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MODULAR SYMBOLS HAVE A NORMAL
DISTRIBUTION

Y.N. Petridis and M.S. Risager

Abstract. We prove that the modular symbols appropriately normal-
ized and ordered have a Gaussian distribution for all cofinite subgroups of
SL2(R). We use spectral deformations to study the poles and the residues
of Eisenstein series twisted by power of modular symbols.

1 Introduction

Let X be a hyperbolic surface of finite volume. To count the number of
closed prime geodesics, we introduce the function π(x) = #{c | l(c) ≤ x},
where c is such a geodesic and l(c) is its length. It follows from the Selberg
trace formula that

π(x) ∼ ex/x

as x→ ∞, [Hu], [Bu]. Error terms may be obtained but they depend on the
existence of small eigenvalues of the Laplace operator (see, e.g. [V2]). One
can generalize this theorem to other negatively curved manifolds [Ma], [K],
and refine it as well by counting geodesics in a given homology class, [AS],
[PhS3]. This is achieved by integrating the trace formula over the character
variety of the surface. Since every conjugacy class of π1(X) represents a
free homotopy class containing a unique close geodesic, the above results
can be thought of as counting group elements in π1(X) with weight 1 and
with weight the characteristic function of the homology class, respectively.

In this paper we use weights which are polynomials in the values of the
Poincaré pairing. We have the pairing between homology and cohomology,

H1(X,R) ×H1
dR(X,R) → R ,

and a map φ : Γ = π1(X) → H1(X,Z). Let 〈 · , · 〉 be the composition of
the two maps. Using moments we examine the distribution of the values
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of the composition for a fixed cohomology class. We restrict ourselves to
surfaces with cusps and cuspidal cohomology. We fix a cuspidal cohomology
class α, which we can take to be harmonic. We have no loss of generality
by assuming that α = �(f(z)dz), where f(z) is a holomorphic cusp form
of weight 2. The group Γ can be realized as a subgroup of SL2(R). Let an
element γ ∈ Γ have lower row (c, d). We use the normalization

〈γ, α〉 = −2πi
∫

φ(γ)
α .

Theorem A. The values 〈γ, α〉 appropriately normalized have a normal
distribution. More precisely

#
{
γ ∈ (Γ∞\Γ)T

∣∣∣ 〈̃γ,α〉
i
√

log(c2+d2)
∈ [a, b]

}

#(Γ∞\Γ)T
→ 1√

2π

∫ b

a
exp

(
−x

2

2

)
dx (1.1)

as T → ∞.

Here (Γ∞\Γ)T is set of elements in Γ∞\Γ with c2 + d2 ≤ T while

〈̃γ, α〉 =

√
vol (Γ\H)
8π2 ‖f‖2 〈γ, α〉 ,

where ‖f‖ is the Petersson norm of f . In fact we can consider complex
valued 1-forms f(z)dz, where f is a holomorphic cusp form of weight 2.
Then
Theorem B. Asymptotically 〈̃γ, f〉/√

log(c2 + d2) has bivariate Gaussian
distribution with correlation coefficient zero. More precisely we have for
R ⊂ C a rectangle

#
{
γ ∈ (Γ∞\Γ)T

∣∣ 〈̃γ,f〉√
log(c2+d2)

∈ R
}

#(Γ∞\Γ)T
→ 1

2π

∫
R
exp

(
−x

2 + y2

2

)
dx dy

as T → ∞.

Here

〈̃γ, f〉 =

√
vol (Γ\H)
8π2 ‖f‖2 〈γ, f〉 .

This work uses heavily Eisenstein series twisted by modular symbols, intro-
duced by Goldfeld. The general framework is as follows. Let f(z), g(z) be
holomorphic cusp forms of weight 2 for a fixed cofinite discrete subgroup Γ
of SL2(R). In [G1,2], Goldfeld introduced Eisenstein series associated with
modular symbols defined in a right half-plane as

Em,n(z, s) =
∑

γ∈Γ∞\Γ
〈γ, f〉m 〈γ, g〉n�(γz)s, (1.2)
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where for γ ∈ Γ the modular symbol 〈γ, f〉 is given by

〈γ, f〉 = −2πi
∫ γz0

z0

f(z)dz , (1.3)

and one defines 〈γ, g〉 similarly. Here z0 is an arbitrary point in the upper
half-plane H.

If we take f(z) to be a Hecke eigenform for Γ0(N) with rational co-
efficients and Ef is the elliptic curve over Q corresponding to it by the
Eichler-Shimura theory, then

〈γ, f〉 = n1(f, γ)Ω1(f) + n2(f, γ)Ω2(f) ,

where ni ∈ Z and Ωi are the periods of Ef . The conjecture ni  Nk for
|c| ≤ N2 and some fixed k (Goldfeld’s conjecture) is equivalent to Szpiro’s
conjecture D  NC for some C, where D is the discriminant of Ef . This
was the motivation to study the distribution of modular symbols.

As an example of such a distributional result Goldfeld conjectured in
[G1] that ∑

c2+d2≤T

〈γ, f〉 ∼ R(i)T , (1.4)

where R(z) is the residue at s = 1 of E1,0(z, s), and we sum over the
elements in Γ∞\Γ with lower row (c, d). This in now proved in [GO,
Theorem 7.3]. He also suggested that, when f = g, the twisted Eisenstein
series E1,1(z, s) has a simple pole at s = 1 with the zero Fourier coefficient
of the residue proportional to the Petersson norm ‖f‖2. He concludes the
conjectural asymptotic formula∑

c2+d2≤T

∣∣〈γ, f〉∣∣2 ∼ R∗(i)T , (1.5)

where R∗(z) is the residue of E1,1(z, s) at s = 1 and where the summation is
again over matrices in Γ∞\Γ with lower row (c, d). In this work, among other
things, we reprove (1.4) while settling (1.5) in the negative. But our result
shows that the Petersson norm does indeed play a role, see Theorem G
below. Averages of functions of modular symbols have been investigated
also in [MM].

It turns out to be crucial to consider Eisenstein series associated with
the real harmonic differentials αi = �(fi(z)dz) or αi = �(fi(z)dz) where
fi are holomorphic cusp forms of weight two. We shall write

〈γ, αi〉 = −2πi
∫ γz0

z0

αi . (1.6)
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As in [P2], we define

E(z, s,�ε) =
∑

γ∈Γ∞\Γ
χ�ε (γ)�(γz)s, (1.7)

where χ�ε is an n-parameter family of characters of the group defined by

χ�ε (γ) = exp
(
− 2πi

( n∑
k=1

εk

∫ γz0

z0

αk

))
. (1.8)

The convergence of this is guaranteed for �(s) > 1 by comparison with the
standard Eisenstein series. The Eisenstein series with a character transform
as

E(γz, s,�ε) = χ̄�ε (γ)E(z, s,�ε) . (1.9)

In the domain of absolute convergence we see that

∂nE(z, s,�ε)
∂ε1 . . . ∂εn

∣∣∣∣
�ε=�0

=
∑

γ∈Γ∞\Γ

n∏
i=1

〈γ, αi〉 �(γz)s, (1.10)

by termwise differentiation. By taking linear combinations of these we may
of course recover the original series (1.2). This observation allowed the
first author to give a new approach to the Eisenstein series twisted with
modular symbols using perturbation theory. In particular, a new proof of
the analytic continuation was given in [P2] and the residues of E1,0(z, s) on
the critical line were identified. In this paper we further pursue this method.
We start by giving a third much shorter proof of the main theorem in [O1].

Theorem C ([O1], [P2]). The functions Em,n(z, s) have meromorphic
continuation to the whole s-plane. In �(s) > 1 the series are absolutely
convergent and, consequently, they are analytic.

The last claim of the theorem is new and enables us to evaluate the
growth of the modular symbols as γ runs through the group Γ. The best
known result in this aspect is

〈γ, f〉 = O
(
log(c2 + d2)

)
.

This is due to Eichler (see [E]). Using the above theorem we get the fol-
lowing slightly weaker result.

Theorem D. For any ε > 0 we have

〈γ, f〉 = Oε

(
(c2 + d2)ε

)
.

