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ON THE NUMBER OF FOURIER COEFFICIENTS
THAT DETERMINE A HILBERT MODULAR FORM

SRINATH BABA, KALYAN CHAKRABORTY, AND YIANNIS N. PETRIDIS

(Communicated by Dennis A. Hejhal)

Abstract. We estimate the number of Fourier coefficients that determine
a Hilbert modular cusp form of arbitrary weight and level. The method is
spectral (Rayleigh quotient) and avoids the use of the maximum principle.

1. Introduction

Jacquet, Piatetski-Shapiro and Shalika [4] show that if two cusp forms on GLn
which are Hecke eigenforms have all but finitely many Fourier coefficients equal,
then the forms are identically equal. Their argument uses the properties of Rankin-
Selberg L-functions. Moreno, using the L-series attached to the modular forms,
showed that a suitably chosen finite set of Fourier coefficients determines the form
uniquely (see [5]). Goldfeld and Hoffstein, in [2], prove a similar result for holo-
morphic Hecke eigenforms for Γ0(N); their bound on the number of initial Fourier
coefficients that determine the modular form is O((logN)2(log logN)4) assuming
the Riemann hypothesis for Rankin-Selberg L-functions, and O(N logN) uncondi-
tionally.

In [6] Murty improves the results of Goldfeld and Hoffstein by removing the
condition that the forms are Hecke eigenforms. Murty shows that a holomorphic
cusp form of weight k for Γ0(N) is determined by the first (k/12)N

∏
p|N(1+(1/p))

Fourier coefficients. This improves the earlier results on the dependence on the level,
and gives a linear dependence on the weight of the cusp form. He also improves
the bound for Hecke eigenforms to O((logN)2).

In [3] Huntley concentrates on non-holomorphic Maaß cusp forms F of weight 0
for cofinite groups acting on products of hyperbolic spaces Hn1 × · · · ×Hnp , where
Hni is the ni-dimensional hyperbolic space. At the j-th cusp, one has a Fourier
expansion with Fourier coefficients a(j)

~l
, where ~l runs through a lattice Λ. Using

the Rayleigh quotient for the Laplace operator, he shows that if a(j)
~l

= 0 for every

j and for all ~l with |~l| ≤ C|~λ|1/2, where ~λ = (λ1, . . . , λp), λi is the eigenvalue of
the Laplacian acting on Hni , and |~l| denotes the length of the vector ~l, then F

is identically zero. He proceeds to show that the spectral multiplicity m(~λ) of ~λ
satisfies a bound m(~λ) = O(|~λ|(n−p)/2), where n =

∑
i ni.
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In this note we extend the Rayleigh quotient method used in [3] to holomorphic
Hilbert modular forms. We let n1 = n2 = . . . = np = 1, and let K/Q be a totally
real number field of degree p with embeddings σ1, . . . , σp into R. Let Γ = SL2(OK).
Let f(z1, . . . , zp) be a Hilbert modular cusp form with respect to Γ. We say that
f has weight ~k = (k1, . . . , kp) if, for every γ ∈ Γ, we have

f(γ · (z1, z2, . . . , zp)) =
p∏
i=1

(cσ1zi + dσi)2kif(z1, . . . , zp),

where γ = ( a bc d ). If s1, . . . , sh are the cusps for Γ and Uj is an element of SL2(K)
that maps the cusp (i∞, . . . , i∞) to sj , then f admits a Fourier expansion of the
form

f(z1, . . . , zp)|Uj =
∑

~06=~l∈Λ∗j

a
(j)
~l

exp(2πi(~l · ~z))(1.1)

where ~z = (z1, . . . , zp), zm = xm + iym, Λ∗j is the dual of Λj , which is a translation
lattice in OK fixing sj ; see [1, pp. 44–45] or [9]. It is known (see [1, p. 51]) that
a

(j)
~l

= 0 if ~l /∈ (R+)p.
For η an ideal in OK , let Γ(η) be the principal congruence subgroup of Γ of level

