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Abstract. For a hyperbolic surface embedded eigenvalues of the Laplace
operator are unstable and tend to become resonances. A sufficient dis-
solving condition was identified by Phillips–Sarnak and is elegantly ex-
pressed in Fermi’s Golden Rule. We prove formulas for higher approx-
imations and obtain necessary and sufficient conditions for dissolving a
cusp form with eigenfunction uj into a resonance. In the framework of
perturbations in character varieties, we relate the result to the special
values of the L-series L(uj ⊗ Fn, s). This is the Rankin-Selberg convo-
lution of uj with F (z)n, where F (z) is the antiderivative of a weight 2
cusp form.

1. Introduction

For a hyperbolic surface with cusps the embedded eigenvalues of the
Laplace operator ∆ in the continuous spectrum are unstable. This is mani-
fested by Fermi’s Golden Rule developed in [33]. We describe the result in
the simplest case of a surface with one cusp and an eigenvalue of multiplicity
one. Let λj = 1/4 + r2

j be an embedded eigenvalue with rj ∈ R \ {0} and

the corresponding L2-normalized eigenfunction (Maaß cusp form) uj(z). Let
E(z, s) be the Eisenstein series, which on the critical line <(s) = 1/2 is a
generalized eigenfunction for ∆, so that E(z, 1/2 + irj) corresponds in the
same eigenvalue as the Maaß cusp form. We set sj = 1/2 + irj . In [32]
Phillips and Sarnak identified a condition that turns λj into a resonance
in Teichmüller space, i.e. dissolving λj into a resonance. In [38] Sarnak

identified a similar condition for character varieties. Let ∆(1) denote the in-
finitesimal variation of the family of Laplacians in either perturbation. Then
the dissolving condition – usually called the Phillips–Sarnak condition – is

(1.1) 〈∆(1)uj , E(z, 1/2 + irj)〉 6= 0.

In [33] Phillips and Sarnak identified the dissolving condition in terms of the
speed that the cuspidal eigenvalue leaves the line <(s) = 1/2 to become a
resonance to the left half-plane. If sj(ε) denotes the position of the resonance
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or embedded cusp form, with perturbation series

(1.2) sj(ε) = sj + s
(1)
j (0)ε+

s
(2)
j (0)

2!
ε2 + · · · ,

then

(1.3) <s(2)
j (0) = − 1

4r2
j

∣∣∣〈∆(1)uj , E(z, 1/2 + irj)〉
∣∣∣2 .

Our aim in this paper is to investigate what happens when the expression
(1.3) vanishes, or equivalently: what happens if the Phillips-Sarnak condi-
tion is not satisfied.

The proof of (1.3) in [33] uses the Lax-Phillips scattering theory as devel-
oped for automorphic functions, see [22]. The crucial ingredient is provided
by the cut-off wave operator B. Its spectrum (on appropriate spaces) coin-
cides with the singular set (counting multiplicities). It includes the embed-
ded eigenvalues and the resonances. The motion of an embedded eigenvalue
depending on the perturbation parameter ε on the complex place C can be
identified as the motion of an eigenvalue of B. Given that Phillips and Sar-
nak proved that regular perturbation theory applies to this setting, it follows
that an embedded eigenvalue moves (with at most algebraic singularities)
as function of ε, either remaining a cuspidal eigenvalue or becoming a res-
onance. Eq. (1.3) follows using standard perturbation theory techniques.
Balslev provided a different proof of Eq. (1.3) in [2] by introducing the tech-
nique of analytic dilations and imitating the setting of Fermi’s Golden Rule
for the helium atom, see [37]. A slightly modified version of the application
of perturbation theory is provided in [28], using the formulas in [21, p. 79].

Once the dissolving condition had been identified, Phillips and Sarnak
[32] expressed it as a special value of a Rankin–Selberg convolution of uj
with the holomorphic cusp form f generating the deformation. These special
values have been subsequently studied [10, 11, 23] with the aim of showing
that a generic surface with cusps has ‘few’ embedded eigenvalues in the sense
of Weyl’s law.

A different line of approach has been to develop alternate perturbation set-
tings, where the condition to check is easier to understand. Wolpert, Phillips
and Sarnak, and Balslev and Venkov succeded in investigating Weyl’s law
this way. [39, 34, 3, 4].

A more recent development came through the numerical investigation of
the poles of Eisenstein series by Avelin [1]. Working with the Teichmüller
space of Γ0(5), she found a fourth order contact of sj(ε) with the unitary
axis <(s) = 1/2. It is easy to explain why certain directions in the moduli
space will not satisfy the Phillips-Sarnak condition (1.1): If the dimension of

the moduli space is at least 2, then the map f → 〈∆(1)uj , E(z, 1/2 + irj)〉 is
linear, therefore, is has nontrivial kernel. Avelin also identified numerically
the most suitable curve that the singular point follows in the left half-plane.
This work (along with the work of Farmer and Lemurell [13]) motivated
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us to investigate whether one can identify higher order Fermi-type condi-
tions that will explain what happens in this case. We answer affirmatively:
we find conditions that guarantee that an embedded eigenvalue becomes a
resonance.

For this purpose we introduce the perturbation series of the generalized
eigenfunctions D(z, s, ε), with D(z, s, 0) = E(z, s):

(1.4) D(z, s, ε) = D(z, s, 0) +D(1)(z, s)ε+
D(2)(z, s)

2!
ε2 + · · · .

Theorem 1.1. Assume that for k = 0, 1, . . . , n− 1 the functions D(k)(z, s)

are regular at a simple cuspidal eigenvalue sj = 1/2 + irj. Then D(n)(z, s)
has at most a first order pole at sj.

(1) If D(n)(z, s) has a pole at sj, then the embedded eigenvalue becomes
a resonance.

(2) Moreover, with ‖·‖ the standard L2-norm,

<s(2n)
j (0) = −1

2

(
2n

n

)∥∥∥∥ res
s=sj

D(n)(z, s)

∥∥∥∥2

,

and this is the leading term in the expansion of <sj(ε), i.e. <s(j)
j (0) =

0 for j < 2n.

Corollary 1.2. An embedded simple eigenvalue sj becomes a resonance if

and only if for some m ∈ N the function D(m)(z, s) has a pole at sj.

Remark 1.3. For n = 1 the condition in the theorem is the classical Fermi’s
Golden Rule, see (3.8) with n = 1. Our method provides a new proof of
this well-known result without using energy inner products, see [33] but
assuming Theorem 2.2.

Remark 1.4. The assumptions of the theorem may equivalently be stated
as <(s(j)(0)) = 0 for j = 1, . . . , 2n − 1. So in the theorem we are really
assuming that the embedded eigenvalue does not become a resonance to
order less than 2n.

Remark 1.5. At first glance it may seem that the condition identifies one
perturbation object with another, equally unknown. However, the condition
can surprisingly also be expressed as the nonvanishing at a special point of a
Dirichlet series. The relevant series is more complicated than the standard
Rankin–Selberg convolution. In the case of character varieties and n = 2
this Dirichlet series is

(1.5)
∞∑
n=1

 ∑
k1+k2=n

ak1
k1

ak2
k2
b−n

 1

ns
,

where an are the Fourier coefficients of f , and bn are the coefficients of uj .
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Even more D(n)(z, s) has been the object of intense investigation by
Goldfeld, O’Sullivan, Chinta, Diamantis, the authors, Jorgenson et. al.
[14, 15, 6, 12, 26, 29, 30, 20]. It can be defined for <(s) > 1 as

(1.6) D(n)(z, s) =
∑
Γ∞\Γ

(
2πi

∫ γz

i∞
<f(w) dw

)n
=(γz)s.

