Fourier Coefficients of Cusp Forms

Yiannis N. Petridis

ABSTRACT. We prove the estimate a, = O(|n|3/8%€) for the Fourier coeffi-
cients of a Maaf cusp form of an arbitrary cofinite subgroup of SL(2,R) and
provide a uniform way of treating these together with the Fourier coefficients
of a holomorphic cusp form.

1. Introduction

Let I" be a cofinite discrete subgroup of SL(2,R). Let F(z) be either
(a): a holomorphic cusp form of even integral weight 2k for T', or
(b): a Maaf cusp form for T', i.e., an eigenfunction of the noneuclidean Laplace
operator which is cuspidal (k = 0).
The group I' contains parabolic elements and, more precisely, we assume that
the manifold I \ H has a cusp at infinity with stabilizer the standard parabolic
subgroup I'w. That F(z) is automorphic with respect to I’ means

(1.1) F2) = (s + 0P, 4= (0 ) )er.
Since F(z + 1) = F(z), F(z) has a Fourier expansion at infinity
(1.2) F(z)= Zan|n|k*1/2W(nz)

for 3z > 0, where W (z) = €?™% for (a) and W (z) = |y|'/2K;\(27|y|)e?™* for (b).
In the case (b) 1/4 4 )2 is the eigenvalue of A corresponding to F.. The summation
is over positive integers in (a) and over nonzero integers in (b).

The problem of estimating the order of magnitude of the Fourier coefficients
a,, has a long history, see Selberg [11]. The Hecke bound is a, = O(|n|'/?). The
Ramanujan-Petersson conjecture is

an = O(|n[).
This was proved by Deligne for the holomorphic case (a) and for certain arithmetic
groups like SL(2,7Z).

For the case (b) and arithmetic subgroups of SL(2,R) Hecke’s bound was
improved by Shahidi [12]: a, = O(|n|'/®), and, more recently, by Bump-Duke-
Hoffstein-Twaniec [1]: a, = O(|n|>/?**¢). However, the Ramanujan conjecture is
not proven even for SL(2,Z).

1991 Mathematics Subject Classification. Primary 11F30; Secondary 11F72.
The author was supported in part by NSF grant DMS-9600111.

1



2 YIANNIS N. PETRIDIS

For a general group, which is not necessarily arithmetic, though, the known
results are not so sharp. Anton Good [4] proved that

(1.3) an = O(n'/37°)

for the case (a) and weight 2k > 2. This was proved using Rankin—Selberg con-
volutions. Let D(s) = 3" |an|?|n|~% be the Rankin-Selberg convolution of F' with
itself. Then we have the integral representation

471—S+2k*1
(1.4) D) = 55T /. VP, ) dedy?
in the case (a) and
B 2m°T(s) 9 5
(L5 D) = 7352 T inT (/2 — i) /F\H|F "Bz, 5) dady/y

in the case (b), where E(z, s) is the nonholomorphic Eisenstein series corresponding
to the cusp at infinity. The Gamma factors are asymptotic to [t|'~2Fe™Itl/2] as
t — +o0 on the critical line s = 1/241t. To estimate effectively the Rankin—Selberg
convolution D(s) on its critical line one needs exponential decay of the integrals in
equations (1.4) and (1.5) on their critical line. So the issue is to estimate the inner
product

(1.6) (f(2), E(z,1/2 + it)),
where f(z) = y?*|F|?. Closely related are the inner products
(L.7) (f(2),¢;(2)),

where the ¢;’s form an orthonornal basis for the discrete spectrum of the Laplace
operator on L*(T'\ H) with corresponding eigenvalues \; = s;(1 — s;) = 1/4 + t.
Here s; = 1/2 4 t; and either 1/2 < s; < 1 or Rs; = 1/2. The study of the inner
products (1.6) and (1.7) plays a role in proving that a positive proportion of the
zeros of the L-series of F lie on its critical line, see Hafner [5].

The estimates one would like to have are of the form

T+1

(18) / (f(2), Bz, 12 + it)? dt < e~ TT™,
T

and

(1.9) (F(2), () < e /2472,

and, if possible,

K T
(110) 3 [henlemt +3 / (F(2), Bj(z,1/2+ i) el dt < T

0<t;<T j=17-T
for some nonnegative constant m and < means that the left hand side is bounded
by a constant multiple of the right hand side as T' — oo (or j = oo in (1.9)). Here
E;(z,8), j = 1,...,k, is the Eisenstein series corresponding to the j-cusp of T,
where T" has k inequivalent cusps. We have

THEOREM 1.1 (Good [4]). If T is general cofinite subgroup of SL(2,R) and F
is a holomorphic cusp form of weight 2k > 2 then (1.10) holds with m = 4k.