We then continue to study the singularity of Em,n(z, s) at s = 1 when
f = g. In particular we study the pole order and the leading term in the
singular part of the Laurent expansion. In principle the method gives the
full Laurent expansion of Em,n(z, s) but only in terms of the coefficients
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in the Laurent expansions of the resolvent kernel and the usual nonholo-
morphic Eisenstein series at s = 1. The combinatorics involved in getting
useful expressions are quite ponderous. As a result we settle with calculat-
ing some of the most interesting coefficients and evaluate the pole orders.
As an example of this type of result we have
Theorem E. At s = 1, E2,0(z, s) has a simple pole with residue

1
vol(Γ\H)

(
2πi

∫ z

i∞
f(z)dz

)2

while E1,1(z, s) has a double pole with residue

4π2

vol(Γ\H)

∣∣∣∣
∫ z

i∞
f(z)dz

∣∣∣∣
2

+
16π2

vol(Γ\H)

∫
Γ\H

(
E0(z′)−r0(z, z′)

)
y′2

∣∣f(z′)
∣∣2 dµ(z′) .

The coefficient of (s− 1)−2 is

16π2 ‖f‖2

vol(Γ\H)2
.

Here the coefficient r0(z, z′) is the constant term in the Laurent ex-
pansion of the resolvent kernel around s = 1. The coefficient E0(z) is the
constant term in the Laurent expansion of the usual nonholomorphic Eisen-
stein series and is given by Kronecker’s limit formula. For Γ = SL2(Z) this
is classical, see, for instance [L, p. 273–275]. For a generalization to all Γ
see [Go].

We wish to use these results to obtain results à la (1.4). We do this
using the method of contour integration but, in order to make this work,
we need to prove a result on the growth of Em,n(z, s) as �(s) → ∞. We
can prove
Theorem F. The functions Em,n(z, s) grow at most polynomially on
vertical lines with σ > 1/2. More precisely: for every ε > 0 and σ ∈ (1/2, 1]
and z ∈ K, a compact set, we have

Em,n(z, σ + it) = O
(|t|4(1−σ)+3(m+n)+ε

)
. (1.11)

Using the above theorems and contour integration we get asymptotic
expansions for summatory functions like the one in (1.4). An example of
the results we prove is
Theorem G. There exists δ > 0 such that∑

c2+d2≤T

〈γ, f〉2 =
1

vol(Γ\H)

(
− 2πi

∫ z

i∞
f(τ)dτ

)2

T +O(T 1−δ)

∑
c2+d2≤T

∣∣〈γ, f〉∣∣2 =
(16π2)

vol(Γ\H)2
‖f‖2 T log T +O(T ) .
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The summation is over γ ∈ Γ∞\Γ, where (c, d) is the lower row of γ.

This settles the status of (1.5). How small we can make 1−δ in the above
theorem depends on how good polynomial bounds we have in Theorem F
and whether the Laplacian has small eigenvalues. If there are no such
eigenvalues we can prove

1 − δ = 17
18 + ε .

By using similar asymptotic expansions we can calculate the moments of
the normalized modular symbols and prove the distributional result in
Theorem B, which is the main theorem of our work.

The idea of putting the Eisenstein series in a continuous family to study
how the spectrum changes as the parameters change is very fruitful, see for
instance [B]. In fact it is possible to construct a proof of the first part of
Theorem C different from the proof given in this paper using ideas in [B,
Chapter 15].

The study of Em,n(z, s) using perturbed Eisenstein series is an interest-
ing application of the spectral deformations used in [PhS1,2,3], [P1]. Our
contribution in [P2] was to put the Eisenstein series with modular symbols
into this framework. In this work we apply the same techniques to produce
results which at least to us seem difficult to attack with the methods used
by Goldfeld, O’Sullivan, et al.

2 Finding Laurent Expansions Using Perturbation Theory

We assume that Γ has only one cusp and that this is of width 1. The
generalization to the multiple cusp case is straightforward. We note that
we can always assume that αi is the real part of a holomorphic cusp form
since

�(
f(z)dz

)
= �( − if(z)dz

)
and −if is a holomorphic cusp form of weight two. We want to approximate
the real differentials αi with compactly supported ones. We do this as
follows. Let

f(z) =
∞∑

n=1

ane
2πinz

be the Fourier expansion of f(z). We define

F (z) =
∞∑

n=1

an

2πin
e2πinz.
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If αi(z) = �(f(z)dz) then also αi(z) = d�(F (z)). We choose a fundamental
domain F in such a way that there exists T0 ∈ R+, a, b ∈ R such that

F ∩ {
z ∈ H

∣∣ �(z) > T0

}
=

{
z ∈ H

∣∣ �(z) > T0 , 0 < �(z) ≤ 1
}
.

We then choose a smooth function ψ̃ : R → [0, 1] such that

ψ̃(t) =

{
1 , if t ≤ 0 ,
0 , if t ≥ 1 .

We then define, for T > T0, ψT : F → [0, 1] by ψT (z) = ψ̃(�(z) − T ). For
z ∈ F we define

wT
i = d

(
ψT�(F )

)
gT
i = (1 − ψT )�(F ) ,

and extend these to smooth Γ automorphic 1-forms on H by setting wT
i (γz)

= wT
i (z) and gT

i (γz) = gT
i (z) for each γ ∈ Γ. Then we have

αi = wT
i + dgT

i . (2.1)
The following proposition is easy to verify.
Proposition 2.1. (i) The smooth 1-form wT

i is compactly supported
on Γ\H.

(ii) If z ∈ F and �(z) ≤ T then wT
i (z) = αi(z).

(iii) If z ∈ F and �(z) ≤ T then
∫ z
i∞wT

i =
∫ z
i∞ αi.

(iv) 〈γ, αi〉 =
〈
γ,wT

i

〉
for all γ ∈ Γ and all T > T0.

We shall often exclude T from the notation and simply write
αi = wi + dgi .

We note that by Proposition 2.1 (iv)

χ�ε (γ) = exp
(
− 2πi

( n∑
k=1

εk

∫ γz0

z0

wk

))
. (2.2)

We consider the space L2(Γ\H, χ̄�ε ) of square integrable functions which
transform as

h(γ · z) = χ̄�ε (γ)h(z) , γ ∈ Γ
under the action of the group. We introduce unitary operators

U(�ε) : L2(Γ\H) → L2(Γ\H, χ̄�ε )
given by

(
U(�ε)h

)
(z) := U(z,�ε)h(z) = exp

(
2πi

( n∑
k=1

εk

∫ z

i∞
wk

))
h(z) .

We set
L(�ε) = U(�ε)−1∆U(�ε)
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and
E(z, s,�ε) = U(�ε)D(z, s,�ε) . (2.3)

We note that L(�ε) = ∆ ‘close to the cusp’ since U(�ε) is compactly sup-
ported. We note also that E(z, s,�ε) is independent of the choice of dif-
ferential within a cohomology class, i.e. independent of T , while D(z, s,�ε)
and U(�ε) are not. We also remark that [P2, Remark 2.2] is only true for
z0 = i∞, since both E(z, s,�ε) and D(z, s,�ε) have asymptotic behavior at
∞ of the form ys for �(s) > 1 and, consequently, U(z, ε) should tend to 1,
as �(z) → ∞. We define 〈f1dz + f2dz̄, g1dz + g2dz̄〉 = 2y2(f1ḡ1 + f2ḡ2),
δ(pdx+ qdy) = −y2(px + qy).

Lemma 2.2. The conjugated operator L(�ε) is given by

L(�ε)h = ∆h+ 4πi
n∑

k=1

εk〈dh,wk〉 − 2πi
( n∑

k=1

εkδ(wk)
)
h

− 4π2

( n∑
k,l=1

εkεl〈wk, wl〉
)
h . (2.4)

Proof. The proof uses induction on n. The result for n = 1 may be found
in [P1, p. 113]. With the convention that U(εk) = U((0, . . . , 0, εk, 0, . . . , 0))
we see that

L(�ε)h = U(εn)−1U(ε1, . . . , εn−1, 0)−1∆U(ε1, . . . , εn−1, 0)U(εn)h

= U(εn)−1

(
∆U(εn)h+ 4πi

n−1∑
k=1

εk
〈
dU(εn)h,wk

〉

− 2πi
( n−1∑

k=1

εkδ(wk)
)
U(εn)h− 4π2

( n−1∑
k,l=1

εkεl〈wk, wl〉
)
U(εn)h

)
.