In fact, in [27, 29] it was proved that

Ress=sjD
(1)(z, s) = 〈∆(1)uj , E(z, 1/2 + irj)〉uj(z),

which gives the Phillips–Sarnak condition when one takes the L2-norm. This
motivated us to investigate the residues of D(n)(z, s) and derive Theorem
1.1. The character perturbation setup is analyzed in section 4.

Remark 1.6. The simplicity of sj is not important. We state the theorem
for any multiplicity of sj as Theorem 3.1 in Section 2.

Remark 1.7. This theorem gives an algorithmic method of checking whether
in a particular direction of moduli space an embedded eigenvalue becomes a
resonance. If D(1)(z, s) is regular at sj , which is equivalent to the vanishing
of the Phillips–Sarnak condition, then the embedded eigenvalue stays an
eigenvalue to second order and we need to check the higher order condition
D(2)(z, s). If this is regular one looks at the next term in the perturbation
series of D(z, s, ε) etc.

Remark 1.8. There is an easy argument that explains why a pole ofD(n)(z, s)
at sj forces the embedded eigenvalue to become a resonance. The argument
is sketched in section 3.2.

In this article (Section 4) we investigate the the case of character varieties.
The application of Theorem 1.1 to the analysis of Teichmüller deformations
will appear in [31].

We would like to thank D. Hejhal, A. Strombergsson, A. Venkov, E.
Balslev, D. Meyer and P. Sarnak for helpful discussions and encouragements.

2. Background and preliminaries

An admissible surface, see [25, 24], is a two dimensional non-compact
Riemannian manifold M of finite area with hyperbolic ends, i.e. there is a
compact set M0 such that M has a decomposition

M = M0 ∪
k⋃

a=1

Za

and
Za
∼= S1 × [ca,∞), ca > 0

carries coordinates (xa, ya) ∈ S1 × [ca,∞) and is equipped with the hyper-
bolic metric

dx2
a + dy2

a

y2
a

.
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The end Za is called a cusp. Müller [25, 24] has worked out the spectral
theory of admissible surfaces. The Laplace operator ∆, defined originally on
compactly supported smooth functions, has a unique self-adjoint extension
on L2(M), which we denote by L. The spectrum of L consists of discrete
spectrum (eigenvalues λj = sj(1− sj)) with

0 = λ0 < λ1 ≤ λ2 ≤ . . .

(a finite or infinite set accumulating at∞) and continuous spectrum [1/4,∞)
of multiplicity k, provided by generalized eigenfunctions Ea(z, s). These can
to be constructed as in [24, 9] and, only in the special case of hyperbolic
surfaces, are given by series of the type

E(z, s) =
∑
γ∈Γ∞\Γ

=(γz)s.

We will call the generalized eigenfunctions Eisenstein series.
Each Ea(z, s)

(1) admits meromorphic continuation to C with poles in <(s) < 1/2 or
on the interval (1/2, 1],

(2) satisfies the eigenvalue equation

∆Ea(z, s) + s(1− s)Ea(z, s) = 0, and

(3) satisfies the functional equation

Ea(z, s) =
k∑

b=1

φab(s)Eb(z, 1− s)

for some functions φab(s). The determinant of the scattering matrix Φ(s) =
(φab(s))

k
a,b=1 is denoted φ(s). The poles of φ(s) are called resonances. The

scattering matrix satisfies a functional equation Φ(s)Φ(1 − s) = Ik×k, and,
moreover,

(2.1) Φ(s̄) = Φ(s), Φ(s)∗ = Φ(s̄).

The resolvent of the Laplace operator R(s) = (∆ + s(1 − s))−1 defined on
L2(M) for <(s) > 1/2, s 6∈ spec(L), admits a meromorphic continuation
to C, if we restrict the domain to a smaller space, e.g. C∞c (M), compactly
supported functions on M . The limiting absorption principle holds: i.e. the
resolvent kernel (Green’s function) r(z, z′, s) satisfies

(2.2) r(z, z′, s)− r(z, z′, 1− s) =
1

1− 2s

k∑
a=1

Ea(z, s)Ea(z
′, 1− s).

At a spectral point sj with eigenvalue sj(1− sj) > 1/4 the resolvent kernel
has a pole described by the Laurent expansion

(2.3) r(z, z′, s) =
P

s(1− s)− sj(1− sj)
+ · · · ,
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where P is the spectral projection to the eigenspace with eigenvalue sj(1−
sj).

An admissible surface has generically finitely many discrete eigenvalues,
a result due to Colin de Verdière [9], and a consequence of the infinite
dimensionality of the admissible metrics i.e. arbitrary metrics on M0. De-
termining the number of eigenvalues is much trickier if we demand that M
is hyperbolic, as the Teichmüller space is finite dimensional. However, the
perturbation setup works in the case of admissible surfaces and they appear
as a technical devise in Teichmüller perturbations.

We are interested in perturbations of the Laplace operator L on M . The
simplest kind of such arises from a perturbation of the Riemannian metric
inside M0 (compact perturbations). Let ε ∈ (−ε0, ε0). Let g(ε) be a real
analytic family of metrics on M , with g(ε) = g(0) on M \M0. The Laplacian
then admits a real analytic expansion

L(ε) = L(0) + εL(1) +
ε2

2
L(2) + · · · .

As the family of metrics agree with g(0) up in the cusps, the Laplacian does

not change up in the cusps and the operators L(i) are compactly supported
operators, since L(i)f has support in M0 for every (smooth) function f . We
denote by D(z, s, ε) any of the generalized eigenfunctions Ea(z, s, ε) of L(ε).

Theorem 2.1. The family D(z, s, ε) is real analytic in ε for ε ∈ (−ε0, ε0)
and meromorphic in s ∈ C \ {1/2}. The n-th derivative in ε is given by

(2.4) D(n)(z, s) = −R(s)

n∑
i=1

(
n

i

)
L(i)D(n−i)(z, s).

Sketch of proof. The real analyticity follows from the construction of the
generalized eigenfunctions D(z, s, ε) using pseudo-Laplacians and the fact
that the construction can be differentiated at every step in ε. This is ex-
plained (for the first derivative at least) in [29], see also [5]. The formula for

D(n)(z, s) can be proved by differentiating (L(ε) + s(1− s))D(z, s, ε) = 0 to
get

n∑
i=0

(
n

i

)
di

dεi
(L(ε) + s(1− s))

∣∣∣∣
ε=0

D(n−i)(z, s) = 0.

Then we isolate the term D(n)(z, s) using R(s) for <(s) > 1/2. Since the op-

erators L(i) are compactly supported, the resolvent is applied to a compactly
supported function and the right-hand side of (2.4) can be meromorphically
continued to C. The identity (2.4) holds on C by the principle of analytic
continuation. �

If we expand Ea(z, s) in the cusp Zb, the zero Fourier coefficient takes the
form

δaby
s
b + φab(s)y

1−s
b .
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It follows from Theorem 2.1, that, for s 6= 1/2, φab(s, ε) is also real analytic
in ε, since

φab(s, ε) =
1

y1−s
b

(∫ 1

0
Ea(zb, s, ε) dxb − δabysb

)
.

