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1. From the divisor problem to the Riemann zeta function

1.1. The divisor function. In number theory we encounter arithmetic sequences
that behave rather irregularly, e.g. they are not increasing or decreasing themselves.
Their values and growth quite often depends on the divisibility properties of the
index. The simplest such function is the divisor function d(n) = |{a ∈ N, a|n}|. If
n = p, a prime number, then d(p) = 2, while d(pk) = k + 1, i.e. it is constant on the
prime numbers, while of the powers of a prime pk it increases roughly like logp(p

k).
Even though we cannot see a specific order of growth in the divisor function by
looking at the individual terms, we may ask about the average order of growth of the
divisor function, i.e. we can investigate

1

x

∑
n≤x

d(n).

Writing n = ab for every divisor a of n, we calculate∑
n≤x

d(n) =
∑
n≤x

∑
a|n

1 =
∑
ab≤x

1 =
∑
a≤x

∑
b≤x/a

1 =
∑
a≤x

[x
a

]
=
∑
a≤x

(x
a

+O(1)
)
,

as the fractional part of a number is in [0, 1). Recall that the notation f(x) = O(g(x))
means that there exists a constant K such that |f(x)| ≤ Kg(x) for all x. Clearly
fi(x) = O(gi(x)) for i = 1, 2 gives f1(x) + f2(x) = O(g1(x) + g2(x)). We get now∑

n≤x

d(n) = x
∑
a≤x

1

a
+O(x).

An standard idea from analysis is to compare the sum with the integral
∫ x

1
dt/t. By

using left-hand sums and right-hand sums we see that, for any positive continuous
decreasing function f(x):

N∑
n=2

f(n) ≤
∫ N

1

f(t) dt ≤
N−1∑
n=1

f(n)

Date: June 30, 2008.
2000 Mathematics Subject Classification. Primary 11F67; Secondary 11F72, 11M36.
The author was partially supported by NSF grant DMS-0401318, and PSC CUNY Re- search

Award, No. 69288-00-38.
1



2 YIANNIS N. PETRIDIS

1.0

0.9

0.8

0.7

0.6

0.5

0.4

t

0.3

0.2

6

0.1

0.0
54321

1.0

0.9

0.8

0.7

0.6

0.5

0.4

t

0.3

0.2

6

0.1

0.0
54321

Figure 1. Riemann sums and the integral
∫ 6

1
dt/t

This is the main ingredient in the proof of the integral test for series. This estimate
shows that up to O(1) (i.e. bounded error) the sum

∑N
n=1 f(n) and the integral∫ N

1
f(t) dt are the same. This gives

(1.1)
∑
n≤x

d(n) = x

[x]∑
a=1

1

a
+O(x) = x

∫ [x]

1

dt

t
+O(x) = x

∫ x

1

dt

t
+O(x) = x lnx+O(x).

A technique invented by Dirichlet (hyperbola principle) allows to estimate∑
n≤x

d(n) = x log x+ (2γ − 1)x+O(
√
x),

where γ is the Euler constant

γ = lim
N

(
1 +

1

2
+ · · ·+ 1

N
− lnN

)
.

For details look [5, Exercise 2.4.2]. A second arithmetic function one meets is the
divisor sum σ(n) =

∑
a|n a, or, even, σk(n) =

∑
a|n a

k. In principle, we can follow
similar techniques. There is, however, something unsatisfactory in these calculations.
They seem easy but apply to the specific arithmetic function at hand. It would be
nice to have a more general technique that can apply to estimate the order of growth
of an arithmetic function.

In analytic number theory we associate generating functions to interesting se-
quences that behave irregularly. In the absence of special structure of the sequence
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an we associate with it the Taylor series∑
n

anx
n,

which has positive radius of convergence if an do not grow too quickly e.g. an = O(kn)
for some k. In the case where an have multiplicative properties, it is more natural to
associate the Dirichlet series

(1.2) D(s) =
∞∑
n=1

an
ns

since the function ns satisfies the obvious relation ns1n
s
2 = (n1n2)s. Hopefully the

series D(s) will converge for certain s. The exact notion of multiplicative properties
usually takes one of the following two forms:

(1) amn = am · an for (n,m) = 1, where (n,m) is the greatest common divisor of
m,n,

(2) amn = am · an for all n,m.

