1 is

asymptotic to eπt/2t, as t → ∞, as follows from equation (19). The inversion formula for

the Mellin transform gives

∑
|n|≤X(1−1/U)

|an|2 ≤
∑
|n|

|an|2ψU(|n|/X) = 1

2πi

∫
�s=2+ε

D(s)XsRU(s)ds. (32)

We shift the countour of integration in the integral in (32) to the line �s = 1/2. The

function D(s) has poles coming from the residues of the Eisenstein series on the interval
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(1/2,1]. Let us assume these are at the points sl with residues the noncuspidal eigenfunc-

tions ul(z). We estimate the integral along the line �s = 1/2 as follows: We choose m an

integer with 1/m < ε. Then, using (6) and (19),

∫∞

−∞
D(1/2 + it)X1/2+itRU(1/2 + it)dt

=
∞∑

n=−∞

m∑
k=1

∫n+k/m

n+(k−1)/m
f(1/2 + it)(ϕ2, E(z,1/2 + it))X1/2+itRU(1/2 + it)dt

�
∑
n,k

(∫n+k/m

n+(k−1)/m
|(ϕ2, E(z,1/2 + it))|2dt

∫n+k/m

n+(k−1)/m
|f(1/2 + it)|2X|RU(1/2 + it)|2dt

)1/2

�
∞∑

n=−∞

m∑
k=1

e−π|n|/2|n|1/2

(
eπ|n|X

(
U

1 + |n|
)2c

)1/2

= X1/2
∞∑

n=−∞
|n|1/2Uc(1 + |n|)−c.

To make the last series converge, we choose c > 3/2, say, c = 3/2 + ε′ with ε′ > 0. Then

the integral is estimated by X1/2U3/2+ε′
. Therefore,

∑
|n|≤X(1−1/U)

|an|2 =
∑

1/2≤sl≤1

(ul, φ
2)f(sl)X

sl
1

sl
+O(X/U) +O(X3/2U1/2+ε′

),

since Xsl � X and (28) holds. The pole of Eisenstein series at s = 1 gives the constant

eigenfunction and we conclude

∑
|n|≤X(1−1/U)

|an|2 = cX+O(X/U+ X1/2U3/2+ε′
). (33)

We choose U so that the two error terms are equal, i.e., U = X1/(5+2ε′) = X1/5−ε, and then

the error term becomes O(X4/5+ε). Then am = O(|m|2/5+ε). This proves Corollary 1.

Appendix A

Proof of Lemma 3. Using the fundamental integral representation for the hypergeomet-

ric function [2, 2.1.3(10), p. 59], we get

F(1/2 + iλ+ j,1/2 + iλ,1 + j, z) = Γ (1 + j)Γ (1/2 + iλ+ j)−1Γ (1/2 − iλ)−1

×
∫1

0
s−1/2+iλ+ j[(1 − s)(1 − zs)]−1/2−iλds. (34)

We can assume that 0 ≥ �λ > −1/2, which is necessary for the integral representation

to be valid. We can also assume that |arg (1 − z)| < π and |arg (1 − sz)| < π. We study the
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hypergeometric integral in equation (34) using Laplace’s method. For a similar approach

to get uniform asymptotics of hypergeometric integrals, see [13]. We fix δ > 0 small and

set u(s) = s−1/2+iλ+ j, v(s) = (1 − s)−1/2−iλ, P(s) = (1 − zs)−1/2−iλ, U(s) = s1/2+iλ+ j/(1/2 + iλ+ j).

Then U(0) = 0, v′(s) = (1/2 + iλ)(1 − s)−3/2−iλ, and P′(s) = z(1/2 + iλ)(1 − zs)−3/2−iλ. We have

∫1

0
uvP =

∫1−δ

0
uvP +

∫1

1−δ
uvP (35)

= U(1 − δ)v(1 − δ)P(1 − δ) −
∫1−δ

0
U(v′P + vP′) +

∫1

1−δ
uvP.