The singular set σ includes the embedded eigenvalues and resonances at
the same time. The only points in the singular set σ off the real axis are

(1) sj with sj(1− sj) an embedded eigenvalues counted with its multi-
plicity, and

(2) resonances sj counted with multiplicity the order of the pole of the
scattering determinant at sj .

For the points in [0, 1] ∩ σ, see [33]. A point in the singular set is called
singular.

The important theorem about the singular set needed is the following
theorem:

Theorem 2.2. [33, Corollary 5.2] If sj(0) is in the singular set σ(0) for
ε = 0 and has multiplicity 1, then it moves real analytically in ε for |ε|
sufficiently small. If the multiplicity is greater than one, then the singular
points decompose into a finite system of real analytic functions having at
most algebraic singularities.

In the setting of compact perturbations of admissible surfaces, Müller
[24] proved the same statement. These results use the family of cut-off
wave operators B(ε) and follow from standard perturbation theory, once it
is proved that the resolvent RB(ε)(s) is real analytic for |ε| sufficiently small.
The technically difficult aspect of [33] is the identification of the spectrum
of B(ε) with the singular set σ(ε).

3. Dissolving conditions of higher order

3.1. Main statements. From this section onwards we restrict ourselves,
for simplicity, to the case that M has one cusp, i.e. k = 1. Let sj =
sj(0) be a singular point of multiplicity m. Let ŝj(ε) be the weighted mean
of the branches of the singular points generated by splitting sj(0) under
perturbation, i.e.

ŝj(ε) =
1

m

m∑
l=1

sj,l(ε).

We are now ready to state and prove the more precise version of Theorem
1.1:

Theorem 3.1. Assume that for k = 0, 1, . . . , n− 1 the functions D(k)(z, s)

are regular at a cuspidal eigenvalue sj = 1/2 + irj. Then D(n)(z, s) has at
most a first order pole at sj.

(1) If D(n)(z, s) has a pole at sj, then the embedded eigenvalue becomes
a resonance.
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(2) Moreover, with ‖·‖ the standard L2-norm,

(3.1) <ŝ(2n)
j (0) = − 1

2m

(
2n

n

)∥∥∥∥ res
s=sj

D(n)(z, s)

∥∥∥∥2

.

Corollary 3.2. At least one of the cusp forms with given sj becomes a

resonance if and only if for some m ∈ N the function D(m)(z, s) has a pole
at sj.

3.2. Poles of D(n)(z, s), and dissolving cusp forms. Before we prove
Theorem 3.1, we indicate an argument that explains why a singularity of
D(n)(z, s) at sj is connected to dissolving cusp forms. For simplicity we
consider hyperbolic surfaces so that the generalized eigenfunction D(z, s, ε)

is an Eisenstein series. Let us assume that D(k)(z, s) is regular at sj for
k = 1, . . . , n− 1. Assume uj is a simple cusp form and that uj(ε) remains a
cusp form with uj(0) = uj . It is known that cusp forms are perpendicular
to the Eisenstein series D(z, s, ε) for all s. This gives

(3.2) 〈uj(ε), D(z, s, ε)〉 = 0.

Phillips and Sarnak [33] proved the real analyticity of uj(ε). We differentiate
(3.2) to get

n∑
k=0

(
n

k

)〈
u

(n−k)
j , D(k)(z, s)

〉
= 0

for s close to sj . By the assumptions the term with k = n should be a
regular function at sj . Under the same assumptions, using (2.4) and (2.3)

we see that D(n)(z, s) has at most a first order pole at sj with residue a

multiple of uj(0). By regularity of
〈
uj , D

(n)(z, s)
〉

this residue has to vanish.
This approach does not prove Corollary 3.2 but shows the sufficiency of the
condition that some D(n)(z, s) has a pole to conclude that sj becomes a
resonance. Corollary 3.2 shows that this is also necessary.

3.3. Polar structure of the Taylor coefficients of φ(s, ε). Since the
singular set is defined partly though the poles of φ(s), we now investigate
the perturbation series of φ(s, ε), in order to track the singular points as ε
varies.

The functional equation for D(z, s, ε) is

(3.3) D(z, s, ε) = φ(s, ε)D(z, 1− s, ε).
Since D(z, s, ε) is real analytic in ε the same is true for φ(s, ε) and we may
introduce the perturbation series of the scattering matrix φ(s, ε) :

φ(s, ε) = φ(s, 0) + φ(1)(s)ε+
φ(2)(s)

2!
ε2 + · · · .

We differentiate (3.3) to identify the perturbation coefficients of φ(s, ε):

(3.4) D(n)(z, s) =

n∑
i=0

(
n

i

)
φ(i)(s)D(n−i)(z, 1− s).
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Proposition 3.3. The perturbation coefficients of the scattering matrix are
given by

φ(n)(s) =
1

2s− 1

∫
M
E(z, s)

n∑
i=1

(
n

i

)
L(i)D(n−i)(z, s) dµ(z), n ≥ 1.

Proof. The proof is already in [35]. We include the argument here. We
proceed by induction. By using first (2.4) and then (2.2) we find that

D(1)(z, s) = −R(s)L(1)E(z, s)

= −R(1− s)L(1)E(z, s) +
1

2s− 1

∫
M
E(z′, s)L(1)E(z′, s) dµ(z′)E(z, 1− s)

= φ(s)(−R(1− s)L(1)E(z, 1− s)) +
1

2s− 1

∫
M
E(z′, s)L(1)E(z′, s) dµ(z′)E(z, 1− s)

= φ(s)D(1)(z, 1− s) +
1

2s− 1

∫
M
E(z′, s)L(1)E(z′, s) dµ(z′)E(z, 1− s).

From (3.4) we know that

D(1)(z, s) = φ(1)(s)E(z, 1− s) + φ(s)D(1)(z, 1− s),

and since E(z, 1− s) does not vanish identically, we get the result for n = 1.
Assume the formula has been proved for m < n. Using (2.4) and (2.2) we

get

D(n)(z, s) = −R(1− s)
n∑
i=1

(
n

i

)
L(i)D(n−i)(z, s)

+
1

2s− 1

(∫
M
E(z, s)

n∑
i=1

(
n

i

)
L(i)D(n−i)(z, s) dµ(z)

)
E(z, 1− s)

= −R(1− s)
n∑
i=1

(
n

i

)
L(i)

n−i∑
k=0

(
n− i
k

)
φ(k)(s)D(n−i−k)(z, 1− s) +Q(z, s)

= −R(1− s)
n−1∑
k=0

φ(k)(s)

n−k∑
i=1

(
n

k

)(
n− k
i

)
L(i)D(n−i−k)(z, 1− s) +Q(z, s)

=

n−1∑
k=0

(
n

k

)
φ(k)(s)

(
−R(1− s)

n−k∑
i=1

(
n− k
i

)
L(i)D(n−k−i)(z, 1− s)

)
+Q(z, s)

=
n−1∑
k=0

(
n

k

)
φ(k)(s)D(n−k)(z, 1− s) +Q(z, s),

where

Q(z, s) =
1

2s− 1

∫
M
E(z′, s)

n∑
i=1

(
n

i

)
L(i)D(n−i)(z′, s) dµ(z′)E(z, 1− s).
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Comparing with (3.4), we get that

φ(n)(s) =
1

2s− 1

∫
M
E(z, s)

n∑
i=1

(
n

i

)
L(i)D(n−i)(z, s) dµ(z),

which finishes the proof. �

Proposition 3.3 allows to recover all the scattering terms in terms of the
perturbed Eisenstein series. However, for φ(n)(s) one uses information for

D(j)(z, s) with j up to n. For our purposes this is not good enough. The

following technical yet important proposition allows to use fewer D(j)(z, s).