THEOREM 1.2 (Jutila [7] and [8]). For I' = SL(2,Z) the bound (1.10) holds
with m = 4k + € for both cases (a) and (b).
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Good’s proof uses heavily Kloosterman sums and the fact that any holomorphic
cusp form is a linear combination of Poincaré series. This is why it does not apply
to the case (b). Jutila’s proof unifies both cases by using the similarity of the
estimate (1.10) with the additive divisor problem.

THEOREM 1.3 (Sarnak [10]). For general subgroup I' and F' a Maaf8 cusp form
the estimates (1.8) and (1.9) hold with m =2 + €.

This was the first theorem for general group I' and the case (b). Subsequently
I improved on it using the same method:

THEOREM 1.4 (Petridis [9]). For general T and F' a Maaf cusp form with \ #
0 the estimates (1.8) and (1.9) hold with m = 1.

In the last two theorems one can also assume that I' is cocompact and the
estimate (1.9) holds with the same m. Good’s and Jutila’s methods do not apply
in the cocompact case.

The last two theorems give the following estimates for the Fourier coefficients
of a Maaf} cusp form: a,, = O(|n|>/12*¢) (Sarnak [10]), which T improved to a,, =
O(|n[*/5%e).

Hejhal [6] has heuristic arguments showing that the Ramanujan conjecture
an = O(|n|¢) holds for groups with no exceptional eigenvalues, i.e., eigenvalues less
than 1/4. He uses known and conjectural properties of the horocyclic flow.

In this work I prove

THEOREM 1.5. For a general group T’ we can take in (1.10) m = 4k+1 in both
cases (a) and (b), provided that A # 0.

COROLLARY 1. We have the following bound for the Fourier coefficients
(1.11) an = O(|n|*/5+¢).

This bound is worse than Good’s for the holomorphic case but is new in the
Maaf case (b).

In case I' is cocompact we can ignore the term involving the Eisenstein series
and we get

COROLLARY 2. If F(z)(dz)* is a holomorphic k-differential, then

(1.12) Yo Kfeplem™ < T

0<t;<T

We see that Theorem 1.5 is worse than Theorem 1.1 for the holomorphic case
and worse than Theorem 1.2 for SL(2,Z).

A further question relevant to the case (b) is the dependance of the estimate
on the eigenvalue 1/4 + A2, All the estimates depend on the supremum norm of F,
so we get a, = O(|n|*/3+t¢e™/2\1/2) if we assume that ||F||, = 1.

The author would like to thank Dennis Hejhal for suggesting the problem and
Peter Sarnak for finding an error in an earlier version.

2. The holomorphic case

Let Dy, denote the noneuclidean Laplacian for functions of weight 2k

0* 9 0
2 _ .
21) Dr=y (8.7:2 6y2) 2iky oz’
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Let g(z) = y*F(z), so that |g|> = f. Then

(2.2) Dyg = k(k —1)g.

We use polar coordinates around any point zg in the upper half-plane H given by
z

20 i0
——— = tanh 2
% (T/ )6 ’

(2.3)

where r is the hyperbolic distance. Let g be any function which satisfies (2.2) and
which is bounded in a neighborhood of zy. Then we have a Fourier expansion

_ k e8]
£ % inf

2.4 = i .
(2.4 1) (572) = X el
Let

y 8%  coshr O 1 62 2 0
2. Dy = — —_— — R 2 _ ik
(25) F= 52 T Sanhror sinh? r 062 1 + coshr ( lk(%)

be Dy, in polar coordinates. Then Dy, (r)ei™® = k(k — 1), (r)ei™®. The operator
Dy and the solutions to this equation are discussed in Fay [3]. Here is a summary
of the results. More details can be found in the Appendix.