The first term in (35) is O(1/ j), since |P(1 − δ)| is bounded, as |z| < 1. Since for |z| < 1 and

0 ≤ s ≤ 1, |1−z| ≤ 2|1−zs|,we also have |(1−z)3/2+iλP(s)| ≤ |1−z|c1 and |(1−z)3/2+iλP′(s)| ≤ c2;

therefore,

(1 − z)3/2+iλ
∫1−δ

0
U(v′P + P′v) �

∫1−δ

0
|U||v′| + |U||v| = O(1/ j). (36)

We now look at the third term in (35):

∫1

1−δ
uvP = P(1)

∫1

0
uv− P(1)

∫1−δ

0
uv+

∫1

1−δ
uv[P − P(1)]

= (1 − z)−1/2−iλ Γ (1/2 + iλ+ j)Γ (1/2 − iλ)

Γ (1 + j)
− P(1)U(1 − δ)v(1 − δ)

+ P(1)
∫1−δ

0
Uv′ +

∫1

1−δ
uv[P − P(1)], (37)

where we used the beta integral to evaluate
∫1

0 uv. The second and third terms in (37)

multiplied by (1 − z)3/2+iλ are clearly O(1/ j). Since

lim
s→1

(P(s) − P(1))/(s− 1) = z(1/2 + iλ)(1 − z)−3/2−iλ,

we have
∫1

1−δ
uv[P − P(1)] = −(Uv[P − P(1)])(1 − δ) −

∫1

1−δ
U{v′[P − P(1)] + vP′}. (38)

The first term in (38) is O(1/ j), when multiplied by (1 − z)3/2+iλ. Moreover,

∣∣∣∣(1 − z)3/2+iλ
∫1

1−δ
UvP′

∣∣∣∣ ≤
∫1

1−δ
|U||v|, (39)

which is O(1/ j), since v is integrable on [1 − δ,1], as �(−1/2 − iλ) > −1. The last term to

consider in (38) is

∫1

1−δ
Uv′[P − P(1)] = −(1/2 + iλ)

∫1

1−δ
Uv[P − P(1)]/(s− 1), (40)
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and the function (1 − z)3/2+iλ[P − P(1)]/(s − 1) is bounded for s close to one. This com-

pletes the study of the various terms. We now take into account the asymptotics of the

gamma function [2, p. 47] to see that Γ (1 + j)/Γ (1/2 + iλ+ j)−1 ∼ j1/2−iλ as j → ∞. Since

�(1/2 − iλ) ≤ 1/2, all the terms in the expansion of the integral representation of the

hypergeometric function tend to zero as j → ∞, when we multiply by (1 − z)3/2+iλ, except

(1 − z)−1/2−iλΓ (1/2 + iλ+ j)Γ (1/2 − iλ)Γ (1 + j)−1
,

which, when multiplied by

(1 − z)3/2+iλΓ (1 + j)Γ (1/2 + iλ+ j)−1Γ (1/2 − iλ)−1,

remains bounded. This proves the estimate in (12). The second estimate in Lemma 3 is

proved similarly.

Appendix B

In this appendix we prove the claim made at the beginning of Section 5. By equation (20)

there exist ε0 > 0 and t0 > 0 such that |ht(t)| > 2ε0 for all t > t0. If we prove that

|dht(s)/ds| ≤ K for |s − t| < ε1, t sufficiently large and K independent of t, then the mean

value theorem allows us to deduce |ht(s)| > ε0 for |s− t| < ε = min(ε1, ε0/K), t sufficiently

large. Using (8) we get

dht(s)

ds
= 2π

∫∞

0

d

ds
P−1/2+is(cosh r)

tP−1/2+it(cosh r) sinh3
r

cosh8
r

dr.

We will prove that, for |s − t| < ε1, the integrand is bounded by a function of r which is

integrable on [0,∞) (independent of s and t). We review some facts about the spherical

function on the symmetric space H (see [3, pp. 144, 150–152]). The spherical function

P−1/2+iλ(cosh r) can be split as

P−1/2+iλ(cosh r) = ϕλ(r) = c(λ)Φλ(r) + c(−λ)Φ−λ(r), (41)

where c(λ) is the Harish-Chandra c function and Φλ(r) is the unique solution of the equa-

tion ∂2ϕ/∂r2 +coth r∂ϕ/∂r+ (1/4+λ2)ϕ = 0 satisfying Φλ(r) = e(iλ−1/2)r(1+o(1)) as r → ∞.

We have c(λ) = Γ (iλ)Γ (1/2 + iλ)−1π−1/2, whose absolute value is asymptotic to π−1/2λ−1/2

as λ → ∞, by (19). Moreover,

Φλ(r) = e(iλ−1/2)r
∞∑

m=0

Γm(λ)e−mr, (42)
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where the Γm(λ) satisfy the following recursion formula

4n(n− iλ)Γ2n =
n−1∑
k=0

(2k− iλ+ 1/2)2Γ2k (43)

with Γ0 = 1 and Γ2n−1 = 0. The convergence of (42) is uniform on [c,∞) for any c > 0 by the

estimate |Γm(λ)| ≤ K(1 + m)d, for some K, d > 0. This is explained in Flensted-Jensen [3,

Lemma 7] or Helgason [5, p. 57]. We set an(λ) = Γ2n(λ). We need more precise information.