In the first case we say that the sequence an is multiplicative and in the second that
it is completely multiplicative. While it may seem that the second is more desirable,
there are many arithmetic functions that do not satisfy the second, e.g. the divisor
function is not completely multiplicative: d(8) = 4 6= d(2)d(4) = 2 · 3. In this case
the associated Dirichlet series is

(1.3) D(s) =
∞∑
n=1

d(n)

ns
.

It turns up that this function can be factored! In fact, it is exactly ζ(s)2, where

(1.4) ζ(s) =
∞∑
n=1

1

ns
,

is the celebrated Riemann zeta function. This series converges absolutely for σ =
<(s) > 1. We first use the comparison test, since∣∣∣∣ 1

ns

∣∣∣∣ =
1

nσ
.

Then we use the integral test:∫ ∞
1

dt

tσ
=

[
t−σ+1

1− σ

]∞
1

=
1

σ − 1
.

(For 0 < s ≤ 1 the same calculation shows that the series diverges, while for <(s) ≤ 0
the general term does not even tend to 0). The calculation D(s) = ζ(s)2 is actually
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very easy (formally):

D(s) =
∞∑
n=1

d(n)

ns
=
∞∑
n=1

∑
ab=n

1

asbs
=

∞∑
a,b=1

1

asbs
=
∞∑
a=1

1

as

∞∑
b=1

1

bs
= ζ(s)ζ(s) = ζ(s)2.

A careful eye may notice that we used a rearrangement of the double series
∑

a,b a
−sb−s,

so that we order the pairs (a, b) according to their product n = ab. This is allowed
as a consequence of the Fubini theorem for absolutely convergent series. See [9,
7.50]. A question that arises is for which s the Dirichlet series (1.3) converges. We
include a general result that applies to a wide range of Dirichlet series. We define
An =

∑n
j=1 an.

Theorem 1.1. [8, 9.12–9.14] Assume that
∑
an is divergent. Define

σ0 = lim sup
log |An|

log n
.

Then the Dirichlet series (1.2) converges for <(s) > σ0 and diverges for <(s) < σ0.

It follows that, if

σ̄ = lim sup
log(|a1|+ |a2|+ . . .+ |an|)

log n
,

then the series (1.2) converges absolutely for <(s) > σ̄ and is not absolutely conver-
gent for <(s) < σ̄. The number σ0 is the abscissa of convergence and σ̄ is the abscissa
of absolute convergence (clearly σ ≤ σ̄). For (1.3) we conclude that it converges ab-
solutely for <(s) > 1, using (1.1):

lim
n

log
∑n

1 d(k)

log n
= lim

n

log(n log n)

log n
= 1.

Recall that the radius of convergence of the power series
∑
anz

n is

R =
1

lim sup n
√
an
.

1.2. The Riemann zeta function. So far it all seems to involve calculations with
series. What is not obvious is (i) what properties of ζ(s) are important in the asymp-
totics of the divisor function, (ii) what is the relation of ζ(s) with prime numbers.

For the first we first explain the notion of analytic continuation in a simple example.
The geometric series

f(z) =
∞∑
n=0

zn

converges for |z| < 1 and is equal in this region to the function g(z) = 1/(z − 1).
The function g(z) is analytic on C with the exception of a simple pole at z = 1. The
function f(z), which was initially defined in the open unit disc only, is said to have
an analytic continuation in C with simple pole at z = 1. The analytic continuation
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of f(z) is certainly not given by the series
∑
zn when |z| ≥ 1. It cannot, as the

series does not converge in this region. It is given by the equation f(z) = g(z).
What is nice in this example is that we can write a simple formula for the analytic
continuation. But this is not always possible and certainly it is not necessary. The
Gamma function is a good example of this. Moreover, it is important for the study of
ζ(s). The Gamma function Γ(s) is the generalisation of the factorial (Γ(n) = (n−1)!,
n ∈ N). It is given by

(1.5) Γ(s) =

∫ ∞
0

e−tts
dt

t
, <(s) > 0.