We apply the result for one variable once more in the εn variable and use
the chain rule in the form

d
(
U(εn)h

)
= U(εn)dh+ 2πiεnU(εn)hwn

to get the result. �

In the rest of the paper we will use the following convention. A function
with a subscript variable will denote the partial derivative of the function
in that variable. Lemma 2.2 gives

Lεk
(�0)h = 4πi〈dh,wk〉 − 2πi(δwk)h , (2.5)

Lεkεl
(�0)h = −8π2〈wk, wl〉h . (2.6)
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and all higher order derivatives vanish. Differentiating the eigenvalue equa-
tion (see [P2, Lemma 8])(

L(�ε) + s(1 − s)
)
D(z, s,�ε) = 0 (2.7)

and applying the resolvent of the Laplace operator, R(s) = (∆+s(1−s))−1,
we get

Dεk
(z, s,�0) = −R(s)

(
Lεk

(�0)D(z, s,�0)
)

(2.8)

and

Dε1,...,εn(z, s,�0) = −R(s)
( n∑

k=1

Lεk
(�0)Dε1,...,ε̂k,...,εn(z, s,�0)

+
n∑

k,l=1
k<l

Lεkεl
(�0)Dε1,...,ε̂k,...,ε̂l,...,εn(z, s,�0)

)
. (2.9)

Here ε̂k means that we have excluded εk from the list. The validity of the
inversion of (∆+s(1−s)) using the resolvent follows from the next lemma.

Lemma 2.3. Let n ≥ 1. For �(s) sufficiently large we have

Dε1,...,εn(z, s,�0) ∈ L2(Γ\H, dµ) .

Proof. Since the function D(z, s,�ε) is Γ-automorphic we see that also
Dε1,...,εn(z, s,�0) is Γ-automorphic. From (2.3) we obtain that

Dε1,...,εn(z, s,�0) =
∑

�m∈{0,1}n

n∏
k=1

(
− 2πi

∫ z

i∞
wk

)mk

E
ε
1−m1
1 ,...,ε1−mn

n
(z, s,�0) .

(2.10)
We note that since wi is compactly supported all the terms with �m �= �0
becomes compactly supported. Now in order to control the term with
�m = �0 we need some bound on the growth of 〈γ, αi〉. Any bound of the
form ∣∣〈γ, αi〉

∣∣ ≤ C(c2 + d2)b

will do. We quote [O1, Lemma 1.1] with z = i to get b = 1. If we use the
inequality

(c2 + d2) ≤ |cz + d|2
y

1 + |z|2
y

(2.11)

which follows from adding |cz + d|2 ≥ (cy)2 and |z|2 |cz + d|2 ≥ (dy)2 (see
also [Kn, Lemma 4]), we get

∣∣Eε1,··· ,εn(z, s,�0)
∣∣ ≤ ∑

γ∈Γ∞\Γ
γ 	=I

∣∣∣∣
n∏

j=1

〈γ, αj〉
∣∣∣∣�(γz)σ
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= C

(
1 + |z|2

y

)n ∑
γ∈Γ∞\Γ
γ 	=I

�(γz)σ−n .

We note that the sum is Oσ(y1−σ+n) by [Ku, p. 13] so we get

≤ C ′
(

1 + |z|2
y

)n

y1−σ+n

≤ C ′′y1−σ+2n.

Hence we conclude that for σ > 2 + 2n we have Dε1,...,εn(z, s,�0) ∈
L2

(
Γ\H, dµ(z)

)
. �

Using the representation (2.9) we may give a short proof of the analytic
continuation of the functions defined in a half-plane by (1.2).

Lemma 2.4. The functions Dε1...εn(z, s,�0) have meromorphic continuation
to C. In �(s) > 1 the functions are analytic.

Proof. The proof uses induction on n. For n = 0 the function is the
classical Eisenstein series and one of the many known proofs may be found
in [Ku]. We note that by (2.5) and (2.6) Lεk

(�0)Dε1,...,ε̂k,...,εn
(z, s,�0) and

Lεkεl
(�0)Dε1,...,ε̂k,...,ε̂l,...,εn

(z, s,�0) are compactly supported. Hence from (2.9)
and [Mü1, Theorem 1] the conclusion follows. �

Remark 2.5. From the above lemma, (2.3) and (1.10) we find that
∂nE(z, s,�ε)
∂ε1 . . . ∂εn

∣∣∣∣
�ε=�0

has meromorphic continuation and that in �(s) > 1 these functions are
analytic. By taking linear combinations of these (see (1.10)) we obtain the
Theorem C.

Proposition 2.6. The sum defining Em,n(z, s) is absolutely convergent
whenever �(s) > 1.

Proof. Note that if we can prove the above for f = g and m = n then we get
the general result by appealing to the elementary inequality 2ab ≤ a2 + b2

for a, b ∈ R. This gives∣∣〈γ, f〉m〈γ, g〉n∣∣ ≤ 1
2

( |〈γ, f〉|2m + |〈γ, g〉|2n )
,

and comparison with f = g and m = n type Eisenstein series gives the
result.

For the case f = g and m = n, the proof uses Landau’s result. He
proved that Dirichlet series with positive coefficients has a singularity on



Vol. 14, 2004 MODULAR SYMBOLS HAVE A NORMAL DISTRIBUTION 1023

the line of absolute convergence, see, e.g. [T, Section 9.2]. By Remark 2.5
we get the first singularity of Em,m(z, s) at s = 1 or further to the left. �

Clearly Eε1,...,εn(z, s,�0) is also absolutely convergent for �(s) > 1 by
the same proof. We immediately get the following corollary:
Corollary 2.7. For any fixed z ∈ H, ε > 0, we have

〈γ, f〉 = o
(|cz + d|ε)

〈γ, α〉 = o
(|cz + d|ε)

as |cz + d| → ∞.

Proof. Since the terms in an absolutely convergent series tend to zero
Proposition 2.6 implies that for any m ∈ N ,

〈γ, f〉m �(γz)2 = 〈γ, f〉m y2

|cz + d|4 → 0 .

Hence 〈γ, f〉 = o(|cz + d|4/m). Similarly with 〈γ, α〉. �

We note that by picking z = i we get Theorem D.
Remark 2.8. We note that since

D(z, s,�ε) = U(−�ε)E(z, s,�ε) =
∑

γ∈Γ∞\Γ
exp

( n∑
k=1

−2πiεk

∫ γz

i∞
wk

)
�(γz)s,

we find that the function Dε1,...,εn(z, s,�0) has the series representation

Dε1,...,εn(z, s,�0) =
∑

γ∈Γ∞\Γ

n∏
k=1

(
− 2πi

∫ γz

i∞
wk

)
�(γz)s, (2.12)

whenever the series is convergent. We also remark that from (2.3) we have

Eε1,...,εn(z, s,�0) =
∑

�m∈{0,1}n

n∏
k=1

(
2πi

∫ z

i∞
wk

)mk

D
ε
1−m1
1 ,...,ε1−mn

n
(z, s,�0) .

(2.13)
Combining this with Proposition 2.1 (iii) and (iv), we see that, if z ∈ F

and �(z) < T , then

Dε1,...,εn(z, s,�0) =
∑

γ∈Γ∞\Γ

n∏
k=1

(
− 2πi

∫ γz

i∞
αk

)
�(γz)s. (2.14)

In particular

lim
T→∞

Dε1,...,εn(z, s,�0) =
∑

γ∈Γ∞\Γ

n∏
k=1

(
− 2πi

∫ γz

i∞
αk

)
�(γz)s, (2.15)

for all z ∈ H.
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Lemma 2.9. For σ > 1 we have
∑

γ∈Γ∞\Γ

∣∣∣∣
n∏

k=1

(
− 2πi

∫ γz

i∞
αk

)∣∣∣∣�(γz)σ = O(y1−σ+ε) (2.16)

as �(z) → ∞ for z ∈ F . In particular limT→∞Dε1,...,εn(z, σ + it,�0) =
O(y1−σ).

Proof. We have for σ > 1 (see [Ku, p. 13])∑
γ∈Γ∞\Γ
γ 	=I

�(γz)σ = Oσ(y1−σ) (2.17)

as �(z) → ∞. From Corollary 2.7 we see that if we fix z0 = i, for example,
there exists a constant C > 0 such that∣∣∣∣

n∏
k=1

〈γ, αk〉
∣∣∣∣ ≤ C�(γz0)−ε.