We have the following two lemmas.

Lemma 4. There is a constant K > 0 such that |Γm(λ)| ≤ K for all λ > 0 and m ∈ N.

Proof. See [3]. Use induction and equation (43).

Lemma 5. For all d > 0, there exists a K1 > 0 such that for all m ∈ N, λ > 0

∣∣∣∣ ddλΓm(λ)

∣∣∣∣ ≤ K1m
d.

Proof. We have a′
0(λ) = 0. We differentiate (43) and use the triangle inequality to get

∣∣∣∣dan(λ)

dλ

∣∣∣∣ ≤
n−1∑
k=0

|ak(λ)|
2n|n− iλ| +

n−1∑
k=0

|4k− 2iλ+ 1|
4n|n− iλ|

∣∣∣∣dak(λ)

dλ

∣∣∣∣ + |an(λ)|
|n− iλ| . (44)

If we assume that |dak(λ)/dλ| ≤ K1k
d for k < n, we get using the previous lemma and (44)

∣∣∣∣dan(λ)

dλ

∣∣∣∣ ≤ 3K

2n
+ K1

n−1∑
k=0

kd

n
.

Forn sufficiently large, sayn > N0, 3K/(2n)+K1
∑n−1

k=0 k
d/n ≤ K1n

d, since
∑n−1

k=0 (k/n)d/n →∫1
0 x

ddx = 1/(d+ 1) < 1. Equation (44) shows that we can bound (dan(λ)/dλ) for all n ≤ N0

independently from λ, so we can start the induction and the inductive step is complete.

We are interested in the product

dϕs(r)

ds
ϕt(r) = d

ds
{c(s)Φs(r) + c(−s)Φ−s(r)} · [

c(t)Φt(r) + c(−t)Φ−t(r)
]
.

The products |c(s)c(t)|, |c(−s)c(t)|, |c(s)c(−t)|, and |c(−s)c(−y)| are asymptotic toπ−1s−1/2t−1/2

as t → ∞, |s− t| < ε1 (s → ∞). We study now

c′(s) = iΓ (is)√
πΓ (1/2 + is)

[
ψ(is) −ψ(1/2 + is)

]
,
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where ψ(z) = Γ ′(z)/Γ (z) is the logarithmic derivative of the gamma function. Using the

asymptotics for ψ(z) (see [2, 1.18 (7), p. 47]), we get |c′(s)| = O(s−3/2). The products |c′(s)c(t)|,
|c′(−s)c(t)|, |c′(s)c(−t)|, and |c′(−s)c(−t)| are O(s−3/2t−1/2). Lemma 4 and equation (42) give

|Φs(r)| ≤ e−r/2
∞∑

m=0

|Γm(s)|e−mr ≤ Ker/2/(er − 1),

which blows like K/r as r → 0. We take d = 1 in Lemma 5. Then

dΦs(r)

ds
= e(is−1/2)r

( ∞∑
m=0

[
irΓm(s) + dΓm(s)

ds

]
e−mr

)

and ∣∣∣∣dΦs(r)

ds

∣∣∣∣ ≤ Kre−r/2/(1 − e−r) + K1e
−r/2

∞∑
m=0

me−mr,

which behaves like K1/r
2 as r → 0. For r ≥ c > 0 we get for Φs(r) and dΦs(r)/ds bounds by

exponentially decreasing functions of r with no dependence on s. The products Φs(r)Φt(r),

Φ−s(r)Φt(r), Φs(r)Φ−t(r), and Φ−s(r)Φ−t(r) blow at most like c1/r
2 as r → 0 and the products

dΦs/ds ·Φt, dΦ−s/ds ·Φt, dΦs/ds ·Φ−t and dΦ−s/ds ·Φ−t blow at most like c2/r
3 ar r → 0.

Away from zero all these products can be bounded by a function of r that decreases

exponentially as r → ∞. Since tO(s−1/2t−1/2) = O(1) and tO(s−3/2t−1/2) = O(1/t) as t → ∞,

|s− t| < ε1, the function dϕs(r)/ds ·ϕt(r)t sinh3
r/ cosh8

r can be bounded by an integrable

function of r independently from s and t. This concludes the claim in Section 6.
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