η, i.e., Γ(η) = ker(SL2(OK) −→ SL2(OK/η)). Then Γ(η) is a normal subgroup of
Γ. Let t1, . . . , th(η) be the cusps for Γ(η), and let Ui ∈ SL2(K) map (i∞, . . . , i∞)
to ti. As before, if f(z1, . . . , zp) is a Hilbert modular cusp form with respect to
Γ(η) of weight ~k, then f has a Fourier expansion at the cusp ti of the form

f(z1, . . . , zp)|Ui =
∑

~06=~l∈Ω∗i

c
(i)
~l

exp(2πi(~l · ~z))(1.2)

where Ω∗i is the dual lattice in K to the translation lattice in η that fixes ti.
Our first theorem is the following:

Theorem 1. Let f(z1, . . . , zp) be a holomorphic Hilbert modular cusp form for
Γ of weights (k1, . . . , kp) with Fourier expansion at the j-th cusp given by (1.1).
There is a constant CK so that if c(j)~l

= 0 for every j and for every ~l ∈ Λ∗j with

|~l| ≤ CK(
∑p

i=1 ki), then f ≡ 0.

In the rest of this article the constant in O(H(~k)) depends on the group Γ (but
not on ~k) and the constant in O(H(N)) depends on the group Γ and ~k (but not on
N).

Corollary 2. The dimension of the space of Hilbert modular forms of weight ~k for
Γ is bounded by O(|~k|p).

Corollary 2 was originally proved in [8] for k1 = k2 = · · · = kp using the max-
imum principle and the norm ||z|| = max |zi| in Cp. The importance of Corollary
2 is that it implies that the set of automorphic functions forms a field of algebraic
functions in p independent variables.

Our proof avoids the maximum principle and norm and follows the modern point
of view that holomorphic cusp forms (as well as nonholomorphic cusp forms) are
eigenfunctions of certain self-adjoint operators, which are restrictions of the Casimir
operator of the Lie algebra sl2(OK) to subspaces of L2(Γ \ SL2(OK)) of various
weights. The Rayleigh quotient produces for such eigenfunctions their eigenvalues.
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It should be noted that one can show the existence of a polynomial bound of
some degree on the dimension of the space of Hilbert modular forms using the
Hilbert polynomial for the cohomology of Hilbert modular varieties; see [1, p. 116].

The main theorem in this article is the following.

Theorem 3. Let f be a holomorphic Hilbert modular form for Γ(η) of weight ~k =
(k1, . . . , kp), where η has norm N , and suppose that SL2(OK) has only one cusp.
Let f have a Fourier expansion at tj as in (1.2). There is a constant CK,~k so that

if c(j)~l
= 0 for every j and for every ~l ∈ Ω∗j with |~l| ≤ CK,~kN , then f ≡ 0.

Corollary 4. The dimension of the space of Hilbert modular forms of weight ~k for
Γ(η) is bounded by O(Np+4).

For the case p = 1 our method is not sharp, because it requires that we check
the Fourier coefficients at all cusps. See Remark 6 for an improvement.

Remark 5. We work with the principal congruence subgroup Γ(η) and we assume
that Γ has only one cusp for simplicity of the exposition only. One can also use
the same arguments for Hilbert modular forms of half-integral weights, because the
multiplier systems have absolute value 1.

2. Proof of the theorems

2.1. Fundamental domains. Let D(1) be the fundamental domain for the action
of Γ on H × · · · × H. Let s1, . . . , sh be the cusps for Γ. There is a decomposition
D(1) =

⋃h
j=1Dj , where each Dj contains a single cusp sj . Let Γj∞ be the stabiliser

of sj in Γ and Γj = U−1
j Γj∞Uj . From [1, p. 69] it follows that there are Siegel sets

Sj of the form

U−1
j Sj = {(z1, . . . , zp) ∈ (Γj\H× · · · ×H), yn ≥ Θ, n = 1, 2, . . . , p}

for 1 ≤ j ≤ h and for some positive real number Θ with the property that Dj ⊂ Sj
and each Sj is contained in the union of a finite number of copies of D(1).