We change variable by setting u = coshr. So ¢, (r) satisfies

d*p, N 2u dpn _ [k(k=1) n®  2(k*+kn)
du? w2 —1du | w2—-1  (u2—-12 (u+1)(u2-1) on-

(2.6)

The solution to this equation which is regular at u = 1 (corresponding to r = 0) is

_ n/2 k B
2.7) cn(r):(z+1) (%) — tanh™(r/2) (cosh®(r/2)) "

for n > 0 and

_ 1\ [nl/2 k
o = (257) (125) FeRlalil+1 =1/ D)

(2.8) tanh'™ (r/2) (cosh®(r/2)) " F(2k, |nl,|n| + 1, tanh(r/2))

for n < 0. Here F(a,b,c, z) is the Gauss hypergeometric function. Therefore

9(2) (jo‘_zg)k = 3 b

n=—0oo

for some constants b,,.
LEMMA 2.1. The sequence b, satisfies
N
(2.9) D bal® < gl N
n=—N

PROOF. The function g(z) = y*F(z) is bounded on the upper half plane and
(2 — Z0) /(20 — Z) has modulus 1, which implies that

o) (Z2) [ an= [T gty ao

20 — 2

(2.10) B(r):/OTr
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is bounded by M = 2x||g||2,, for r > 0. Parceval’s identity implies
o0

B(r) = Z [bn[?|Cr ()]

n=—0oo

We find lower bounds for C),(ry) along certain subsequence ry for |n| < N, which
imply an upper bound on the sequence b,,. We examine separately the positive and
the negative terms in the series. For N > 1 we choose a sequence cosh?(ry/2) = N
so that Cp,(ry) = (1=1/N)"2N~* > (1 =1/N)N2N—* > 0.5N~* for 0 < n < N.
Then

N
(2.11) M > B(ry) > Z|b |Cn(rn)] Z b |2N 2.

n=0 n=0
For n < 0 we also need a lower bound on the function F(2k, |n|, |n|+1,tanh?(r/2)).
We use the fundamental integral representation for the hypergeometric function,

see Erdélyi [2, 2.1.3(10), p. 59], to get

Hkll—‘

T(jn|+1)

F(2k, nl, In] +1, tanh®(r/2)) = Fri ws

/0 1 =11 — ¢(tanh?(r/2)) 2* dt
and, since 1 — t(tanh?(r/2)) < 1,

F(2k,|n|,|n| + 1,tanh®(r/2)) > |n| /01 tr=tdr =1.
Now the argument continues as in (2.11). O

REMARK 2.2. Actually much more is true for the coefficients b, for n < 0.
Using the identity (23) p. 64 in [2], which holds even in the degenerate case of
the hypergeometric equation, since it depends only on a change of variables in the
fundamental integral representation, we get

Fla,j,j+1,2) = (1—2)"MF@+1-a,1,j+1,2)

1
(1— z)"‘“j/ (1= £y~1(1 — tz)~i—1+a gy
0

where we take @ = 2k and j = |n|. Aslong as 0 < z <1 and j > a— 1 the last
integral is greater or equal to 1/j. Therefore for j > a — 1 we have F(a,j,j +
1,1 —1/N) > N°~1  which in our case gives F(2k,|n|,|n| + 1,1 — 1/N) > N2k—1,
Following the argument above we get that
_ko
Z |bn|2(1 _ I/N)NN—QkN4k—2
n=—N

is bounded, which implies E;f’_ ~ [bal? < N272k 50 the b,’s are zero eventually,
if k > 1, or they are in 2 for k = 1.

LEMMA 2.3. The function B(r) extends to an even analytic function of r in
the strip |Sr| < 7/2 and satisfies the bound

| cosh(r/2)|* + | cosh(r/2)| =4

(2.12) B) < l9lle ™1 = b /2 P
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PRrROOF. We notice that |C,,(r)|? extends analytically, since for n > 0,
2 TTami=To) 2 —k (T "k
|Cn(r)[? = tanh™ (r/2)tanh”(7/2) (cosh®(r/2)) (cosh (T/Q))
and forn < 0

|Cn () > = |C_n|*F(2k, —n, —n + 1, tanh®(r/2)) F(2k, —n, —n + 1, tanh®(7/2))

and F(a,b,c,z) is an analytic function on the disc |2| < 1 and z = tanh(r/2) maps
the strip |37 < 7/2 conformally onto this disc. We now need an upper bound
of the hypergeometric function in Cp(r), n < 0, on the strip |Sr| < 7/2. The
fundamental integral representation for the hypergeometric function [2, 2.1.3(10),
p. 59] gives

1
F(2k,|n|,|n|+1,2) = %/0 11— t2) 2R dt

and, since |1 — 2| < 2|1 —tz| for [z] <1and 0 <t <1,
1
(1= 22K F(2k, |nl, |n] + 1, 2)| < 22k|n|/ fni=1l g — 92k
0