Proposition 3.4. The perturbed terms of the scattering function φ(n)(s) are
given for i = 1, 2, . . . , n− 1 by

(2s− 1)φ(n)(s) =

(
n

i

)〈n−i∑
k=1

(
n− i
k

)
L(k)D(n−i−k)(z, s), D(i)(z, s̄)

〉

+
n∑

k=i+1

(
n

k

)〈
D(n−k)(z, s),

i−1∑
m=0

(
k

m

)
L(k−m)D(m)(z, s̄)

〉
.(3.5)

Proof. To simplify the notation we suppress z and s and s̄ in the inner
products. It will be understood that the terms on the left of 〈·, ·〉 should
carry s and the one on the right should have s̄. Note that for any functions
f, g we have 〈R(s)f, g〉 = 〈f,R(s̄)g〉, since R(s)∗ = R(s̄). Moreover, since

L(ε) are self-adjoint, the same applies to L(j). Even if the Eisenstein series

are not in L2, since L(j) are compactly supported, we can easily justify the
integration by parts in the following calculation. We have from Proposition
3.3 and (2.4)

(2s− 1)φ(n)(s) =

〈
n∑
i=1

(
n

i

)
L(i)D(n−i), E

〉

=

(
n

1

)〈
D(n−1), L(1)E

〉
+

n∑
i=2

(
n

i

)〈
D(n−i), L(i)E

〉
=

(
n

1

)〈n−1∑
k=1

(
n− 1

k

)
(−R)L(k)D(n−1−k), L(1)E

〉
+

n∑
i=2

(
n

i

)〈
D(n−i), L(i)E

〉
=

(
n

1

)〈n−1∑
k=1

(
n− 1

k

)
L(k)D(n−1−k),−RL(1)E

〉
+

n∑
i=2

(
n

i

)〈
D(n−i), L(i)E

〉
=

(
n

1

)〈n−1∑
k=1

(
n− 1

k

)
L(k)D(n−1−k), D(1)

〉
+

n∑
k=2

(
n

k

)〈
D(n−k), L(k)E

〉
.

This shows (3.5) for i = 1. Assume now that we proved it for a given i.
We separate the terms with k = 1 and k = i + 1 in (3.5) and group them
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together to get

(2s− 1)φ(n)(s) =

(
n

i

)〈(
n− i

1

)
L(1)D(n−i−1), D(i)

〉
+

(
n

i+ 1

)〈
D(n−(i+1)),

i−1∑
m=0

(
i+ 1

m

)
L(i+1−m)D(m)

〉

+

(
n

i

)〈n−i∑
k=2

(
n− i
k

)
L(k)D(n−i−k), D(i)

〉

+
n∑

k=i+2

(
n

k

)〈
D(n−k),

i−1∑
m=0

(
k

m

)
L(k−m)D(m)

〉
.

We use the obvious identity for binomial coefficients(
n

i

)(
n− i

1

)
=

(
n

i+ 1

)
· (i+ 1)

and bump the summation variable by i in the third sum to get(
n

i+ 1

)〈
D(n−(i+1)), (i+ 1)L(1)D(i) +

i−1∑
m=0

(
i+ 1

m

)
L(i+1−m)D(m)

〉

+

n∑
k=i+2

(
n

i

)(
n− i
k − i

)〈
L(k−i)D(n−k), D(i)

〉
+

n∑
k=i+2

(
n

k

)〈
D(n−k),

i−1∑
m=0

(
k

m

)
L(k−m)D(m)

〉
.

We use (
n

i

)(
n− i
k − i

)
=

(
n

k

)(
k

i

)
and (2.4) to see that the expression is now(

n

i+ 1

)〈n−i−1∑
k=1

(
n− i− 1

k

)
L(k)D(n−i−1−k),−R

(
i∑

m=0

(
i+ 1

m

)
L(i+1−m)D(m)

)〉

+

n∑
k=i+2

(
n

k

)(
k

i

)〈
L(k−i)D(n−k), D(i)

〉
+

n∑
k=i+2

(
n

k

)〈
D(n−k),

i−1∑
m=0

(
k

m

)
L(k−m)D(m)

〉
.

We use (2.4) again to get(
n

i+ 1

)〈n−i−1∑
k=1

(
n− i− 1

k

)
L(k)D(n−i−1−k), D(i+1)

〉

+

n∑
k=i+2

(
n

k

)((
k

i

)〈
L(k−i)D(n−k), D(i)

〉
+

〈
D(n−k),

i−1∑
m=0

(
k

m

)
L(k−m)D(m)

〉)
.



12 YIANNIS N. PETRIDIS AND MORTEN S. RISAGER

Finally we get

(2s− 1)φ(n)(s) =

(
n

i+ 1

)〈n−i−1∑
k=1

(
n− i− 1

k

)
L(k)D(n−i−1−k), D(i+1)

〉

+
n∑

k=i+2

(
n

k

)〈
D(n−k),

i∑
m=0

(
k

m

)
L(k−m)D(m)

〉
.

�

We can now use Proposition 3.5 to translate information about D(i)(z, s)

at sj into information about φ(k)(s) at sj :

Theorem 3.5. Assume that D(q)(z, s) is regular at sj = 1/2 + irj for q =
0, 1, . . . , n− 1. Then

(1) the function φ(l)(s) is regular at sj for l = 0, 1, . . . 2n− 1.

(2) the function φ(2n)(s) has at most a simple pole at sj. Furthermore
the residue at sj is given by

res
s=sj

φ(2n)(s) = −φ(sj)

(
2n

n

)∥∥∥∥ res
s=sj

D(n)(z, s)

∥∥∥∥2

.

Proof. We take n = l for the various values of l ≤ 2n in Proposition 3.4.
Assume first that l < 2n and let in Proposition 3.4 the integer i be the
integral part of l/2. Then i < n and l − i − 1 < n and therefore, by the

assumption on D(q)(z, s) for q = 0, 1, . . . , n− 1, we see immediately - using

the expression on the right of (3.5) - that φ(l)(s) is regular at sj .

To prove the claim about φ(2n)(s) we choose the integer i in Proposition

3.4 to equal n. By (3.5) and the assumptions on D(q)(z, s) we see that

φ(2n)(s) has at most a simple pole at sj and that the residue is given by

(3.6)
1

2sj − 1

(
2n

n

)∫
M

n∑
k=1

(
n

k

)
L(k)D(n−k)(z, sj) res

s=sj
D(n)(z, s)dµ(z).

From (3.4) and the assumptions on D(q)(z, s) we get that

res
s=sj

D(n)(z, sj) = φ(sj) res
s=sj

D(n)(z, 1− s).