For Theorem 3 we assume that SL2(OK) has only one cusp s1 and we denote by
S1 the Siegel set for Γ. Let D(η) be the fundamental domain of Γ(η). Then D(η)
has a decomposition as D(η) =

⋃h(η)
j=1 Dj(η).

We construct Siegel sets Sj(η) covering D(η) as follows. Choose Uj in SL2(OK).
Let Γj∞(η) be the stabilizer in Γ(η) of tj , and Γj(η) = U−1

j Γj∞(η)Uj . The Siegel
sets are defined as

U−1
j Sj(η) =

k(η)⋃
m=1

γmS1,(2.1)

where γ1, γ2, . . . , γk(η) are coset representatives of Γj(η) in Γ1. Because Γ(η) is
normal in Γ, the number of coset representatives k(η) is the same for all cusps of
Γ(η) and we set M = k(η). From (2.1) it follows that Θ can be taken to be the
same for all η. The properties of the Sj(η) that we need are: Dj(η) ⊂ Sj(η) and
Sj(η) is contained in a number of copies of D(η) equal to the number of copies of
D(1) covering S1. Consequently this number is independent of η. This follows from
the rules of joining copies of D(1) to obtain D(η).
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As in [10, p. 22], the number of cusps h(η) for the groups Γ(η) is given by the
formula

h(η) = [Γ : Γ(η)]/M.(2.2)

Since [OK : η] = N , [Γ : Γ(η)] ≤ N3. Since Γ1 = {( ε x
0 ε−1 )} with ε ∈ O∗K , x ∈ OK ,

we see that N2 ≥M ≥ N . It follows that h(η) ≤ N2 and [Ω∗j : Λ∗1] ≤ N2.

2.2. Action of the Laplace operators. Let

F (z1, . . . , zp) = yk1
1 · · · ykpp f(z1, . . . , zp).

If ∆k,i denotes the ki Laplace operator

∆k,i = y2
i

(
∂2

∂x2
i

+
∂2

∂y2
i

)
− 2ikiyi

∂

∂xi
,

which acts on the i-th variable of F (z1, . . . , zp), then F satisfies

∆k,iF = ki(ki − 1)F.

Let Kki = (zi − z̄i) ∂
∂zi

+ ki and Lki = (z̄i − zi) ∂
∂z̄i
− ki. Then,

∆k,i = Lki+1Kki + ki(1 + ki);

see [7]. From equation (9.1) of [7], we know that for any domain X ∈ H and
functions f, g on H, we have

−
∫
∂X

ḡKkif
dz

y
=
∫
X

(ḡLki+1Kkif +KkigKkif)
dxdy

y2
.(2.3)

Letting f = g = F , and X = D ∩ H(i) (where H(i) denotes the i-th copy of H in
H× · · · ×H) in (2.3), we have∫

∂X

F̄KkiF
dzi
yi

= −
∫
X

(F̄ (∆k,i − ki(ki + 1))F +KkiFKkiF )
dxidyi
y2
i

= −
∫
X

((ki(ki − 1)− ki(ki + 1))|F |2 + |KkiF |2)
dxidyi
y2
i

.

(2.4)

Integrating over all the zj’s, j 6= i, we have

−
∫
∂D

F̄KkiFdS =
∫
D

((ki(ki − 1)− ki(ki + 1))|F |2 + |KkiF |2) dV,(2.5)

where dS and dV denote the surface and volume measure on the fundamental
domain D of the group under investigation. We denote h′ the number of cusps.
By the construction of the fundamental domain, we see that the left-hand side
of equation (2.5) is zero, because F̄KkiFdS is invariant under the action of Γ.
Naturally all this amounts to the fact that ∆k,i − ki(ki + 1) is self-adjoint and
corresponds to the quadratic form ||KkiF ||22. Using (2.5), we have for every i∫

D
|KkiF |2dV =

∫
D

(2ki)|F |2dV,(2.6)

and, hence,
p∑
i=1

∫
D
|KkiF |2dV =

p∑
i=1

∫
D

(2ki)|F |2 dV.(2.7)
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Using the properties of the Siegel sets Sj covering D, we have∑
i