One need to prove that the integral converges at t = ∞ and t = 0 and it is at the
second point, where the condition <(s) > 0 is used together with integration by parts:

Γ(s) =

[
ts

s
e−t
]∞

0

+
1

s

∫ ∞
0

e−tts+1dt

t
=

1

s
Γ(s+ 1).

This method proves also the functional equation:

(1.6) Γ(s) =
1

s
Γ(s+ 1).

The analytic i.e. meromorphic continuation of the Gamma function to C follows from
this as follows: The right-hand side of the equation (1.6) makes sense for <(s+1) > 0,
i.e. <(s) > −1. So we can define Γ(s) in the strip 0 ≥ <(s) > −1. Then we continue
the process to define Γ(s) in the strip −1 ≥ <(s) > −2, using the right-hand side
of the equation (1.6). The process continues to extend Γ(s) on successive vertical
strips to the left, covering C. Moreover, this process gives us where the poles of Γ(s)
occur: at s = 0 we have the first pole and by this process we find poles at all negative
integers. We can calculate the residues e.g.

Ress=0Γ(s) = Γ(1) =

∫ ∞
0

e−tdt = 1.

We summarize the analytic i.e. meromorphic behaviour of ζ(s) in the following
theorem.

Theorem 1.2. The Riemann zeta function, given by Eq. 1.4 for <(s) > 1 is holo-
morphic in this region. It has analytic continuation to the whole complex plane C
with the exception of one simple pole at s = 1. The residue at the pole is also 1. The
zeta function satisfies the functional equation

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s).

Remark. It is more convenient to define ξ(s) = π−s/2Γ(s/2)ζ(s), so that the func-
tional equation takes the form ξ(s) = ξ(1− s).

There are many proofs of the analytic continuation of ζ(s). Titchmarsh [7] lists
seven methods and there are variants within each! Our choice of proof is due to two



6 YIANNIS N. PETRIDIS

facts: (i) it is one of the original proofs of Riemann, (ii) it generalises to number
fields, see Lang, Algebraic Number Theory, p. 252–258.

We work through the various parts of the proof. The holomorphic nature of ζ(s)
for <(s) > 1 is obvious, as it is the sum of uniformly convergent series of holomorphic
functions 1/ns. Uniformity of convergence on compact sets of the region follows by
comparison with ζ(σ).

The proof of the analytic continuation and functional equation we will give uses
the Poisson summation formula, which roughly says that for sufficiently smooth and
decaying functions:

(1.7)
∑
n∈Z

f(n) =
∑
m∈Z

f̂(m).

Here we define the Fourier transform by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξx dx.

For a precise statement see Exercise 8. We actually use it only for f(x) = e−πx
2

the
Gaussian function. This is a function which is equal to its Fourier transform. We
have:

(1.8) e−πξ
2

=

∫ ∞
−∞

e−πx
2

e−2πiξx dx.

If you have never seen this, here is a proof: use contour integration for e−πz
2

on the
rectangle [−R,R]× [0, ξ], for ξ > 0 and use the standard integral from calculus∫ ∞

−∞
e−πx

2

dx = 1.

For details look [6, p. 42–43]. We substitute x =
√
tx′ and ξ

√
t = ξ′ to (1.8) to get

that the Fourier transform of f(x) = e−πx
2t is (t is a positive parameter)

f̂(ξ) =
1√
t
e−ξ

2π/t.

We apply the Poisson summation formula (1.7) to this pair to get for the theta
function

θ(t) =
∑
n∈Z

e−n
2πt =

1√
t

∑
n∈Z

e−πn
2/t =

1√
t
θ(t−1).