Since D(n)(z, s) = D(n)(z, s) we have also, since 1− sj = sj , that

res
s=sj

D(n)(z, 1− s) = − res
s=sj

D(n)(z, s),

and therefore

(3.7) res
s=sj

D(n)(z, s) = −φ(sj) res
s=sj

D(n)(z, s).
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From (2.4) and (2.3) we see that

(3.8) res
s=sj

D(n)(z, s) = − 1

2sj − 1

m∑
i=1

〈
n∑
k=1

(
n

k

)
L(k)D(n−k)(z, sj), uj,i

〉
uj,i,

where {uj,i} is an orthonormal basis for the eigenspace for the eigenvalue
sj(1 − sj). Inserting this in (3.6) (after first using (3.7)) we find that

ress=sj φ
(2n)(s) is given by

(3.9) − φ(sj)

|2sj − 1|2

(
2n

n

) m∑
i=1

∣∣∣∣∣
〈

n∑
k=1

(
n

k

)
L(k)D(n−k)(z, sj), uj,i

〉∣∣∣∣∣
2

which is easily seen to be the claimed result comparing (3.8). �

Remark 3.6. We need one more ingredient about φ(s, ε) before proving The-

orem 3.1. Since φ(s, ε) = φ(s̄, ε) we deduce that

(3.10)
φ′(s, ε)

φ(s, ε)
=

(
φ′(s̄, ε)

φ(s̄, ε)

)
,

where ′ denotes derivative in the s variable, as is standard in the Selberg
theory of the trace formula. This follows from the fact that for an analytic
function f we have

d

ds
f(s̄) = f ′(s̄).

Proof of Theorem 3.1. We want to track the movement of the embedded
eigenvalue/resonance in the left half-plane. We define Γ to be the semicir-
cular contour γ1(t) = ueit + sj , π/2 ≤ t ≤ 3π/2 followed by the vertical
segment γ2(t) = sj + it, −u ≤ t ≤ u. Here u is chosen small enough, so that
the only singular point for ε = 0 inside the ball B(sj , u) is sj with multi-
plicity m = m(sj). This contour is traversed counterclockwise. For small
enough ε the total multiplicities of the singular points sj(ε) inside B(sj , u)
is m(sj). Perturbation theory allows to study the weighted mean ŝ(ε) of the
branches of eigenvalues of B(ε). We have

(3.11) m(ŝ(ε)− sj) = − 1

2πi

∫
Γ
(s− sj)

φ′(s, ε)

φ(s, ε)
ds+

∑
j∈C

(sj(ε)− sj),

where C is indexing the cusp forms eigenbranches inside B(sj , u), i.e. the
cusp forms that remain cusp forms. Let the last sum be denoted by p(ε).
The reason for using Γ and not the whole ∂B(sj , u) is that on the right half-

disc φ(ε) has zeros, which we do not want to count. Notice that
∫
γ f(s) ds =∫

γ̄ f̄(s̄) ds and, therefore, by (3.10)

m(ŝ(ε)− sj) =
1

2πi

∫
Γ̄
(s−s̄j)

(
φ′(s̄, ε)

φ(s̄, ε)

)
ds+p(ε) =

1

2πi

∫
Γ̄
(s−s̄j)

φ′(s, ε)

φ(s, ε)
ds+p(ε).
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Denoting by −γ the contour γ traversed in the opposite direction, we get

m(ŝ(ε)− sj) = − 1

2πi

∫
−Γ̄

(s− s̄j)
φ′(s, ε)

φ(s, ε)
ds+ p(ε)

= − 1

2πi

∫
T−1(−Γ̄)

(1− w − s̄j)
φ′(1− w, ε)
φ(1− w, ε)

(−dw) + p(ε),

where s = T (w) = 1 − w is a conformal map. By the functional equation
φ(s, ε)φ(1− s, ε) = 1, see (2.1), we get

φ′(s, ε)φ(s, ε)− φ(s, ε)φ′(1− s, ε) = 0,

which implies

φ′(s, ε)

φ(s, ε)
=
φ′(1− s, ε)
φ(1− s, ε)

.

We plug this into the expression for m(ŝ(ε)− sj) to get

(3.12) m(ŝ(ε)− sj) = − 1

2πi

∫
T−1(−Γ̄)

(w − sj)
φ′(w, ε)

φ(w, ε)
dw + p(ε).

We sum (3.11) and (3.12) and notice that the cuspidal branch contributions
cancel, because for a cuspidal branch sj,l(ε) the function sj,l(ε)−sj is purely
imaginary. We deduce

2m<(ŝ(ε)− sj) = − 1

2πi

∫
Γ+T−1(−Γ̄)

(s− sj)
φ′(s, ε)

φ(s, ε)
ds.

The contour of integration is now the whole circle ∂B(sj , u) traversed coun-
terclockwise since the contribution from the line segment on <(s) = 1/2
from Γ and T−1(−Γ̄) cancel. By uniform convergence we can differentiate
the last formula in ε. We get

2m
d2n

dε2n
<(ŝ(ε))

∣∣∣∣
ε=0

= − 1

2πi

∫
∂B(sj ,u)

(s− sj)
d2n

dε2n

(
φ′(s, ε)

φ(s, ε)

)∣∣∣∣
ε=0

ds

(3.13)

= − 1

2πi

∫
∂B(sj ,u)

(s− sj)
2n∑
k=0

(
2n

k

)
dkφ′(s, ε)

dεk

∣∣∣∣
ε=0

d2n−k(φ(s, ε)−1)

dε2n−k

∣∣∣∣
ε=0

ds.

We can interchange the order of differentiation

dk

dεk
φ′(s, ε) =

d

ds
φ(k)(s)

and see that this is regular at sj for k < 2n by Theorem 3.5. On the other
hand for k = 2n it has a double pole at sj by the same theorem. Concerning

d2n−k

dε2n−k
φ(s, ε)−1
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we argue as follows: We differentiate m times φ(s, ε)−1φ(s, ε) = 1 to get

m∑
k=0

(
m

k

)
dk

dεk
φ(s, ε)−1

∣∣∣∣
ε=0

φ(m−k)(s, 0) = 0.

Let m be less than 2n. By Theorem 3.5, the fact that φ(s) is unitary on
<(s) = 1/2, and by solving for dm

dεmφ(s, ε)−1
∣∣
ε=0

, we see that dm

dεmφ(s, ε)−1
∣∣
ε=0

is regular at sj . Form = 2n we see, by the same argument, that d2n

dε2n
φ(s, ε)−1

∣∣∣
ε=0

has at most a simple pole at sj .
We can now determine the order of the pole of the integrand of the right-

hand side in (3.13): By the above considerations we see that the only non-
regular term occurs for k = 2n. This is the term

(s− sj)
dφ(2n)(s, 0)

ds
φ−1(s),

which has at most a simple pole. By the residue theorem the expression in
(3.13) equals minus the residue of

(s− sj)
dφ(2n)(s, 0)

ds
φ−1(s).

Since the leading term in the Laurent expansion of the derivative in s of
φ(2n)(s, 0) equals −(ress=sj φ

(2n)(s, 0))/(s− sj)2 we conclude that

2m
d2n

dε2n
<(ŝ(ε))

∣∣∣∣
ε=0

=
ress=sj φ

(2n)(s, 0)

φ(sj , 0)

= −
(

2n

n

)∥∥∥∥ res
s=sj

D(n)(z, s)

∥∥∥∥2

,

where, in the last equality, we used Theorem 3.5 again. This completes the
proof of the theorem. �

Proof of Corollary 3.2. The direction that a pole of some D(m)(z, s) at sj
implies that at least one embedded eigenvalue becomes a resonance is proved
as follows: If n is the smallest number such that D(n)(z, s) has a pole at

sj , then from Theorem 3.1, we have that <ŝ(2n)
j 6= 0, while <ŝ(2m)

j = 0 for

m < n. If k is the smallest integer with <ŝ(k)
j 6= 0, then k = 2n, since an odd

leading term in the Taylor series of <ŝj(ε) will force <ŝj(ε) to take values
larger and smaller than 1/2. This is impossible, since a singular point cannot
move to the right half-plane. Therefore ŝj(ε) does not have real part equal
to 1/2 for all small ε and one of the cuspidal eigenvalues has to dissolve. The
opposite direction is obvious: If all embedded eigenvalues remain embedded

eigenvalues, then <ŝj(ε) = 1/2. This implies that <ŝ(2n)
j = 0 for all n ∈ N.