This gives, using 〈I, αk〉 = 0,
∑

γ∈Γ∞\Γ

∣∣∣∣
n∏

k=1

〈γ, αk〉
∣∣∣∣�(γz)σ ≤ C

∑
γ∈Γ∞\Γ
γ 	=I

�(γi)−ε�(γz)σ .

If we use the inequality (2.11) this is majorized by

C
∑

γ∈Γ∞\Γ
γ 	=I

�(γz)σ−ε

(
1 + |z|2

y

)ε

= Oσ(y1−σ+ε) .

In the last equality we used (2.17). The claim now follows by induction
from (2.13) by isolating Dε1,...,εn(z, s,�0), using (2.12) and the fact that

−2πi
∫ z

i∞
αk

is O(e−2πy) as �(z) → ∞. �

Lemma 2.10. For �(s) > 1 we have∫
Γ\H

∣∣〈d lim
T→∞

Dε1,...,ε̂j,...εn(z, s,�0), αj〉
∣∣dµ(z) <∞ .

Proof. Using (2.15) we see that for �(s) > 1

d lim
T→∞

Dε1,...,ε̂j ,...,εn(z, s,�0) =
∑

γ∈Γ∞\Γ
d

( n∏
k=1
k 	=j

(
−2πi

∫ γz

i∞
αk

)
�(γz)s

)
.

(2.18)
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Using

d

(
−2πi

∫ γz

i∞
αk

)
= −2πiαk

d�(γz)s =
s

2y

(
−i

(
cz + d

cz + d

)
�(γz)sdz + i

(
cz + d

cz + d

)
�(γz)sdz

)
,

we find that〈
d lim

T→∞
Dε1,...,ε̂j ,...,εn(z, s,�0), αj

〉

= 2y2

[ n∑
l=1
l 	=j

(
− 2πi

fl

2
fj

2

∑
γ∈Γ∞\Γ

n∏
k=1
k 	=j,l

(
− 2πi

∫ γz

i∞
αk

)
�(γz)s

)

+
−is
2y

fj

2

∑
γ∈Γ∞\Γ

n∏
k=1
k 	=j

(
−2πi

∫ γz

i∞
αk

)(
cz + d

cz + d

)
�(γz)s

]

+ complex conjugate .

The claim now follows from Lemma 2.9, since fi(z) = O(e−2πy) as
�(z) → ∞. �

Using this lemma we can prove the following important result

Lemma 2.11. For all j = 1, . . . , n and �(s) > 1,∫
Γ\H

〈
dDε1,...,ε̂j ,...εn(z, s,�0), wj

〉
dµ(z) → 0 as T → ∞ .

Proof. We start by showing that∫
Γ\H

〈
d lim

T→∞
Dε1,...,ε̂j ,...εn(z, s,�0), αj

〉
dµ(z) = 0 .

If we let FM = {z ∈ F |�(z) ≤ M} then by Lemma 2.10 the left-hand side
is ∫

FM

〈
d lim

T→∞
Dε1,...,ε̂j,...εn(z, s,�0), αj

〉
dµ(z) + ε(M)

where ε(M) → 0 as M → ∞. We have∫
FM

〈
d lim

T→∞
Dε1,...,ε̂j ,...εn(z, s,�0), αj

〉
dµ(z)

=
∫

FM

∂

∂z

(
lim

T→∞
Dε1,...,ε̂j,...,εn(z, s,�0)

)fj

2
dx dy

+
∫

FM

∂

∂z

(
lim

T→∞
Dε1,...,ε̂j ,...,εn(z, s,�0)

)fj

2
dx dy .

(2.19)
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For any real-differentiable function h : U → C where U ⊂ C and any
bounded domain R ⊂ U with piecewise differentiable boundary Stokes
theorem implies that

2i
∫

R

∂

∂z
h dx dy =

∫
∂R
hdz .

We apply this to the second integral in (2.19). Since fj is holomorphic, this
integral equals

− i

4

∫
∂(FM )

lim
T→∞

Dε1,...,ε̂j ,...,εn(z, s,�0)fjdz .

The fundamental domain is the union of conjugated sides. These conju-
gated sides cancel in the integral. Hence this integral equals the line integral
along the top of the truncated fundamental domain FM . But this tends
to zero by Lemma 2.9. We observe that when s is real the first integral in
(2.19) is the complex conjugate of the second one. Hence this also vanishes
in the limit M → ∞ and we have∫

Γ\H

〈
d lim

T→∞
Dε1,...,ε̂j ,...εn(z, s,�0), αj

〉
dµ(z) = 0 .

We now prove that we may pull the limit outside the integral. We note
that wT

j (z) = O(e−2πy) as T → ∞ where the involved constant is inde-
pendent of T . We note also that for z ∈ F we have

∣∣−2πi
∫ γz
i∞wT

j

∣∣ ≤
|〈γ, αi〉|+

∣∣−2πi
∫ z
i∞ αi

∣∣ which follows from the definition of wT
i . Using this

and the same approach as in the proof of Lemma 2.10, we see that for
�(s) > 1 there exist U(z, s) independent of T such that∣∣〈dDε1,...,ε̂j,...,εn(z, s,�0), wj〉

∣∣ ≤ U(z, s)
and ∫

Γ\H

U(z, s)dµ(z) <∞ .

Hence for any given ε0 > 0 there exists a constant, M , independent of T
such that∣∣∣∣
∫

Γ\H

(〈
d lim

T→∞
Dε1,...,ε̂j ,...,εn(z, s,�0), αj

〉
−〈
dDε1,...,ε̂j ,...,εn(z, s,�0), wj

〉)
dµ(z)

∣∣∣∣
≤

∣∣∣∣
∫

FM

(〈
d lim

T→∞
Dε1,...,ε̂j ,...,εn(z, s,�0), αj

〉

− 〈
dDε1,...,ε̂j,...,εn(z, s,�0), wj

〉)
dµ(z)

∣∣∣∣ + ε0 .

Hence if we choose T > M and use (2.14), (2.15) and Proposition 2.1 (ii),
we see that the integral over FM vanishes. This finishes the proof. �
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Using this we can now prove the following lemma:

Lemma 2.12. The function

lim
T→∞

( −R(s)Lεj(�0)Dε1,...,ε̂j ,...,εn(z, s,�0)
)

(2.20)

is regular at s = 1.

Proof. We note that since αj is the real part of a holomorphic differen-
tial δ(αj) = 0 and also δ(wj) − δ(αj) �= 0 only for T ≤ �(z) ≤ T + 1
(Proposition 2.1). We may verify that δ(wT

j ) = O(e−2πy) uniformly in T

and Dε1,...,ε̂j ,...,εn
(z, s,�0) = O(y1−σ) uniformly in T . Using this we find from

Lemma 2.11 that when �(s) > 1

lim
T→∞

∫
Γ\H

Lεj(�0)Dε1,...,ε̂j,...,εn
(z, s,�0)dµ(z) = 0 . (2.21)

From (2.9) it is clear that s = 1 is not an essential singularity. Assume that
it is a pole of order k > 0. Hence

lim
s→1

(s− 1)k lim
T→∞

( −R(s)Lεj(�0)Dε1,...,ε̂j,...,εn
(z, s,�0)

) �= 0 . (2.22)

But

lim
s→1

(s− 1)k lim
T→∞

( −R(s)Lεj(�0)Dε1,...,ε̂j,...,εn
(z, s,�0)

)

= − lim
s→1

(s − 1)k lim
T→∞

(∫
Γ\H

r(z, z′, s)Lεj (�0)Dε1,...,ε̂j ,...,εn(z, s,�0)
)

where r(z, z′, s) is the resolvent kernel

= − lim
s→1

lim
T→∞

(∫
Γ\H

(s−1)r(z, z′, s)(s−1)k−1Lεj(�0)Dε1,...,ε̂j,...,εn
(z, s,�0)

)

= vol (Γ\H)−1 lim
T→∞

(∫
Γ\H

lim
s→1

(s− 1)k−1Lεj(�0)Dε1,...,ε̂j ,...,εn
(z, s,�0)

)

since r(z, z′, s) has a simple pole with residue − vol (Γ\H)−1. See
Remark 2.13

= vol (Γ\H)−1 lim
s→1

(s−1)k−1 lim
T→∞

∫
Γ\H

Lεj(�0)Dε1,...,ε̂j ,...,εn
(z, s,�0)dµ(z)