We go back to the Gamma function and substitute in the Euler integral (1.5) t = n2πt′

to get

Γ(s/2) =

∫ ∞
0

e−πn
2t(πn2t)s/2

dt

t
=⇒ π−s/2Γ(s/2)n−s =

∫ ∞
0

e−πn
2tts/2

dt

t
.
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We sum over n ∈ N and set ψ(t) =
∑∞

1 e−πn
2t to get

π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

∞∑
n=1

e−πn
2tts/2

dt

t
=

∫ ∞
0

ψ(t)ts/2
dt

t
=

∫ ∞
0

1

2
(θ(t)− 1)ts/2

dt

t

=

∫ 1

0

1

2
(t−1/2θ(t−1)−1)ts/2

dt

t
+

∫ ∞
1

ψ(t)ts/2
dt

t
=

∫ ∞
1

1

2
(u1/2θ(u)−1)u−s/2

du

u
+

∫ ∞
1

ψ(t)ts/2
dt

t

(with the change of variables u = t−1)

=

∫ ∞
1

ψ(u)(u(1−s)/2+us/2)
du

u
+

1

2

∫ ∞
1

u(1−s)/2−u−s/2du
u

=

∫ ∞
1

ψ(u)(u(1−s)/2+us/2)
du

u

+
1

s− 1
− 1

s
.

The improper integral here converges for all s ∈ C: for u ≥ 1 we have

ψ(u) ≤
∞∑
1

e−nπu =
e−πu

1− e−πu
.

Such a convergent integral with integrand depending holomorphic on the complex
parameter s defines a holomorphic function, see [8, 2.83–2.84]. Moreover, we see
that ξ(s) has poles at 0 and 1. Therefore, ζ(s) has a meromorphic continuation with
simple pole at 1 with residue 1 (here we need that Γ(1/2) = π1/2, which follows from∫∞

0
t−1/2e−tdt =

∫∞
0
u−1e−u

2
2udu =

∫∞
−∞ e

−u2
du =

√
π). This is the only pole as

Γ(s/2) has no zeros (well-known property of the Gamma function). We also see the
functional equation as the right-hand side is invariant under s→ 1− s. The poles of
Γ(s) at the negative integers force ζ(s) to have zeros at −2,−4, . . .. These are called
the trivial zeros. However, the pole of Γ(s) at 0 does not force a zero, because of the
−1/s in the equation above. In fact, ζ(0) = −1/2.

Recall the notation h(x) ∼ g(x), as x → ∞: it means that f(x)/g(x) → 1,
as x → ∞. There is a general technique in analytic number theory to study the
distribution on average of a sequence from its generating function. This comes under
the subject of tauberian theorems. A simple and very useful one is the following:

Theorem 1.3 (Ikehara-Wiener [5]). Let

f(s) =
∞∑
n=1

an
ns

with an ≥ 0. Assume that the Dirichlet series converges absolutely for <(s) > 1 and
has an analytic continuation on <(s) ≥ 1 with a simple pole at s = 1 with residue a
and is holomorphic on other points on <(s) = 1. Then∑

n≤x

an ∼ ax, x→∞.
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If the pole is of order k > 1 and the leading term in the Laurent expansion is c−k(s−
1)−k, then ∑

n≤x

an ∼
1

(k − 1)!
c−kx(log x)k−1.

Remark. The function f(s) has analytic continuation to the points on <(s) = 1
means that for each point s0 with <(s0) = 1, s0 6= 1 there is a neighborhood on
which f(s) has an analytic continuation. These neighborhoods may be shrinking as
=(s)→ ±∞.

Remark. This theorem may seem to lack intuition. However, according to the Perron
formula (see the exercises below) we have∑

n≤x

an =
1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds.