�
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4. Character varieties

4.1. Higher order dissolving for character varieties. We now describe
how the above theory can be modified for the twisted spectral problem re-
lated to character varieties. Let Γ be a discrete cofinite subgroup of PSL2(R)
with quotient M = Γ\H, where H is the upper half-plane. For simplicity, we
still assume that Γ has precisely one cusp, which we assume is at infinity. Let
f(z) ∈ S2(Γ) be a holomorphic cusp form of weight 2. Then ω = <(f(z) dz)
and ω = =(f(z) dz) are harmonic cuspidal 1-forms. Let α be a compactly
supported 1-form in the same cohomology class as one of them. For the
exact construction see e.g. [30, Prop. 2.1]. We fix z0 ∈ H. Define a family
of characters

χ(·, ε) : Γ → S1

γ 7→ exp(−2πiε
∫ γz0
z0

α).

We consider the space

L2(Γ\H, χ(·, ε))
of (Γ, χ(·, ε))-automorphic functions, i.e. functions f : H→ C where

f(γz) = χ(γ, ε)f(z),

and ∫
Γ\H
|f(z)|2 dµ(z) <∞.

The automorphic Laplacian L̃(ε) is the closure of the operator acting on
smooth functions in L2(Γ\H, χ(·, ε)) by ∆f . We denote its resolvent by

R̃(s, ε) = (L̃(ε) + s(1− s))−1. We introduce unitary operators

(4.1)
U(ε) : L2(Γ\H) → L2(Γ\H, χ(·, ε))

f 7→ exp
(

2πiε
∫ z
z0
α
)
f(z).

We then define

L(ε) = U−1(ε)L̃(ε)U(ε)(4.2)

R(s, ε) = U−1(ε)R̃(s, ε)U(ε).(4.3)

The operators L(ε) on L2(Γ\H) and L̃(ε) on L2(Γ\H, χ(·, ε)) are unitarily
equivalent. Notice that L(ε) and R(s, ε) act on the fixed space L2(Γ\H),
which allows to apply perturbation theory. It is easy to verify that

L(ε)h = ∆h+ 4πiε 〈dh, α〉 − 2πiεδ(α)h− 4π2ε2 〈α, α〉(4.4)

(L(ε) + s(1− s))R(s, ε) =R(s, ε)(L(ε) + s(1− s)) = I.(4.5)

Here

〈f1dz + f2dz, g1dz + g2dz〉 = 2y2(f1g1 + f2g2)

δ(pdx+ qdy) = −y2(px + qy).
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We notice also that

L(1)(ε)h = 4πi 〈dh, α〉 − 2πiδ(α)h− 8π2ε 〈α, α〉 ,(4.6)

L(2)(ε)h = −8π2 〈α, α〉 ,(4.7)

L(i)(ε)h = 0, when i ≥ 3.(4.8)

We notice that L(i) are compactly supported operators and that δ(ω) = 0
for a harmonic form ω.

We let E(z, s, ε) be the usual Eisenstein series for the system (Γ, χ(·, ε))
and define the Γ-invariant function

D(z, s, ε) = U−1(ε)E(z, s, ε).

The Phillips–Sarnak condition for dissolving cusp forms in this setting is:

(4.9)
〈
L(1)uj , E(z, sj)

〉
6= 0.

The family of operators L(ε) do not arise from an admissible metric, but all
the properties described in Section 2 are well-known, and the proof of the
dissolving theorem carries over almost verbatim, so in this case the higher
order analogue of Fermi’s golden rule also holds:

Theorem 4.1. Assume that for k = 0, 1, . . . , n− 1 the functions D(k)(z, s)

are regular close to a cuspidal eigenvalue sj = 1/2 + irj. Then D(n)(z, s)
has at most a first order pole at sj.

(1) If D(n)(z, s) has a pole at sj, then the embedded eigenvalue becomes
a resonance.

(2) Moreover, with ‖·‖ the standard L2-norm,

(4.10) <ŝ(2n)
j (0) = − 1

2m

(
2n

n

)∥∥∥∥ res
s=sj

D(n)(z, s)

∥∥∥∥2

.

4.2. Multiparameter perturbations. To analyze the higher order dis-
solving conditions and relate it to a Dirichlet series it is useful to work with
families of characters depending on several parameters. To do this we in-
troduce the following notation. Given αl, l = 1, . . . , k harmonic, compactly
supported 1-forms on M , we let α = (α1, . . . , αk), ε = (ε1, . . . , εk) and define

(4.11) D(z, s, α) =
∑
γ∈Γ∞\Γ

k∏
l=1

(∫ γz

i∞
αl

)
=(γz)s.

Such series have been studied in [30, Lemma 2.4], and we give a quick review
of some of their properties:

Let

χ(γ, ε) =
k∏
l=1

exp

(
−2πiεl

∫ γz0

z0

αl

)
.
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be the multiparameter character induced from α. We know from the theory
of Eisenstein series (See e.g. [36, 18, 19]) that

E(z, s, ε) =
∑
γ∈Γ∞\Γ

χ(γ, ε)=(γz)s, <(s) > 1.

admits meromorphic continuation to C and that it satisfies a functional
equation

(4.12) E(z, s, ε) = φ(s, ε)E(z, 1− s, ε).

If we let

(4.13) U(ε)f =
k∏
l=1

exp

(
2πiεl

∫ z

z0

αl

)
f(z)

we see that when <(s) > 1

(4.14) D(z, s, α) =
∂k

∂ε1 · · · ∂εk
U(−ε)E(z, s, ε)

∣∣∣∣
ε=0

.

We have – analogous to the 1-parameter situation described in the beginning
of this section – that if L(ε) = U−1(ε)L̃(ε)U(ε) then

(4.15)
L(ε)h = ∆h+ 4πi

∑k
l=1 εl〈dh, αk〉 − 2πi

(∑k
l=1 εlδ(αk)

)
h

−4π2
(∑k

l,m=1 εlεm〈αl, αm〉
)
h.

Using this we arrive at the following theorem:

Theorem 4.2. The function D(z, s, α) admits meromorphic continuation
to C. Furthermore it satisfies the following:

(1) The poles of D(z, s, α) are included in the singular set for the surface
M , and the pole order at a singular point is at most k.

(2) For <(s) > 1/2, and s not in the singular set, the function D(z, s, α)
is square integrable and satisfies

D(z, s, α) = −R(s)

(
k∑
l=1

∂εlL(ε)|ε=0D(z, s, αl)

)
,

where αl is α with the l-th component removed. This equation pro-
vides the analytic continuation of D(z, s, α) using the meromorphic
continuation of the Green’s function. The analytically continued
function grows at most polynomially as z tends to a cusp.

(3) For 1/2 < σ0 < <(s) < σ1, and s not in the singular set, the function
D(z, s, α) grows at most polynomially as |=(s)| → ∞, and z is in a
compact set.