= 0 ,

by (2.21). But this contradicts (2.22), which completes the proof. �

Remark 2.13. Using the above lemma, (2.9) and the fact that the
resolvent kernel for ∆, respectively, the Eisenstein series has expansions at
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1 of the form (see e.g [V1, Theorem 2.2.6])

r(z, z′, s) =
vol (Γ\H)−1

s(1 − s)
+

∞∑
m=0

r̃m(z, z′)(s− 1)m

=
− vol (Γ\H)−1

(s− 1)
+

∞∑
m=0

rm(z, z′)(s− 1)m,

(2.23)

respectively

E(z, s) =
vol (Γ\H)−1

s− 1
+

∞∑
m=0

Em(z)(s − 1)m, (2.24)

we may now in principle write down the full Laurent expansion of the
function limT→∞Dε1,...,εn(z, s,�0) at s = 1 in terms of rm(z, z′), Em(z) and
the real harmonic differentials. From this and (2.3) we may also calculate
the Laurent expansion of Eε1,...,εn(z, s,�0) and hence of Em,n(z, s). Since
general expressions are quite complicated and the combinatorics become
quite cumbersome we restrict ourselves to some particular cases of special
interest.

We let Σ̃2m be the elements of the symmetric group on 2m letters
1, 2, . . . , 2m for which σ(2j − 1) < σ(2j) for j = 1, . . . ,m. We notice
that this has (2m)!/2m elements.

Lemma 2.14. If n is even, limT→∞Dε1,...,εn(z, s,�0) has a pole at s = 1 of
order at most n/2 + 1. The (s − 1)−(n/2+1) coefficient in the expansion of
the function limT→∞Dε1,...,εn(z, s,�0) around s = 1 is

(−8π2)n/2

vol(Γ\H)n/2+1

∑
σ∈Σ̃n

( n/2∏
r=1

∫
Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

)
.

If n is odd, limT→∞Dε1,...,εn(z, s,�0) has a pole at s = 1 of order at most
(n− 1)/2.

Proof. For n = 0 the claim is obvious, and for n = 1 (2.8) and Lemma 2.12
give the result. Assume that the result is true for all n ≤ n0. By (2.9),
(2.6), Lemma 2.12 and the fact that

lim
T→∞

( −R(s)(〈wk, wl〉)Dε1,...,ε̂k,...,ε̂l,...,εn(z, s,�0)
)

can have pole order at most 1 more than Dε1,...,ε̂k,...,ε̂l,...,εn(z, s,�0)) at s = 1,
we obtain the result about the pole orders. For even n we notice that by
induction and using (2.23) we find that the (s− 1)−(n/2−1) coefficient is
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−8π2

vol (Γ\H)
(−8π2)(n−2)/2

vol(Γ\H)(n−2)/2+1

·
n∑

k,l=1
k<l

∑
σ∈Σ̃n−2

((n−2)/2∏′

r=1

∫
Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

) ∫
Γ\H

〈αk, αl〉 dµ(z) ,

where the prime in the product means that we have excluded αk, αl from
the product and enumerated the remaining differentials accordingly. The
result follows. �

Using this we can prove
Theorem 2.15. For all n, Eε1,...,εn(z, s,�0) has a pole at s = 1 of order at
most [n/2] + 1. If n is even the (s − 1)−([n/2]+1) coefficient in the Laurent
expansion of Eε1,...,εn(z, s,�0) is

(−8π2)n/2

vol(Γ\H)n/2+1

∑
σ∈Σ̃n

( n/2∏
r=1

∫
Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

)
.

If n is odd the (s − 1)−([n/2]+1) coefficient in the Laurent expansion of
Eε1,...,εn(z, s,�0) is

(−8π2)[n/2]

vol(Γ\H)[n/2]+1

n∑
k=1

(
2πi

∫ z

i∞
αk

∑
σ∈Σ̃n−1

[n/2]∏′

r=1

∫
Γ\H

〈
ασ(2r−1), ασ(2r)

〉
dµ(z)

)
,

where the prime in the product means that we have excluded αk from the
product and enumerated the remaining differentials accordingly.

Proof. This follows from (2.13), Lemma 2.14, and the fact that Eε1,...,εn(z, s)
is independent of differential within the cohomology class of the real differ-
entials involved. �

We notice that〈�(f(z)dz),�(f(z)dz)
〉

=
〈�(f(z)dz),�(f(z)dz)

〉
= y2 |f(z)|2 , (2.25)

while 〈�(f(z)dz),�(f(z)dz)
〉

= 0 . (2.26)
Hence many of the involved integrals may be expressed in terms of the
Petersson norm defined by

‖f‖ :=
(∫

Γ\H

y2 |f(z)|2 dµ(z)
)1/2

. (2.27)

We shall write E�l,�n−l
(z, s) := Eε1,...,εn(z, s,�0) where αi = �(f(z)dz) for

i = 1, . . . , l and αi = �(f(z)dz) for i = l + 1, . . . , n. As a special case of
Theorem 2.15 we have the following theorem:
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Theorem 2.16. The function E�2m,�2n
(z, s) has a pole of order m+n+1

at s = 1, and the (s− 1)−(m+n+1) coefficient in the Laurent expansion is

(−8π2)m+n

vol (Γ\H)m+n+1 ‖f‖2(m+n) (2m)!(2n)!
2m+n

(
m+ n

n

)
. (2.28)

If n or m are odd then the pole order of E�m,�n
(z, s) at s = 1 is strictly

less than (m+ n)/2 + 1.

Proof. The first part follows from Theorem 2.15, (2.25) and (2.26) once we
count the number of nonzero terms in the sum indexed by Σ̃2m+2n. This is
the set of elements

Σ̃2m
2m+2n =

{
σ ∈ Σ̃2m+2n

∣∣∣∣σ(2i− 1), σ(2i) ≤ 2m or σ(2i − 1), σ(2i) > 2m
for all i = 1, . . . ,m+ n

}
.

This set contains
(2m)!
2m

(2n)!
2n

(
m+ n

n

)

elements which can be seen by noticing that each element may be ob-
tained uniquely by applying σ1 ∈ Σ̃2m to 1, . . . , 2m and σ2 ∈ Σ̃2n to
2m+ 1,...,2m+ 2n and then shuffling (σ1(1), σ1(2)),...,(σ1(2m−1), σ1(2m))
with (σ2(2m+ 1), σ2(2m+ 2)), . . . , (σ2(2m+ 2n− 1), σ2(2m+ 2n)).

If m+ n is odd then Theorem 2.15 says that the pole order at s = 1 is
at most [(m+ n)/2] + 1 which is strictly less than (m+ n)/2 + 1.

If m and n is odd then Theorem 2.15 says that the pole order at s = 1
is at most (m+n)/2 + 1, but since one of the factors in the product of the
(m+n)/2+1 term has to be zero the pole is at most of order (m+n)/2. �

We now turn to Em,n(z, s). We assume f = g.
Theorem 2.17 [GO]. At s = 1, E1,0(z, s) has a simple pole with residue

1
vol(Γ\H)

(
2πi

∫ z

i∞
f(z)dz

)
.

Proof. This follows directly from Theorem 2.15 and
E1,0(z, s) = E�(z, s) + iE�(z, s) . �

Theorem 2.18. The Eisenstein series Em,m(z, s) has a pole of order
m+1. The (s−1)−(m+1) coefficient in the Laurent expansion around s = 1
is

(16π2)m

vol (Γ\H)m+1m!2 ‖f‖2m .

Proof. Since 〈γ, f〉 = 〈γ,�(f(z)dz)〉 + i 〈γ,�(f(z)dz)〉 we have
∣∣〈γ, f〉∣∣2m = (−1)m

m∑
n=0

(
m

n

)〈
γ,�(f(z)dz)

〉2n〈
γ,�(f(z)dz)

〉2(m−n)
.
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Hence

Em,m(z, s) = (−1)m
m∑

n=0

(
m

n

)
E�2n,�2(m−n)

(z, s) .

From Theorem 2.16 we hence find that the leading term of Em,m(z, s) is

(−8π2)m

vol (Γ\H)m+1 ‖f‖2m
m∑

n=0

(
m

n

)
(2n)!(2(m − n))!

2m

(
m

n

)
.