If we can deform the contour as in this exercise to include the pole at s = 1, the
residue is exactly ax for a simple pole of f(s). The contribution by the deformed
contour ‘should’ be smaller. For this one needs to understand the order of growth of
f(s) to the left of <(s) = 1. This is tricky even for ζ(s). However, the theorem as
stated does not require any knowledge to the left, only holomorphicity up to <(s) = 1
with the given pole at s = 1.

With this knowledge we can recover the asymptotics of the divisor function: ζ2(s)
has pole of order 2 at s = 1 with leading singularity 1/(s−1)2. This gives

∑
n≤x d(n) ∼

x log x.
Actually more refined information can be recovered by using contour integration

and computing lower terms in the asymptotics of the form x(log x)j, j < k − 1.
There is another very important property of the Riemann zeta function. It has an

Euler product:

ζ(s) =
∏
p

1

1− p−s
,

where the produce extends over all primes. Formally this is proves as follows for
<(s) > 1:

1

1− p−s
=
∞∑
k=0

p−ks

by expanding the geometric series. Multiplying over all primes we get∏
p

1

1− p−s
=
∏
p

∞∑
k=0

p−ks =
∑
n

n−s = ζ(s),

because every integer n has a unique factorisation into prime powers, and distributing
the product above gives all such products (to the exponent −s). The definition of
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the infinite product
∏
bn is similar to infinite series:

∞∏
n=1

bn = lim
N

N∏
1

bn,

provided that the limit is nonzero. As far as a rigorous proof of the infinite product
of ζ(s), we fix P . Then∏

p≤P

(
1 + p−s + p−2s + · · ·

)
= 1 +

1

ns1
+

1

ns2
+ · · · ,

where on the right-hand side we have the integers with prime factors ≤ P . All
numbers ≤ P are included in this list, so that∣∣∣∣∣ζ(s)−

∏
p≤P

1

1− p−s

∣∣∣∣∣ ≤∑
n>P

1

nσ
,

which is the tail of ζ(s). Consequently it tends to 0 for <(s) > 1.

Remark. A slightly more sophisticated point is that an infinite product
∏

(1 + an)
converges iff

∑
log(1 +an) does. This last series converges absolutely iff

∑
|an| does.

See [1, p. 191–192]. For <(s) > 1 we have |
∑

k≥1 p
−ks| ≤ 2p−σ, so in this case∑

p |
∑

k≥1 p
−ks| ≤ 2ζ(σ).

The infinite product of the Riemann zeta function lies at the heart of its relation
to the prime numbers and the prime number counting function

π(x) = |{p, p ≤ x}|.

We differentiate the logarithmic derivative of ζ(s) given as the Euler product to get:

−ζ
′(s)

ζ(s)
=
∑
p

p−s log p

1− p−s
=
∑
p

log p
∑
m≥1

p−ms.

The last series counts the prime powers pm with weight log p, i.e. it is the Dirichlet
series associated to the von Mangoldt function

Λ(n) =

{
log p, n = pm,

0, otherwise.

So

−ζ
′(s)

ζ(s)
=
∑
n

Λ(n)

ns
.

Complex analysis tells us that the left-hand side has a pole of order 1 with residue
1 (notice the minus sign), as a pole of f(s) of order k contributes a simple pole of
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f ′(s)/f(s) with residue −k. If we can apply the Tauberian theorem, we immediately
get

(1.9)
∑
n≤x

Λ(n) ∼ x, i.e.
∑
pm≤x

log p ∼ x.

It is not obvious why the conditions of the theorem apply, in particular, one needs
to know that ζ(s) does not have zeros on <(s) = 1, so that these do not give poles
of −ζ ′(s)/ζ(s). This is due to de la Vallée Poussin. Eq. (1.9) is two steps away
from the proof of the Prime Number Theorem (PNT). We first remove the powers of

primes with m > 1, as all such numbers pm have p ≤
√
x and their count O(

√
x

1+ε
),

as log p = O(xε). Then we have to remove the weight log p from the sum∑
p≤x

log p.

This is done by a summation by parts. We get a simple version of PNT:

π(x) ∼ x

log x
.

