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Abstract. Geometry studies geodesics in various settings, in particular on

hyperbolic surfaces. The distribution of geodesics on arithmetic surfaces gives

information on the arithmetic of quadratic forms, an important branch of
Number Theory.

1. Geodesics and the sphere

A geodesic curve is the path of a point in our space that is moving without friction
and without external forces. A geodesic curve minimizes the distance between two
points, at least when these are close enough to each other. While on our standard
euclidean space the shortest distance between two points is given by the length of
the line segment between them, the situation becomes more interesting and more
complicated in general. For example the earth is (approximately) a sphere. When
we fly from Frankfurt to Los Angeles, the plane goes over Greenland. This route
at high latitude corresponds to the fact that the shortest path (geodesic) on the
sphere is along a great circle, i.e., a circle centered at the center of the sphere
(earth). Another example would be a trip from London (on the 0o meridian) and
Fiji in the Pacific Ocean with longitude 180o. The geodesic between these two
places goes over the North Pole. Such a geodesic is shown in Fig. 1. A direct flight
to Fiji should follow this route. The geodesics starting at a point can go in whatever
direction we choose (given by their vector of initial velocity) but they will all meet
at the antipodal point. This is also shown in Fig. 1.

2. Hyperbolic space and its geodesics

Euclid’s fifth postulate (or parallel axiom) can be stated as follows: Given any
line and a point not on it, there exists one and only one line which passes through
that point and never intersects the first line. In modern geometry the lines are
the geodesics. Hyperbolic geometry is an example where Euclid’s fifth postulate
fails. It was created by Bolyai and Lobatchevsky. In hyperbolic geometry geodesics
diverge from each other, i.e., the distance between two geodesics, which do not meet
but get very close in one direction, increases exponentially in the other direction.
The distance is measured on the curves meeting both geodesics perpendicularly.
One simple model of hyperbolic geometry is the hyperbolic disc: the points in the
interior of the circle of radius 1, given by the equation x2 + y2 = 1. The geodesics
are the diameters (Fig. 2 a, b) and the circular arcs meeting the circle x2 + y2 = 1
perpendicularly (Fig. 2 c, d, e, f, g, h). The parallel axiom fails, see Fig. 2: from
P there are two parallels g, h to f. The hyperbolic distance from the center to the
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Figure 1. Two meridian geodesics on the sphere from the North
Pole (N) to the South Pole (S) (antipodal points)

point (x, y) is log
1 + r

1− r
, where r =

√
x2 + y2 is the euclidean distance. As the point

gets close to the circle of radius 1, the hyperbolic distance increases and becomes
unbounded. Hyperbolic geometry is as real to mathematicians as euclidean. It
could even be that the universe is a hyperbolic space, as analysis of the data on
the cosmic microwave background (CMB) by Aurich, Lustig, Steiner, Then [ALST]
has suggested.

3. Hyperbolic surfaces and their geodesics

Spaces modelled on the hyperbolic disc are called hyperbolic surfaces. They
are important for many reasons: they are connected to the theory of automorphic
forms, one of the main areas of research of the Max-Planck-Institut für Mathematik.
They are among the easiest spaces (manifolds) that can be classified topologically,
i.e., in terms of continuous bending into simpler spaces.

For a hyperbolic surface M some of the geodesics γ will come back to the point
they start and fit in a smooth way. These are called closed geodesics. It ends up
that there are finitely many closed geodesics of a given length (if any). Moreover,
the lengths l(γ) form an increasing set of numbers that can accumulate only at
infinity. This allows us to count closed geodesics by

π(x) = #{γ, l(γ) ≤ x}.
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Figure 2. The hyperbolic disc and its geodesics

This function, which captures various aspects of the geometry of the surface, has
been studied in dynamical systems and with methods of analysis. Huber [Hu] and
Selberg, and in a more general case Margulis [M] proved that a good approximation
of π(x) is the function ex/x. And this for every hyperbolic surface!