The sum equals (m!)22m from which the result follows. �

Theorem 2.19. At s = 1, E2,0(z, s) has a simple pole with residue

1
vol(Γ\H)

(
2πi

∫ z

i∞
f(z)dz

)2

while E1,1 has a double pole with residue

4π2

vol(Γ\H)

∣∣∣∣
∫ z

i∞
f(z)dz

∣∣∣∣
2

+
16π2

vol
(Γ\H)

∫
Γ\H

(
E0(z′) − r0(z, z′)

)
y′2

∣∣f(z′)
∣∣2dµ(z′) .

The coefficient of (s− 1)−2 is

16π2 ‖f‖2

vol(Γ\H)2
.

Proof. We start by noticing that as a special case of (2.13) we have

Eε1ε2(z, s,�0) = −4π2

∫ z

i∞
α1

∫ z

i∞
α2E(z, s) + 2πi

∫ z

i∞
α1 lim

T→∞
Dε2(z, s,�0)

+ 2πi
∫ z

i∞
α2 lim

T→∞
Dε1(z, s,�0) + lim

T→∞
Dε1ε2(z, s,�0) .

The first term has a simple pole at s = 1 with residue
−4π2

vol (Γ\H)

∫ z

i∞
α1

∫ z

i∞
α2 ,

while the two middle terms are regular at s = 1 by (2.8) and Lemma 2.12.
The singular part of the expansion of the fourth term equals the singular
part of the expansion of

lim
T→∞

( −R(s)(Lε1ε2E(z, s))
)

= 8π2

∫
Γ\H

r(z, z′, s) 〈α1, α2〉E(z, s) .

This follows from (2.9) and Lemma 2.12. But by using (2.23) and (2.24)
we find that this is
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−8π2

vol(Γ\H)2

∫
Γ\H

〈α1, α2〉 dµ(z)(s − 1)−2

+
−8π2

vol(Γ\H)

∫
Γ\H

(
E0(z′) − r0(z, z′)

) 〈α1, α2〉 dµ(z′)(s− 1)−1.

Hence we know the singular part of the expansion of Eε1,ε2(z, s) at s = 1.
It is easy to see that

E2,0(z, s) =E�2
(z, s) + 2iE�,�(z, s) − E�2

(z, s)

E1,1(z, s) = − E�2
(z, s) − E�2

(z, s) .

Using the above explicit expressions for the expansions of Eε1,ε2(z, s,�0) now
gives the result when using (2.25) and (2.26). �

We note that this is Theorem E. We state the result for the m+ n = 3
case.
Theorem 2.20. At s = 1, E3,0(z, s) has a simple pole with residue

1
vol(Γ\H)

(
2πi

∫ z

i∞
f(z)dz

)3

,

while E2,1(z, s) has a double pole with leading term

32π2

vol (Γ\H)2

(
2πi

∫ z

i∞
f(z)dz

)
‖f‖2 .

3 Growth on Vertical Lines

By using Proposition 2.6 we see that Em,n(z, s) = OK(1) for �(s) = σ > 1
and z in a fixed compact set K. In this section we show that when we
only require σ > 1/2 then we have at most polynomial growth on the line
�(s) = σ.

We take the opportunity to correct Theorem 1.5 in [P2]. For simplicity
assume that we have only one cusp. It will become clear that this is no
restriction. We first prove
Lemma 3.1. The standard nonholomorphic Eisenstein series E(z, s) has
polynomial growth in s in �(s) ≥ 1/2. More precisely we have for any
ε > 0 and 1/2 ≤ σ ≤ 1

E(z, σ + it) = OK

( |t|4(1−σ)+ε )
(3.1)

for all z ∈ K, a fixed compact set in Γ\H.

Proof. The lemma starts with the same observation as in [C]. We write
E(z, s) = h(y)ys + g(z, s), where g(z, s) ∈ L2(Γ\H) and h(y) ∈ C∞

0 (0,∞)
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with h(y) = 1 up in the cusp, while h(y) = 0 for y < max(�z, z ∈ K). We
set H(z, s) = (∆+s(1−s))g(z, s). Then H(z, s) = −2sh′(y)ys−h′′(y)ys+2,
it is compactly supported and holomorphic in s. We get that H(z, s) =
O(|t|) uniformly in z ∈ K and on the vertical line �(s) = σ > 1/2. This
estimate remains then true in L2(Γ\H). Since g(z, s) = R(s)H(z, s), we
appeal to the following resolvent estimate:

‖R(z)‖∞ ≤ 1
dist (z,SpecA)

(3.2)

for the resolvent of a general self-adjoint operator A on a Hilbert space. We
have dist(s(1−s),Spec(∆)) ≥ |t| (2σ−1) and we get for 1/2 < σ = �(s) ≤ 1∥∥g(z, s)∥∥ = O(1) .
To pass to pointwise bounds we use the Sobolev embedding theorem. From
∆g(z, s) + s(1 − s)g(z, s) = H(z, s) we get ‖∆g(z, s)‖2 = O(|t|2). This
implies E(z, s) = O(|t|2) for z ∈ K. We note that by [H, Th. 12.9 (d),
p. 164] or [S, Theorem 7.3] E(z, s) is of finite order. Now we can improve the
result by applying Phragmén–Lindelöf in the strip 1/2+δ ≤ �(s) ≤ 1+δ for
some small δ > 0 using the fact that E(z, s) is bounded for �(s) = σ > 1.
The finite number of poles s0, s1, . . . , sk in this region can be dealt by
multiplying with (s− s0)(s − s1) · · · (s− sk). We get as result

E(z, s) = OK

( |t|4−4σ+ε )
for all z ∈ K, a fixed compact set in Γ\H. �

Lemma 3.2. The function Dε1,...,εn(z, s,�0) has polynomial growth in t in
�(s) > 1/2. More precisely we have for any ε > 0 and 1/2 < σ ≤ 1

Dε1,...,εn(z, σ + it,�0) = O
( |t|(4+6n)(1−σ)+ε )

. (3.3)
The involved constant depends on ε, σ and w1, . . . , wn.

Proof. This is induction in n. For n = 0 we refer to Lemma 3.1. We now
assume that for σ > 1/2

Dε1,...,εm(z, σ + it,�0) = O
( |t|4(1−σ)+3m+ε )

(3.4)∥∥Lεk
(�0)Dε1,.,ε̂k,.,εm(z, s,�0)

∥∥
L2 = O

( |t|4(1−σ)+3m+ε )
(3.5)

whenever m ≤ n − 1. By (2.9) we see that we need to estimate the two
type of terms

Lεkεl
(�0)Dε1,...,ε̂k,...,ε̂l,...,εn(z, s,�0)

Lεk
(�0)Dε1,...,ε̂k,...,εn(z, s,�0)

when we apply the resolvent. We can control the first (in L2) by the
induction hypothesis as we note that Lε1ε2(�0) is a compactly supported
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multiplication operator (see (2.6)). We get∥∥Lεkεl
(�0)Dε1,...,ε̂k,...,ε̂l,...,εn(z, s,�0)

∥∥
L2 = O

( |t|4(1−σ)+3(n−2)+ε )
.

By using that wi is compactly supported we easily deduce from (2.5) that∥∥Lεk
(�0)Dε1,.,ε̂k,.,εn(z, s,�0)

∥∥
L2 ≤ C

(‖Dz,ε1,.,ε̂k,.,εn(z, s,�0)‖L2(O)

+ ‖Dz,ε1,.,ε̂k,.,εn(z, s,�0)‖L2(O) + ‖Dε1,.,ε̂k,.,εn(z, s,�0)‖L2(O)

)
, (3.6)

where O is an open set lying between the support of wi and some other
compact set. We now evaluate these three terms separately. To handle the
first term we note that∥∥Dz,ε1,...,ε̂k,...,εn(z, s,�0)

∥∥
L2(O)

≤ c
∥∥Dε1,...,ε̂k,...,εn(z, s,�0)

∥∥
H1(O)

≤ c
∥∥Dε1,...,ε̂k,...,εn(z, s,�0)

∥∥
H2(O)

≤ c′
(‖Dε1,.,ε̂k,.,εn(z, s,�0)‖L2(O)

+ ‖∆Dε1,...,ε̂k,...,εn(z, s,�0)L2(O)

)
.