Remark. The argument that ζ(1 + it) 6= 0 is based of the inequality

ζ(σ)3|ζ4(σ + it)ζ(σ + 2it)| ≥ 1,

for σ > 1. This follows from the inequality

3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2 ≥ 0.

1.3. The Riemann hypothesis. It follows from the functional equation that if ρ
is a nontrivial zero, so is 1− ρ. Moreover, since ζ(s̄) = ζ(s), which follows from the
fact that ζ(σ) ∈ R, σ > 1, we have that ρ̄, 1− ρ̄ are also nontrivial zeros.

The Riemann hypothesis (RH) is the statement that all the nontrivial zeros ρ of
ζ(s) lie on the critical line <(s) = 1/2. It gives the most symmetric location for
the zeros. It is important for many reasons. The most obvious has to do with the
distribution of the prime numbers. The smaller the order of growth of π(x) − li(x)
the ‘smoother’ the approximation of the discontinuous function π(x) by li(x). The
easiest way to see this is the following theorem

Theorem 1.4. [4] Suppose that <(ρ) ≤ θ for all nontrivial zeros and θ < 1. Then∑
n≤x

Λ(n) = x+O(xθ(log x)2)

Conversely, if for α < 1 we have∑
n≤x

Λ(n) = x+O(xα)

then all the nontrivial zeros has <(ρ) ≤ α.
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If RH is true we can take θ = 1/2.
Quite often RH is a working hypothesis. We try to prove a statement assuming it

is true to see how far the results can go, even if RH is still unproven. Sometimes one
can prove the results afterwards without assuming RH.

2. Dirichlet L-series

To capture divisibility properties of integers one can introduce

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

where χ(·) is a multiplicative character modulo N , i.e.

χ(ab) = χ(a)χ(b), (a,N) = 1, (b,N) = 1,

while we set χ(a) = 0, if (a,N) > 1. Notice that this is a completely multiplicative
function. In practice the construction of χ can be done as follows: Let N = q be a
prime, then the multiplicative group modulo q, i.e (Z/qZ)∗ is cyclic with generator,
say g, called a primitive root modulo p, then we pick a complex number χ(g) with
χ(g)q−1 = 1. Then we define χ(gm) = χ(g)m. The same can be done if q is a prime
power pl for p 6= 2, as there is a primitive root in this case (substitute q−1 with φ(q)).
For 2 and 4 we also easily identify the characters. But 2l, l > 2 has no primitive
root. For details look at [2, p. 28]. The simplest character is the trivial character:
χ0(n) = 1, (n, q) = 1.

The convergence of L(s, χ) for the other characters can be determined as follows:
since

q−1∑
m=1

χ(g)m =
1− χ(g)q−1

1− χ(g)
= 0

as a geometric sum. Consequently we have
∑

n≤N χ(n) = O(1), i.e. is bounded
(in fact by q − 1). Using Theorem 1.1, we see that the Dirichlet series converges for
<(s) > 0. By sticking absolute values, we get that the domain of absolute convergence
is the same as for ζ(s), i.e. <(s) > 1. The Dirichlet L-series is holomorphic for
<(s) > 0 as a consequence. In particular there is no pole at s = 1. Such Dirichlet
L-series were introduced by Dirichlet to prove the infinity of primes in an arithmetic
progression

a, a+ q, a+ 2q, . . . ,

where we have to assume (a, q) = 1. Let us assume that q is prime for simplicity. He
proved that ∑

p≡a (mod q)

1

ps
=

1

q − 1

∑
χ (mod q)

χ(a) logL(s, χ) +O(1).
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The important ingredient here is the use of orthogonality of characters

1

q − 1

∑
χ (mod q)

χ(a)χ(n) =

{
1, n ≡ a (mod q)
0, otherwise.