(4) The function D(z, s, α) satisfies a functional equation. This is de-
rived by multiplying (4.12) by U(−ε) and differentiating both sides,
using (4.14).
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Proof: (1), (2) and(3) can be found in [30], and (4) follows from diffentiation
(4.12). See also [35]. �

Remark 4.3. An example of the functional equation in Theorem 4.2 (4) is

D(z, s, α1, α2) = φ(s, 0)D(z, 1− s, α1, α2)

+ ∂ε1φ(s, ε)|ε=0D(z, 1− s, α2) + ∂ε2φ(s, ε)|ε=0D(z, 1− s, α1)

+ ∂ε2,ε1φ(s, ε)|ε=0E(z, 1− s).

Remark 4.4. We notice that, although Theorem 4.2 concerns D(z, s, α),
where α = (α1, . . . , αl) with αl compactly supported, we can also handle
non-compact but cuspidal cohomology in the following way: Since Theorem

4.2 immediately gives –through (4.14) – the properties of ∂k

∂ε1···∂εkE(z, s, ε)
∣∣∣
ε=0

,

which is invariant under shift of αl within its cohomology class. Since for
every f(z) ∈ S2(Γ) the harmonic 1-form <(f(z)dz) has a compactly sup-
ported form in its cohomology class, we see that Theorem 4.2 provides the
analytic properties of the series

(4.16) Dn1,...,nk(z, s, ω1, . . . , ωk) =
∑
γ∈Γ∞\Γ

k∏
l=1

(∫ γz

i∞
ωl

)nl

=(γz)s,

where ωi, i = 1, . . . , k, are complex or real harmonic cuspidal 1-forms.
We note also that the ‘differentiated scattering matrices’

∂εk,...,ε1φ(s, ε)|ε=0

are invariant under shift of αl within its cohomology class. We shall freely
use these connections below.

Remark 4.5. It is well known (see e.g. [18, page 218, Remark 61]) that
in the one-cusp case the scattering matrix is even in the character (i.e.
φ(s, χ) = φ(s, χ)). It follows that

∂εk,...,ε1φ(s, ε)|ε=0 = 0

whenever k is odd.

4.3. Dissolving and special values of Dirichlet series. By Theorem 4.1
the Phillips-Sarnak condition for the perturbation induced by ω is equivalent
to

res
s=sj

D1(z, s, ω) 6= 0.

The following lemma identifies situations where the Phillip-Sarnak con-
dition is not satisfied. This is seen as follows:

Lemma 4.6. Let M be a finite volume hyperbolic surface of genus g. Let
λ be an eigenvalue > 1/4 of multiplicity m. If g > m, there exists a holo-
morphic cusp form f(z) of weight 2 such that for both perturbations induced
by the harmonic 1-forms ω1 = <(f(z) dz) and ω2 = =(f(z) dz) as in (4.4)
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the Phillips–Sarnak condition for dissolving the eigenvalue λ is not satisfied,
i.e.

(4.17) res
s=sj

D1(z, s, ωi) = 0, i = 1, 2.

Note that the condition (4.17) implies that ress=sj D
1(z, s, ω) = 0 for all

ω in the linear complex span of ω1, ω2, in particular for f(z)dz.

Proof. We have M = Γ\H for some discrete cofinite subgroup Γ. Let Eλ
be the eigenspace corresponding to the eigenvalue λ. Consider the linear
map Λ : S2(Γ) → Eλ sending f ∈ S2(Γ) to ress=sj D

(1)(z, s, f(z)dz), which
is well-defined by Theorem 4.2 (2). Since dimS2(Γ) = g, the dimension
formula implies that Λ has non-trivial kernel when g −m > 0. For f in the
kernel of Λ we have

res
s=sj

D(1)(z, s, ω1) + i res
s=sj

D(1)(z, s, ω2) = res
s=sj

D(1)(z, s, f(z)dz) = 0,

which gives the required result. �

Remark 4.7. There are numerically many known examples of surfaces of
genus g > 1 that has simple eigenvalues. For these Theorem 4.6 can be
applied. Moreover the proof of the lemma shows that the dimension of the
relevant f ’s is at least g −m.

We now introduce a Dirichlet series that plays a major role in investigating
movement of an embedded eigenvalue if the Phillips-Sarnak condition is not
satisfied. Let f(z) =

∑∞
n=1 ane

2πinz be the Fourier expansion of f(z) at the
cusp i∞. Let

uj(z) =
∑
n6=0

bn
√
yKsj−1/2(2π |n| y)e2πinx

be the Fourier expansion of uj , which for simplicity we may assume to be
real-valued. We introduce the antiderivative of f(z) as

F (z) =

∫ z

i∞
f(w) dw =

∞∑
n=1

an
2πin

e2πinz.

We define the Dirichlet series

(4.18) L(uj ⊗ F 2, s) =
∞∑
n=1

 ∑
k1+k2=n

ak1
k1

ak2
k2
b−n

 1

ns−1/2
.

Since an, bn grow at most polynomially in n we easily see that the above
series converges absolutely for <(s) sufficiently large.
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By unfolding and inserting the relevant Fourier expansions we have, for
<(s) sufficiently large,

〈
D2(z, s, f(z)dz), uj

〉
=

∫ ∞
0

∫ 1

0

(∫ z

i∞
f(w)dw

)2

ysuj(z)dx
dy

y2

=

∫ ∞
0

∫ 1

0

( ∞∑
n=1

an
2πin

e(nz)

)2

ys
∑
n6=0

bn
√
yKsj−1/2(2π |n| y)e(nx)dx

dy

y2

=
−1

4π2

∞∑
n=1

∫ ∞
0

 ∑
k1+k2=n

ak1
k1

ak2
k2

 b−ne
−2πnyys−1/2Ksj−1/2(2πny)

dy

y

=
−1

4π2

∞∑
n=1

 ∑
k1+k2=n

ak1
k1

ak2
k2

 b−n
1

(2πn)s−1/2

∫ ∞
0

e−tts−1/2Ksj−1/2(t)
dt

t

=
−1

22s+1πs+1
L(uj ⊗ F 2, s)

Γ(s+ sj − 1)Γ(s− sj)
Γ(s)

,

(4.19)

where we have used [17, 6.621 3]. Using this we can now prove the basic
properties of L(uj ⊗ F 2, s).

Proposition 4.8. The series L(uj ⊗F 2, s) admits meromorphic continuation
to s ∈ C with possible poles on the singular set. The poles are at most of
first order. Furthermore we have the following functional equation: Let

Λ(uj ⊗ F 2, s) =
1

(4π)s
Γ(s+ sj − 1)Γ(s− sj)

Γ(s)
L(uj ⊗ F 2, s).

Then

Λ(uj ⊗ F 2, s) = φ(s)Λ(uj ⊗ F 2, 1− s)
where φ(s) is the scattering matrix.

Proof. This follows from (4.19) and the properties of D2(z, s, f(z)dz) as
recorded in Theorem 4.2: Since the left hand side of (4.19) is meromorphic
for s ∈ C this immediately gives meromorphic continuation of L(uj ⊗F 2, s)
to s ∈ C. Since

D2(z, s, f(z)dz) = D2(z, s, ω1)−D2(z, s, ω2) + 2iD1,1(z, s, ω1, ω2),

we have by Theorem 4.2 thatD2(z, s, f(z)dz) = −R(s)(ψ(z, s)) where ψ(z, s)
has at most a simple pole on the singular set. But then〈

D2(z, s, f(z)dz), uj
〉

= 〈ψ(z, s), R(s)uj〉 =
1

s(1− s)− λj
〈ψ(z, s), uj〉

which then holds for s ∈ C by meromorphic continuation. Comparing with
(4.19) and noticing that Γ(s− sj) has a simple pole at s = sj we prove that
the poles of L(uj ⊗ F 2, s) are all at most simple.
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The functional equation in Theorem 4.2 (4), reduces, in this case, to

D2(z, s, f(z)dz) = φ(s)D2(z, 1− s, f(z)dz) + φ(2)(s, f(z)dz)E(z, 1− s).
The fact that 〈E(z, s), uj〉 = 0 and Equation (4.19) give

1

4sπs
L(uj ⊗ F 2, s)

Γ(s+ sj − 1)Γ(s− sj)
Γ(s)

= φ(s)[same expression evaluated at 1− s].
(4.20)

�

We note that in the case of multiple cusps the above functional equation
becomes more complicated since in general φ(1)(s, f(z)dz) can be a non-zero
matrix (with diagonal entries equal to zero).