(3.7)

We note that by (2.9) and the induction hypothesis∥∥∆Dε1,...,ε̂k,...,εn(z, s,�0)
∥∥

L2(O)
= O

( |t|4(1−σ)+3(n−1)+ε+2 )
. (3.8)

Hence, the left-hand side of (3.7) is O(|t|4(1−σ)+3(n−1)+ε+2). The second
term of (3.6) may be evaluated in the same manner, while the third term
is even smaller. We thus get∥∥Lεk

(�0)Dε1,.,ε̂k,.,εn(z, s,�0)
∥∥

L2 = O
( |t|4(1−σ)+3(n−1)+ε+2 )

(3.9)
which certainly establishes (3.5) when m = n. By (2.9), (3.2) and the above
we find

∥∥Dε1,...,εn(z, s,�0)
∥∥

L2 ≤ ‖R(s)‖∞
∥∥∥∥
( n∑

k=1

Lεk
(�0)Dε1,...,ε̂k,...,εn(z, s,�0)

+
n∑

k,l=1
k<l

Lεkεl
(�0)Dε1,...,ε̂k,...,ε̂l,...,εn

(z, s,�0)
)∥∥∥∥

L2

= O
(
t4(1−σ)+3(n−1)+ε+1

)
.

To get a pointwise bound we also need∥∥∆Dε1,...,εn(z, s,�0)
∥∥

L2 = O
( |t|4(1−σ)+3(n−1)+1+2+ε )

, (3.10)
which follows from (3.2) and the above. From the Sobolev embedding
theorem we get∥∥Dε1,...,εn(z, s,�0)

∥∥
∞ ≤ C

∥∥Dε1,...,εn(z, s,�0)
∥∥

H2

= O
( |t|4(1−σ)+3n+ε )

.
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To finish the proof we apply the Phragmén–Lindelöf principle in a strip
1/2 + δ1 < �(s) < 1 + δ2 for small δi > 0. This gives the desired result. �

Using the above lemma we conclude:
Theorem 3.3. The functions Eε1,...,εn(z, s,�0) and Em,n have polynomial
growth in t in �(s) ≥ 1/2. More precisely we have for any ε > 0 and
1/2 < �(s) ≤ 1

Eε1,...,εn(z, s,�0) = O
( |t|(4+6n)(1−σ)+ε )

, (3.11)

Em,n(z, s) = O
( |t|(4+6(m+n))(1−σ)+ε )

. (3.12)
The involved constants depend on ε, σ, f , g and α1, . . . , αn.

Hence we have also proved Theorem F.

4 Estimating Various Sums Involving Modular Symbols

Using the results of the previous two sections we would now like to obtain
asymptotics as T → ∞ for sums like∑

γ∈Γ∞\Γ
‖γ‖z≤T

ωγ (4.1)

where ωγ = 1, 〈γ, α1〉 · · · 〈γ, αn〉 or ωγ = 〈γ, f〉m 〈γ, g〉n. Here ‖γ‖z =
|cz + d|2 with c, d the lower row in γ and z ∈ H. We let

Ẽ(z, s) =
∑

γ∈Γ∞\Γ
ωγ�(γz)s,

and assume that this is absolutely convergent for �(s) > 1, that it has
meromorphic continuation to �(s) ≥ h where h < 1, and that as a function
of s it has at most polynomial growth on vertical lines. We further assume
that s = 1 is the only pole in �(s) ≥ h, and that for all ε > 0

ωγ = O
( ‖γ‖ε

z

)
as ‖γ‖z → ∞ . (4.2)

We note that Theorem C, Corollary 2.7 and Theorem 3.3 establish these
properties for the relevant Eisenstein series.

Let φU : R → R, U ≥ U0 , be a family of smooth nonincreasing functions
with

φU (t) =

{
1 , if t ≤ 1 − 1/U ,
0 , if t ≥ 1 + 1/U ,

(4.3)

and φ(j)
U (t) = O(U j) as U → ∞. For �(s) > 0 we let

RU (s) =
∫ ∞

0
φU (t)ts−1dt
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be the Mellin transform of φU . Then we have

RU (s) = 1
s +O

(
1
U

)
as U → ∞ (4.4)

and for any c > 0

RU (s) = O

(
1
|s|

(
U

1 + |s|
)c)

as |s| → ∞ . (4.5)

Both estimates are uniform for �(s) bounded. The first is a mean value
estimate while the second is successive partial integration and a mean value
estimate. We use here the estimate φ(j)

U (t) = O(U j). The Mellin inversion
now gives

∑
γ∈Γ∞\Γ

ωγφU

( ‖γ‖z

T

)
=

1
2πi

∫
�(s)=2

Ẽ(z, s)
ys

RU (s)T sds . (4.6)

We note that by (4.5) the integral is convergent as long as Ẽ(z, s) has
polynomial growth on vertical lines. We now move the line of integration to
the line �(s) = h with h < 1 by integrating along a box of some height and
then letting this height go to infinity. Assuming the polynomial bounds
on vertical lines the Phragmén–Lindelöf principle implies that there is a
uniform polynomial bound O(ta) in h ≤ �(s) ≤ 2 (excluding a small circle
around s = 1) and using (4.5) we find that the contribution from the
horizontal sides goes to zero. If we assume that s = 1 is the only pole
of the integrand with �(s) ≥ h then using Cauchy’s residue theorem we
obtain

1
2πi

∫
�(s)=2

Ẽ(z, s)
ys

RU (s)T sds = Ress=1

(
Ẽ(z, s)
ys

RU (s)T s

)

+
1

2πi

∫
�(s)=h

Ẽ(z, s)
ys

RU (s)T sds .

If we choose c = a + ε the last integral is O(T hUa+ε) uniformly for z in a
compact set.

Assume that Ẽ(z, s) has a pole of order l with (s − 1)−l coefficient a−l

then, if l > 1, we have

Ress=1

(
Ẽ(z, s)
ys

RU (s)T s

)
=

a−l

(l − 1)!y
T (log T )l−1

+O
(
T (log T )l−2 + T log T l−1/U

)
,

since the residue divided by T is a polynomial in log T of degree l− 1 with
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leading coefficient a−l

(l−1)!y . This gives

∑
γ∈Γ∞\Γ

ωγφU

(‖γ‖z

T

)
=

a−l

(l − 1)!y
T (log T )l−1

+O
(
T (log T )l−2 + T log T l−1/U + T hUa+ε

)
.

If l = 1 then
Ress=1

(
Ẽ(z,s)

ys RU (s)T s
)

= a−1

y T +O(T/U) ,

and we get ∑
γ∈Γ∞\Γ

ωγφU

( ‖γ‖z
T

)
= a−1

y T +O(T/U + T hUa+ε) .

If Ẽ(z, s) has a nonsimple pole we choose U = log T and we get∑
γ∈Γ∞\Γ

ωγφU

(‖γ‖z

T

)
=

a−l

(l − 1)!y
T (log T )l−1 +O

(
T (log T )l−2

)
. (4.7)

In the simple pole case we choose U = T (1−h)/(a+1+ε) in order to balance
the error terms and we get∑

γ∈Γ∞\Γ
ωγφU

(‖γ‖z
T

)
= a−1

y T +O
(
T

a+h+ε
a+1+ε

)
. (4.8)

At this point we note that if ωγ is non-negative for all γ ∈ Γ∞\Γ, then by
choosing φU and φ̃U as in (4.3) above and further requiring φU (t) = 0 if
t ≥ 1 and φ̃U (t) = 1 for t ≤ 1, we have∑

γ∈Γ∞\Γ
ωγφU

(‖γ‖z
T

)
≤

∑
γ∈Γ∞\Γ
‖γ‖z≤T

ωγ ≤
∑

γ∈Γ∞\Γ
ωγφ̃U

(‖γ‖z
T

)

from which it easily follows that the middle sum has an asymptotic expan-
sion. As an application we use this on the usual nonholomorphic Eisenstein
series and we find that∑

γ∈Γ∞\Γ
‖γ‖z≤T

1 =
T

y vol (Γ\H)
+O

(
T

a+h+ε
a+1+ε

)
, (4.9)

Now we may choose a = 4(1 − h) + ε (see Lemma 3.1) and we get the
following result:
Lemma 4.1. Assume that the only pole of E(z, s) in �(s) ≥ h is s = 1.
Then ∑

γ∈Γ∞\Γ
‖γ‖z≤T

1 =
T

y vol (Γ\H)
+O

(
T

4−3h
5−4h

+ε) . (4.10)
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Using this lemma we can now deal with the general case, i.e. any set of
coefficients ωγ satisfying (4.2). To get a result without φU from (4.7) and
(4.8) we notice that if we choose φU such that φU (t) = 1 for t ≤ 1 then∑

γ∈Γ∞\Γ
ωγφU

( ‖γ‖z
T

)
=

∑
γ∈Γ∞\Γ
‖γ‖z≤T

ωγ +
∑

γ∈Γ∞\Γ
T<‖γ‖z≤T (1+1/U)

ωγφU

( ‖γ‖z
T

)
.