The first line is obvious since n ≡ a (mod q) means that χ(a) = χ(n) =⇒ χ(a) =
χ(n)−1. For the second line we write ā the multiplicative inverse of a (mod q) and
notice that ān 6= 1 (mod q). We set k = gm = ān. We can assume also that (n, q) = 1.
Then we can find a character ψ(·) with ψ(ān) 6= 1. Just choose a q− 1 root of 1, say
ω with ωm 6= 1 and set ψ(g) = ω. Then as χ ranges over all the characters (mod q),
so does ψχ. As a result∑

χ

χ(k) =
∑
χ

(ψχ)(k) =
∑
χ

ψ(k)χ(k) = ψ(k)
∑
χ

χ(k) =⇒
∑
χ

χ(k) = 0.

Dirichlet considered what can happen to logL(s, χ) as s→ 1. The character χ0 gives
L(s, χ0) = (1 − q−s)ζ(s) and we know that this tends to ∞ as s → 1. The rest of
the characters are separated into the ones that take complex values (and they come
in pairs) and the real character with χ(g) = −1. Dirichlet could easily consider the
complex characters and see that L(1, χ) 6= 0. The real one, given by

χ(n) =

(
n

q

)
using the quadratic residue symbol, is much harder to treat.

As far as the analytic properties of the Dirichlet L-series we have the following
theorem:

Theorem 2.1. [2, p. 68–71] The L-functions have analytic continuation on C with
no poles, unless χ = χ0 the trivial character. Define the Gauss sum

τ(χ) =

q∑
n=1

χ(n)e2πin/q.

(a) If χ(−1) = 1, then

qs/2π−s/2Γ(s/2)L(s, χ) =
τ(χ)
√
q
q(1−s)/2π(1−s)/2Γ((1− s)/2)L(1− s, χ̄).

The trivial zeros are now 0,−2,−4, . . ..
(b) If χ(−1) = −1, then

q(s+1)/2π−(s+1)/2Γ((s+ 1)/2)L(s, χ) =
τ(χ)

i
√
q
q(2−s)/2π−(2−s)/2Γ((2− s)/2)L(1− s, χ̄).

The trivial zeros are at −1,−3,−5, . . ..



L-FUNCTIONS 13

Remark. Concerning the sum
∑

n≤N χ(n) the bound O(q) is far from optimal (in
the q aspect). The Polya–Vinogradov inequality gives

M+N∑
n=M+1

χ(n) = O(q1/2 log q).

See [2, p. 135]
The Dirichlet L-series also have an infinite product, much like ζ(s):

L(s, χ) =
∏
p

1

1− χ(p)p−s
, <(s) > 1.

The proof is essentially the same as for ζ(s), using the complete multiplicativity of
χ(·).

3. The Gauss circle problem

The third sequence we would like to study is

r(n) = #{(a, b) ∈ Z2, n = a2 + b2}

which counts the number of ways of representing n as sum of two squares. At first
glance it is not obvious that it is a multiplicative function. However, the Lagrange
identity

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

(a simple consequence of |z1z2| = |z1| |z2| with z1 = a + ib, z2 = c + id) shows that
the product of two numbers which are sums of squares is a sum of squares. For a
proof that r(n) is multiplicative, look at the exercises. We are forced to consider

D(s) =
∞∑
n=1

r(n)

ns
.

It becomes clear that we are interested in the norms of points in the complex plane
with integer coordinates: Z2. This is a lattice in R2, i.e. a Z-module in R2 of rank
2. There is an easy elementary estimate on r(n) on average (this argument is due
to Gauss):

∑
n≤x r(n) counts the number of lattice points in a disc of radius

√
x

centered at the origin. Put a square of size 1 centered at any one of these points.
These squares are quite often entirely inside the disc but some of them extend off the
disc. However, they are all contained in a slightly larger disc of radius

√
x + 1/

√
2,

as follows from the triangle inequality: for a point (x, y) inside the square centered
at (a, b) we have (notice that the diagonals of the squares have length

√
2)

|(x, y)− (a, b)| ≤
√

2

2
, |(a, b)| ≤

√
x =⇒ |(x, y)| ≤

√
x+

1√
2
.
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Figure 2. The Gauss circle problem

Since the area of a disc of radius R is πR2, we get∑
n≤x

r(n) =
∑

|(a,b)|≤
√
x

1 ≤ π

(√
x+

1√
2

)2

= π

(
x+
√

2x+
1

2

)
.