This implies that

|Cn(r)] < |tanh(r/2)|I"!| cosh(r/2)[?*
for n < 0, while for n > 0 we clearly have

|C(r)| < |tanh(r/2)|I™ | cosh(r/2)| =2k

We work first with the positive terms of the series 3 |b,|?|tanh(r/2)|?". We set
By =Y |b,|?. Summation by parts gives

3 [baf?[ tanh(r/2)*" = 3" By tanh(r/2)""(1 — | tanh(r/2)|%)

n=0 n=0

and equation (2.9) implies that B, < ||g||%,n?*. Therefore

> |ba? tanh(r/2)]" < |gll%, Y n**|tanh(r/2)*"(1 ~ |tanh(r/2)]?)

n=0 n=0
1

2
< ||g||oo (1 _ |tanh(r/2)|2)2k’

since

- _ P (w)
2 =

where P, (w) is a polynomial of degree m that does not vanish at w = 1. The same
calculation can be applied for the negative part of the series and (2.12) follows. O

REMARK 2.4. We note that on the horizontal lines r = x +i(7/2—-1/t),z € R,
we have the bound

(2.13) B(r) < eUhlzg2k,
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This is seen as follows. An elementary argument gives

[cosh(r/2)[? = cos®(n/4 —1/2t) + sinh*(z/2) < €!®!
_ 1+ e2® + 2e%sin(1/t)
1 —|tanh(r/2)]?)"* = =l
(1 — | tanh(r/2)|%) Zem sin(1/0) < tel®!,

since sin(1/t) > 1/2t for t sufficiently large. Moreover the term |cosh(r/2)|~** is
bounded.

3. Proof of the theorem

The proof of Theorem follows the exact steps as the proof in [9]. However, we
need a new family of point-pair invariants. The family of point-pair invariants that
are needed are

TtP 5. (coshr)sinh?®r
kr(r) :/ 1/2+zt8(k+10 ) dt
To cosh (r/2)

for Ty sufficiently large. Their Selberg—Harish-Chandra transform Hr(s) is
T [e%s)
Hr(s) = / 27r/ P_y/54i5(cosh )k (r) sinh r dr dt
To 0

where the functions k() are point-pair invariants of the form treated in [9]. If
their transform is h;(s), which is localized at ¢, for ¢ > Ty, then Hr(s) localizes
on the whole interval [Tp,T]. We need to estimate the supremum norm of K (f)

which is given by
T

Kr(f)= | Ki(f)dt.

To
We estimate the integrand pointwise using the results of [9] to be

||I~(t(f)||oo < e—7rt/2t2k+1/2

An integration by parts in the integral
T
/ o—t/22k+1/2 gy
To

together with the obvious inequality e™ < e™ for ¢t < T gives the estimate (1.10).
We notice that the Maaf} case is implicit in the above, since the two lemmata above
provide the corresponding statements to Lemma 1 and Lemma 2 in [9].

The proof of Corollary 1 is the same as the argument in [4, p. 546-547].

4. Appendix

In this appendix we prove some standard results about the weight 2k Laplacian
Dj,. We choose the notation as in Fay [3, pp. 145-147]. Let

(4.1) Kkz(z—z)% +k
(4.2) Li=(z— z)% —k

be the Maaf} operators. Then
(4.3) Dy =Ly 1 K+ k(14 k).
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In order to find the formula for Dy in polar coordinates, we start by showing
that

_ o\ k41 _ o\ —k
v z—Zo z— Zo (0 1 0
k (zo—z) oo (zo—z> € (6r+isinhr60 tanh (r/ ))
— k—1 _ —k
s (z—2Z z— 2 _wf(0 1 0
Le = (zo—Z) oLyo (20—2) - ¢ (87“ isinhr60+ktanh(r/2)>'

PROOF. We first work on the formula for Kj. For any function g(z)

o 2= 2 kel 0 zZ— 29 -k
o - ()" (=02 ((22)
Z0 — % z 0 — R
_ __Z_ZO@ = —k Z— 29
= ( z)zg—26z+(z z)gzo—2+kzo—2
_ _ _\Z— % 0g kg o _
= @ z)zo—26z+z0—2(z % —2+7)
2 —2Z90g Z— 20
= - -~ _ k
(2 z)zo—Z(‘?z (z—Z()) g
= (2—2) zo__z; % — tanh (r/2)e kg
If we show that
(4.4) O _ fanh(r/2)— 02