∫
Sj
|KkiF |2dV∫

Sj
|F |2dV ≤ C

∑
i

∫∫
D |KkiF |2dV∫∫
Dj |F |

2dV
(2.8)

for some constant C. Taking the minimum of the left-hand side over all j, and
adding over all cusps, we get

h′∑
k=1

∫
Dk
|F |2dVmin

(∑
i

∫
Sj
|KkiF |2dV∫

Sj
|F |2dV

)
≤ Ch′

∑
i

∫
D
|KkiF |2 dV .(2.9)

We deduce, using (2.6) and (2.9), that

min

(∑
i

∫
Sj
|KkiF |2dV∫

Sj
|F |2 dV

)
≤ Ch′

p∑
i=1

(2ki).(2.10)

Proof of Theorem 1. We let D = D(1) and h′ = h. Substituting the Fourier ex-
pansion of f from (1.1) at the cusp at which the minimum is attained and using
Parseval’s formula, we get

p∑
i=1

∫ ∑
~l∈Λ∗j

|a(j)
~l
|2|ki − 2πliyi|2

∏p
i=1(y2ki

i e−4πliyidyi/y
2
i )∫ ∑

~l∈Λ∗j
|a(j)
~l
|2
∏p
i=1(y2ki

i e−4πliyidyi/y2
i )

≤ 2Ch
p∑
i=1

ki,(2.11)

where the integrals are over the Siegel set Sj . Each of the yi’s is bounded below by
Θ. If a(j)

~l
= 0 for |~l| ≤ C(~k), then at least one of the li would be large relative to

ki. Using (2.11), we have

|ki − 2πliΘ|2 ≤ 2Ch
p∑
i=1

ki,(2.12)

where |~l| ≥ C(~k). If C(~k) is chosen as CK
∑
i ki, where CK is some appropriately

chosen constant depending only on K, then the left-hand side of equation (2.12),
being quadratic in ki, can be made larger than the right-hand side which is linear
in ki, contradicting (2.12). We conclude that F and hence f must be identically
zero.

Proof of Corollary 2. A ball of radius R in Rp contains O(Rp) vectors in Λ∗, and
we let R = O(

∑
i ki).

Proof of Theorem 3. We let D = D(η) and h′ = h(η). Using the Fourier expansion
from (1.2) in equation (2.10) at the cusp at which the minimum is attained, and
using the notation of subsection 2.1, we have

p∑
i=1

∫ ∑
~l∈Ω∗j

|c(j)~l
|2|ki − 2πliyi|2

∏p
i=1(y2ki

i e−4πliyidyi/y
2
i )∫ ∑

~l∈Ω∗j
|c(j)~l
|2
∏p
i=1(y2ki

i e−4πliyidyi/y2
i )

≤ 2Ch(η)
p∑
i=1

ki.(2.13)

As in the proof of Theorem 1, if c(j)~l
= 0 for |~l| ≤ C(N,~k), we have

|ki − 2πliΘ|2 ≤ 2Ch(η)
p∑
i=1

ki.(2.14)
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If C(N,~k) is chosen as CK,~kh(η)1/2, then the left-hand side of (2.14) grows faster
than the right-hand side as a function of N which is a contradiction. Thus F would
have to be identically 0.

To conclude Theorem 3, we see from subsection 2.1 that h(η) ≤ N2.

Proof of Corollary 4. The index of Λ∗1 in Ω∗j is at most N2 and consequently the
number of lattice points of Ω∗j with length ≤ R is O(N2Rp). We take R = O(N),
by Theorem 3 and there exist at most N2 cusps.

Remark 6. When p = 1 Corollary 4 gives a bound O(N5). However, it can be
strengthened by noticing that M = N , and, hence, the dimension is O(N4). Actu-
ally [10, 1.6.4, p. 23] gives the genus of Γ(N) \ H and the correct order of growth
of the space of cusp forms of fixed weight is O(N3). The discrepancy is the result
of our need to check the Fourier coefficients at all cusps.
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