Using (4.2) we see that we may evaluate the last sum in the following way.
For any ε > 0 this is less than a constant times(

T (1 + 1/U)
)ε

∑
γ∈Γ∞\Γ

T<‖γ‖z≤T (1+1/U)

1 ≤ 2T ε
∑

γ∈Γ∞\Γ
T<‖γ‖z≤T (1+1/U)

1 .

The sum is O(T/U) + O
(
T

4−3h
5−4h

+ε) by Lemma 4.1. Using this with the
above choices of U we get the theorem:

Theorem 4.2. If Ẽ(z, s) has a pole at s=1 of order l with (s − 1)−l

coefficient a−l. If l = 1, i.e. if the pole is simple then∑
γ∈Γ∞\Γ
‖γ‖z≤T

ωγ =
a−1

y
T +O

(
Tmax(a+h

a+1
, 4−3h
5−4h )+ε) .

If l > 1 then ∑
γ∈Γ∞\Γ
‖γ‖z≤T

ωγ =
al

(l − 1)!y
T log T l−1 +O(T log T l−2) .

Using this we now get an expansion of the summatory function (4.1) in
all the cases that we studied in section 2. We only state the result in a few
cases.

Corollary 4.3. Let α = �(f(z)dz) and β = �(f(z)dz). Then

∑
γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, α〉2m 〈γ, β〉2n =
(−8π2)m+n ‖f‖2m+2n

y vol(Γ\H)m+n+1

(2m)!
m!2m

(2n)!
n!2n

T logm+n T

+O(T logm+n−1 T ) (4.11)

and if m or n is odd then∑
γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, α〉m 〈γ, β〉n = O(T logk T ) (4.12)

for some k ∈ N strictly less than (m+ n)/2.
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Proof. This follows from Theorem 4.2, Theorem 3.3, Corollary 2.7 and
Theorem 2.16, once we notice that

(2m)!(2n)!
2m+n(m+ n)!

(
m+ n

n

)
=

(2m)!
m!2m

(2n)!
n!2n

. (4.13)

�

Corollary 4.4. We have
∑

γ∈Γ∞\Γ
‖γ‖z≤T

∣∣〈γ, f〉∣∣2m=
(16π2)mm!

y vol(Γ\H)m+1
‖f‖2m T logm T+O(T logm−1 T ). (4.14)

Proof. This follows from Theorem 4.2, Theorem 3.3, Corollary 2.7 and
Theorem 2.18. �

Corollary 4.5. There exists δ1 > 0 such that
∑

γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, f〉 =
1

y vol(Γ\H)

(
− 2πi

∫ z

i∞
f(τ)dτ

)
T +O(T 1−δ1) . (4.15)

Proof. This follows from Theorem 4.2, Theorem 3.3, Corollary 2.7 and
Theorem 2.17. �

We note that by picking z = i this reproves (1.4).

Corollary 4.6. There exists δ2 > 0 such that

∑
γ∈Γ∞\Γ
‖γ‖z≤T

〈γ, f〉2 =
1

y vol(Γ\H)

(
− 2πi

∫ z

i∞
f(τ)dτ

)2

T +O(T 1−δ2) . (4.16)

Proof. This follows from Theorem 4.2, Theorem 3.3, Corollary 2.7 and
Theorem 2.19. �

Remark 4.7. How small we can prove 1− δi to be in the above corollaries
depends of course on how good polynomial bounds we have and how far
to the left we may move the line of integration. Assuming no eigenvalues
s(1 − s) ∈ (0, 1/4) we can move just to the right of s = 1/2, and using the
bound of Theorem 3.3 we get

1 − δ1 = 11
12 + ε ,

1 − δ2 = 17
18 + ε ,

for any ε > 0.
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5 The Distribution of Modular Symbols

We now show how to obtain a distribution result for the modular sym-
bols from the asymptotic expansions of Corollary 4.3. We renormalize the
modular symbols in the following way. Let

〈̃γ, f〉 =

√
vol (Γ\H)
8π2 ‖f‖2 〈γ, f〉 ,

〈̃γ, α〉 =

√
vol (Γ\H)
8π2 ‖f‖2 〈γ, α〉 ,

〈̃γ, β〉 =

√
vol (Γ\H)
8π2 ‖f‖2 〈γ, β〉 ,

where α = �(f(z)dz), β = �(f(z)dz). Let furthermore
(Γ∞\Γ)T :=

{
γ ∈ Γ∞\Γ

∣∣ ‖γ‖z ≤ T
}
. (5.1)

By Lemma 4.1 we have

#(Γ∞\Γ)T =
T

vol(Γ\H)y
+O(T 1−δ) , (5.2)

for some δ > 0. Now let XT be the random variable with probability
measure

P (XT ∈ R) =
#

{
γ ∈ (Γ∞\Γ)T

∣∣∣ 〈̃γ,f〉√
log‖γ‖z

∈ R
}

#(Γ∞\Γ)T
. (5.3)

for R ⊂ C (we set 〈̃γ, α〉/√log ‖γ‖z = 0 if ‖γ‖z ≤ 1. Note that there are
only finitely many such elements.) We consider the moments of XT

Mn,m(XT ) =
1

#(Γ∞\Γ)T
∑

γ∈(Γ∞\Γ)T

[
�

( 〈̃γ, f〉√
log ‖γ‖z

)]n[
�

( 〈̃γ, f〉√
log ‖γ‖z

)]m

,

(5.4)
and note that

�(〈̃γ, f〉) = i〈̃γ, β〉 ,
�(〈̃γ, f〉) = −i〈̃γ, α〉 .

By partial summation we have

Mn,m(XT ) =
in+m(−1)m

#(Γ∞\Γ)T

( ∑
γ∈(Γ∞\Γ)T

〈̃γ, β〉
n
〈̃γ, α〉

m 1
log T (m+n)/2

+
m+ n

2

∫ T

c0

∑
γ∈(Γ∞\Γ)T

〈̃γ, β〉
n
〈̃γ, α〉

m 1
t(log t)(m+n)/2+1

dt

)
,
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where co = min{‖γ‖z | ‖γ‖z > 1}. If we now apply Corollary 4.3 and (5.2)
we find that as T → ∞

Mn,m(XT ) →
{

n!
(n/2)!2n/2

m!
(m/2)!2m/2 , if m and n are even ,

0 , otherwise .
(5.5)

We notice that the right-hand side is the moments of the bivariate Gaussian
distribution with correlation coefficient zero. Hence by a result due to
Fréchet and Shohat (see [Lo, 11.4.C]) we conclude the following:

Theorem 5.1. Asymptotically 〈̃γ, f〉/√log ‖γ‖z has bivariate Gaussian
distribution with correlation coefficient zero. More precisely we have

#
{
γ ∈ (Γ∞\Γ)T

∣∣∣ 〈̃γ,f〉√
log‖γ‖z

∈ R
}

#(Γ∞\Γ)T
→ 1

2π

∫
R

exp
(
−x

2 + y2

2

)
dx dy (5.6)

as T → ∞.

As an easy corollary we get

Corollary 5.2. Asymptotically �(〈̃γ, f〉)/√
log ‖γ‖z has Gaussian dis-

tribution. More precisely we have

#
{
γ ∈ (Γ∞\Γ)T

∣∣∣ �(〈̃γ,f〉)√
log‖γ‖z

∈ [a, b]
}

#(Γ∞\Γ)T
→ 1√

2π

∫ b

a
exp

(
−x

2

2

)
dx (5.7)

as T → ∞.

The same holds for �(〈̃γ, f〉). We note that by putting z = i in
Corollary 5.2 and Theorem 5.1 we obtain Theorem A and Theorem B.
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