Lemma 4.9. Assume (4.17), i.e. that the Phillips-Sarnak condition is not
satisfied for the perturbations induced by both ωi, i = 1, 2. Then L(uj⊗F 2, s)
is regular at s = sj.

Proof. As in the proof of Proposition 4.8 we have that D2(z, s, f(z)dz) =
−R(s)(ψ(z, s)) where ψ(z, s) has at most a simple pole at sj . But assuming
(4.17), it follows easily from Theorem 4.2 (2), that ψ(z, s) is in fact regular
since the only potential poles would come from D1(z, s, ωi). Therefore, as
in the proof of Proposition 4.8, we conclude that

〈
D2(z, s, f(z)dz), uj

〉
has

at most a simple pole at sj . Comparing with (4.19) and again using that
Γ(s− sj) has a simple pole at s = sj gives the claim. �

Theorem 4.10. Assume (4.17), i.e. that the Phillips-Sarnak condition
is not satisfied under perturbations induced by both ωi, i = 1, 2, and that
L(uj ⊗ F 2, sj) 6= 0. For all directions ω in the real span of ω1, ω2 with at
most two exceptions we have

<ŝ(4)
j (0, ω) 6= 0.

In particular there exists a cusp form with eigenvalue sj(1 − sj) that is
dissolved in this direction.

Proof. The Phillips-Sarnak condition will not be satisfied in the whole span

of ω1, ω2. Assume that <ŝ(4)
j (0, ω) = 0 for three distinct directions given by

ηk = akω1 + bkω2, k = 1, 2, 3, i.e. (akbl − albk) 6= 0 for k 6= l. We have

D2(z, s, ηk) = a2
kD

2(z, s, ω1) + b2kD
2(z, s, ω2) + 2akbkD

1,1(z, s, ω1, ω2).

We can solve for D2(z, s, ω1), D2(z, s, ω2), and D1,1(z, s, ω1, ω2) as long as
the following determinant is nonzero:∣∣∣∣∣∣
a2

1 b21 2a1b1
a2

2 b22 2a2b2
a2

3 b23 2a3b3

∣∣∣∣∣∣ = −2a2
1a

2
2a

2
3

∣∣∣∣∣∣
1 b1/a1 (b1/a1)2

1 b2/a2 (b2/a2)2

1 b3/a3 (b3/a3)2

∣∣∣∣∣∣ = 2
∏
k>l

(akbl−albk) 6= 0,

where we have used the fact that the last matrix is Vandermonde. Since
<ŝ(4)

j (0, ηk) = 0, it follows from Theorem 3.1 that D2(z, s, ηk) is regular
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at sj , and by solving the above system that D2(z, s, ω1), D2(z, s, ω2), and
D1,1(z, s, ω1, ω2) are regular. This implies that

D2(z, s, f(z)dz) = D2(z, s, ω1)−D2(z, s, ω2) + 2iD1,1(z, s, ω1, ω2)

is regular also at s = sj . By (4.19) it follows that L(uj ⊗F 2, s) must have a
zero at sj , since the Gamma factor Γ(s− sj) has a pole at that point. This
contradicts the assumption of the theorem.

�

Remark 4.11. We note that the Dirichlet series

D(s) =
∞∑
n=1

n−1∑
j=1

an−jaj
j

1

ns
=

1

2

∞∑
n=1

n−1∑
j=1

an−jaj
(n− j)j

1

ns−1

was recently studied by Diamantis, Knopp, Mason, O’Sullivan and Deitmar
[7, 8]. The series L(uj ⊗ F 2, s) (See 4.18) has the structure of a Rankin-
Selberg convolution between D(s) and the L-function for uj .

Remark 4.12. The special value in Theorem 4.10 is on the critical line and
at the same height as the trivial zeros of L(uj ⊗ F 2, s).

There is a generalization of Theorem 4.10 which we describe briefly: De-
fine

(4.21) L(uj ⊗ F l, s) =
∞∑
n=1

 ∑
k1+···+kl=n

ak1
k1
· · · akl

kl
b−n

 1

ns−1/2
.

By essentially the same computation as in (4.19) we have
(4.22)

〈Dn(z, s, f(z)dz), uj〉 =
−1

22s+1πs+1
L(uj ⊗ Fn, s)

Γ(s+ sj − 1)Γ(s− sj)
Γ(s)

.

Notice that this computation also proves the meromorphic continuation of
L(uj ⊗ Fn, s) to s ∈ C, and that at sj the function L(uj ⊗ F l, s) has a pole
of order at most n− 1.

Theorem 4.13. Assume that L(uj ⊗Fn, s) does not have a zero at sj. For
all directions ω in the real span of ω1, ω2 with at most n exceptions we have

<ŝ(2r)
j (0, ω) 6= 0,

for some r ≤ n. In particular there exists a cusp form with eigenvalue
sj(1− sj) that is dissolved in this direction.

Proof. Assume that <ŝ(2r)
j (0, ηk) = 0, r = 1, . . . , n for n + 1 distinct direc-

tions given by ηk = akω1 + bkω2, k = 0, . . . n, i.e. (akbl− albk) 6= 0 for k 6= l.
We have

Dn(z, s, ηk) =

n∑
l=0

(
n

l

)
alkb

n−l
k Dl,n−l(z, s, ω1, ω2)
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We can solve for all Dl,n−l(z, s, ω1, ω2) as long as the following determinant
is nonzero:∣∣∣∣(nl

)
an−lk blk

∣∣∣∣n
k,l=0

=

(
n∏
l=0

(
n

l

)) ∣∣∣an−lk blk

∣∣∣n
k,l=0

=

(
n∏
l=0

(
n

l

)
anl

)∣∣∣(bk/ak)l∣∣∣n
k,l=0

=

(
n∏
l=0

(
n

l

))∏
k<l

(akbl − albk) 6= 0,

where again we have used the fact that the last matrix is Vandermonde.
It follows that all Dn−l,l(z, s) are linear combinations of Dn(z, s, ηk), k =
0, . . . n.

Since

<ŝ(2r)
j (0, ηk) = 0,

Theorem 4.1 allows us to conclude that Dn(z, s, ηk) is regular at sj , and

therefore also that Dn−l,l(z, s) is regular at sj . Since

Dn(z, s, f(z)dz) =
n∑
j=0

(
n

j

)
in−jDj,n−j(z, s, ω1, ω2)

it follows also that Dn(z, s, f(z)dz) is regular at s0.
Therefore the left of (4.22) is regular. It follows that the right-hand side

of (4.22) is regular, which proves – since Γ(s − sj) has a pole at sj – that
L(uj ⊗ Fn, s) has a zero at sj . But this contradicts the assumption of the
theorem. �
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