The Selberg trace formula is an important tool in understanding the function
π(x) and a research interest of many visitors at MPI and one of the scientific
directors (D. Zagier). It is a generalization of the well-known fact that is taught in
basic linear algebra courses. The trace of a symmetric matrix can be computed in
two different ways: one way is to sum the diagonal entries, the other way is to sum
the eigenvalues. While one may think that the second method is harder, it may
provide valuable information, if, for instance, some information on the eigenvalues
is easily obtainable. The Selberg trace formula can be considered as a generalization
of the two methods of calculating the trace for infinite matrices: these give operators
on Hilbert spaces. The lengths of the closed geodesics correspond to the diagonal
entries and the eigenvalues are the eigenvalues of the Laplace-Beltrami operator.
The asymptotic behavior of π(x) is due to the fact that the smallest eigenvalue
(basic frequency) is 0. The eigenvalues of the Laplace-Beltrami operator are the
principal frequencies of M : they are the harmonics that the surface M will produce
when used as a drum.

4. Arithmetic of quadratic forms and applications

If the hyperbolic surface has arithmetic nature, important number-theoretic con-
sequences follow. The discussion starts with the simplest case of Pell’s Equation.
See [D, Chapter XII p. 341] and [He]. Proclus (410–485 A.D.) noted that the
Pythagoreans made a geometric construction, which amounts to an algorithm for
solving the diophantine equation

x2 − 2y2 = ±1.

Solving means to find all pairs of integers x and y that satisfy this equation. The
method starts with the pair (x1, y1) = (1, 1), which is the smallest solution for
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x2 − 2y2 = −1. Given a solution (xn, yn), the numbers

xn+1 = 2yn + xn, yn+1 = yn + xn

give a solution for the equation with the opposite sign. Theon of Smyrna (ap-
prox. 130 A.D.) stated this result and called the xn diagonal numbers (διαµετ%ικoι
α%ιϑµoι) and the yn side numbers (πλευ%ικoι α%ιϑµoι).

The pairs constructed this way are (x2, y2) = (3, 2), which is the smallest solution
of x2 − 2y2 = 1, (x3, y3) = (7, 5), (x4, y4) = (17, 12), etc. Theon as a Neoplatonic
and Plato’s school were interested in this problem, because they knew that 2y2 with
y integer cannot be the square of an integer (see Proclus’ commentary to Euclid
I. 47). This simply means that

√
2 cannot be expressed as a fraction with integer

numerator and denominator (such numbers are called irrational). So Theon was
looking for the closest possibility, i.e., that 2y2 differs from the square of a number
x2 just by one (±1). In modern algebraic notation Theon’s construction works,
since

x2
n+1 − 2y2

n+1 = (2yn + xn)2 − 2(yn + xn)2 = −(x2
n − 2y2

n).
In modern algebraic number theory the pairs (xn, yn) are defined by the formula

xn + yn

√
2 = (1 +

√
2)n.

More generally the expression

Q(x, y) = ax2 + bxy + cy2,

where the coefficients a, b, c are integers is a integral quadratic form and an integer
N is represented by it, if we can find integer x and y such that Q(x, y) = N .
For simplicity attention is restricted to the case when a, b, c are relatively prime
numbers, i.e., the only integers dividing all three are ±1. It is called indefinite, if
Q(x, y) represents both negative and positive numbers. Such a quadratic form has
a discriminant d = b2 − 4ac > 0, the same expression students meet in their school
studies with relation to solving ax2+bx+c = 0. For a positive integer d we can have
two different quadratic forms Q(x, y) and Q′(x, y) of discriminant d that represent
exactly the same numbers. Such forms are ‘identified’. Mathematicians say that
they are equivalent. For example Q(x, y) = x2 − 2y2 is equivalent to −2x2 + y2, as
obvious by interchanging the role of x and y. But forms can be equivalent in a more
subtle way. The above two forms are also equivalent to Q′(x, y) = x2 + 2xy − y2.
This follows by the simple calculations

(x + y)2 − 2y2 = x2 + 2xy − y2, (x− y)2 + 2(x− y)y − y2 = x2 − 2y2.