9z (z — 20)(z — 2)
00 20— 2 1 1 or

(45) 9z tanh(r/2) (z — 20)(z — Z) isinhr ~ isinhr 0z
then
L Z—Z09  z—1X @ 1 @
(2=2) 20—20z  z—20 tanh(r/2) (67‘ * isinhr 80)
_:0 [ Og 1 0Jg
_ i [ YT YJ
- <8r +z'sinhr@O) ’
We have
(4.6) tanh?(r/2) = (z = 20)(z — %)

(z — Z0)(Z — 20)

and, in order to show (4.4), we differentiate with respect to z to get
1 or Z—29 Zo—2o

cosh?(r/2) 9z Z—20 (z — Zo)

This implies that

(2 — Z0)(z — 20)

tanh(r/2) 5 = tanh?(r/2)

20 — 2o

(4.7) or _ cosh(r/2) sinh(r/2) 2 —70)"

0z

So we need to show that

(4.8) cosh?(r/2) = (j:?ﬂ.
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Since cosh?(r/2) = (1 — tanh®(r/2)) ', equation (4.6) implies

cosh?(r/2) = _ _(Z — %) (2 — 20) _ (z - %0)(Z0 —_5)‘
(z = 20)(Z— 20) = (2 — 20)(2 — Z0) (2 — 2)(20 — 20)
This completes the proof of (4.4). As far as (4.5) is concerned, we differentiate (2.3)
with respect to z and use (4.4) to get

20 — 2o 1 or i0 . 30 00
(z—20)2 _ 2cosh? (r/2) 2 tanh(r/2)ie 9z
N 1 20— Z2 R =20 00
"~ 2cosh®(r/2) (z — 20) (2 — 2) zz—zoa

1 20— 2 .2 — 29 00

2 (2 — Zp)? Y- Z0 0z’

where in the last step we used Equation (4.8). So, using (4.7), we get
00 20 — 20 1 or
9z 2i(z — 20)(z — 20) ~ isinhr 9z’

which suffices to show (4.5).

To prove the formula for Ek, which is Ly in polar coordinates, it is enough to
notice that Lp = K_; and use the formula for K_;. O

Finally
9 z—%\" z—%\ "
Dk—k(k+1)=< 0) ODk0< 0) —k(k+1)

20— 2 20— 2

_ k - —k

z — 20 zZ— 20 v o

= — | Lp41 Ky - = Lp+1 Ky,
20 — R 20 — R

Or isinhr 00

o (0 1 0
—i0 [ ¥ ~
° (e (ar + isinhr 96 ktanh(r/2)>)

= ¥ (3— = £+(k+1)tanh(r/2))

— 8_2 + 2 1 g + 1 62 —k 1
~ 0r2  9r \isinhr ) 86 = isinhr 0rdé 2 cosh?(r/2)
0 0 1 0

1 0 1 0
sinhr (E * isinhr 80 ktanh(r/?))

1 0? 1 5 0
~isinhr (6r80 * isinhr 062 ktanh(r/2)%) ’
Using the identities 2 cosh?(r/2) = 1+4coshr and tanh(r/2)+1/sinhr = coshr/ sinhr,
we finally get the form of Dy in (2.5).

We now pass to the study of (2.6). The equation (2.6) has three regular singular
points at +1 and oo and the roots of the indicial equation at these points are as
follows. At u = 1 the roots are +|n|/2, at u = —1 they are —k,, — |n|/2 and
kn + |n|/2, where k, = kn/|n| and ko = k and at oo they are k and 1 — k. In this
case the difference of the roots for the regular singular point v = 1 is always an
integer. There exists exactly one solution that does not blow up as u — 1. In fact,
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if we denote this solution by y;(u), which is asymptotic to (u — 1)I7//2

then the second solution y»(u) has the form

asu — 1,

y2(u) = y1(u) Infu — 1] + an'(u -1)

for n =0 and

o
yo(u) = agr(w)Infu— 1+ (w =172 [ 143 "c;(u—1)7 |, n#£0,
=1
for a constant a. Therefore this solution blows up as u — 1. The solution y; (u) is
given in Riemann’s notation by
1 -1 00
P % —kn — % koou op=
| [n
-5 okt 1-k
w1y 2 0 00 1
- 2
(3) T@+n™Pd 0 —katk 0
ut —|n| kn+|n|+k 1-2k
where we used [2, (8), pp. 91]. Comparing with the representation of the hyperge-
ometric function in Riemann’s notation we get

o\ e "
<U+1) (u+1) F( - na|n|+ + n,1+|n|,(u—1)/(u+1))

which gives (2.7) and (2.8).
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