They show that Q(x+ y, y) = Q′(x, y) and Q′(x− y, y) = Q(x, y) and consequently
the two forms represent the same numbers. We encode the changes of variables
showing the equivalence of Q with −2x2 + y2 and Q′ in two matrices

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
giving us linear transformations in the xy-plane. These transformations are

S(x, y) = (−y, x), T (x, y) = (x + y, y).

It can be proved that, given d > 0 there are only finitely many nonequivalent forms
with discriminant d. Their number is called the class number and denoted by
h(d). The study of quadratic forms, their class numbers h(d) and the numbers they
represent is an active area of research. D. Hilbert outlines 23 important problems
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to be studied in the twentieth century in the published version of his address at
the International Congress of Mathematicians in Paris (Arkiv der Mathematik und
Physik, 1901). Number 11 deals with quadratic forms with arbitrary algebraic
number coefficients.

What the ancient Greeks could not possibly know is the close relationship of
quadratic forms with geodesics in hyperbolic surfaces. This goes as follows: one
searches for the smallest solution (xd, yd) of the equation

x2 − dy2 = 4.

This is a point on the hyperbola x2 − dy2 = 4. The fundamental unit is defined to
be

εd =
xd + yd

√
d

2
.

As noticed above, for d = 2, this is 3+2
√

2. The lengths of the all closed geodesics in
a certain arithmetic hyperbolic surface (associated with the matrices T and S) are
identified with 2 log εd, with each length appearing h(d) times. Here d is restricted
to be nonsquare and leave residue 0 or 1, when devided by 4. This enabled Sarnak
[S] to prove that (for the same d)∑

εd≤x

h(d) ∼ x2

2 ln x
.

The ∼ symbol means that the quotient of the two expressions on its left and right
is asymptotic to 1, as x →∞.

5. Refined distribution of the geodesics

The topological nature of M is captured by the number of holes of M . This is
called the genus g. It is easier to understand the notion of homology on a surface
of genus 1 as in Fig. 3. It looks like a doughnut and is called a torus. To every
geodesic γ (or, generally, a closed loop) we can assign its homology φ(γ), which is
a pair of integers describing how many times it wraps around the hole or the torus.
The meridians traversed once wrap around the torus once, while the circles of fixed
latitude can be pulled to shrink to the small circle wrapping around the hole. The
more complicated loop in Fig. 3 wraps once around a meridian and once around
the small inner circle, when we shrink it by pulling.

More generally for a surface of genus g the homology H1(M, Z) can be repre-
sented by points (n1, n2, . . . , n2g) with integer coordinates. Now a refined problem
can be posed: How are the lengths of geodesics distributed for geodesics having
homology restricted in a given subset of H1(M, Z)? For geodesics that all have the
same homology the answer is due to Phillips and Sarnak [PS], who investigated the
function

π(x, β) = #{γ ∈ π(x), φ(γ) = β}.
They proved that

π(x, β) ∼ (g − 1)g ex

xg+1
.

Note that this depends only on the topological invariant g and not on β! In recent
work M. S. Risager and I investigated geodesics whose homology is restricted to
belong to some set A ⊂ H1(M, Z). We define

π(x, a) = #{γ ∈ π(x), φ(γ) ∈ A}.
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Figure 3. Torus with a homology basis k, l and a loop c

We measure the set A by its density d(A), telling us what proportion of the lattice
points are in A. We find that for lots of sets, including random sets A,

π(x,A) ∼ d(A)π(x).

The geodesic flow on hyperbolic space is an example of a chaotic flow, an object
of extreme interest in the theory of dynamical systems. Using dynamical systems
Eskin, Margulis and Mozes [EMM] have studied the values of other interesting
indefinite quadratic forms. The interplay between number theory and dynamical
systems will undoubtedly produce new spectacular results in the future.
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