Actually one can go one step further. The disc of radius
√
x − 1√

2
is contained

entirely in the union of the squares defined above. Let (x, y) be such a point, i.e.
|(x, y)| ≤

√
x − 1/

√
2. Let a = [x], b = [y], so that (a, b) is a lattice point. The

triangle inequality gives

|(a, b)| ≤ |(x, y)|+ 1√
2
≤
√
x.

This gives that∑
n≤x

r(n) =
∑

|(a,b)|≤
√
x

1 ≥ π

(√
x− 1√

2

)2

= π

(
x−
√

2x+
1

2

)
.

Together these results give the estimate, known to Gauss∑
n≤x

r(n) = πx+O(
√
x).

We recall the notation f = O(g), which means that |f(x)| ≤ Kg(x) for some constant
K and all x. The Gauss circle problem asks to estimate the remainder

R(x) =
∑
n≤x

r(n)− πx.
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It is still open and the conjecture, due to Hardy, is that

R(x) = Oε(x
1/4+ε).

Although it is not of direct importance to the theory of automorphic forms, which
we wish to introduce, we remark that the first improvement to the Gauss esti-
mate R(x) = O(x1/2) is due to Sierpinski and Van der Corput (and uses cru-
cially the Voronoi summation formula) and is R(x) = O(x1/3+ε). Many mathe-
maticians worked in this problem. The best known result is due to Huxley [50]

R(x) = O(x131/416 log18627/16640 x) and it is too complicated to explain here. Hardy’s
conjecture is not possible to improve, as R(x) = Ω(x1/4) (for the best Omega result
look at Soundararajan).

4. Lattices and SL2(R)

The most general lattice in R2 is

L = {n1w1 + n2w2, (n1, n2) ∈ Z2},
where we have fixed two complex numbers w1, w2, which are linearly independent
over R. As far as the shape of the lattice is concerned, we can scale it and rotate it,
so that w1 = 1. Moreover, since w ∈ L ⇔ −w ∈ L, we can assume that =(w2) > 0.
We set z = w2. The lattice is now

L = {m+ nz, (m,n) ∈ Z2}.
A lattice or vector space has many bases and we learn early to switch from one to
another. If the vectors w1, w2 are a basis of the lattice and w′1, w′2 is another basis,
then they are related by an invertible 2× 2 matrix A with integer coefficients

A =

(
a b
c d

)
such that A−1 also has integer coefficients. Since det(A ·A−1) = 1 = det(A)det(A−1)
and these are integers, we must have det(A) = ±1. If the bases have the same
orientation det(A) = 1. This leads us to consider the special linear group

SL2(Z) =

{(
a b
c d

)
, a, b, c, d ∈ Z, ad− bc = 1

}
.

In these lectures this ends up being the most important group and a prime example
of the theory. We would like to visualize the change of bases in the shape of the
lattice. We form the parallelogram with two adjacent sides w1 and w2 (or 1 and z).
This is called the fundamental region. Two bases for the same lattice will produce
different shapes of the fundamental region. If we insist that the first vector is 1, what
happens to the second vector? To get the vector z from w1 and w2, we scaled the
rotated the lattice and this is done by setting

z =
w2

w1

.
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If we act on the basis (w2, w1)T by γ =

(
a b
c d

)
∈ SL2(Z) to get (w′2, w

′
1)T then

w′2 = aw2 + bw1, w′1 = cw2 + dw1

so that

(4.1) γ · z = z′ =
w′2
w′1

=
aw2 + bw1

cw2 + dw1

=
az + b

cz + d
.

This is the action of a linear fractional transformation. The most general transfor-
mation of this has the form

γz =
az + b

cz + d
, γ =

(
a b
c d

)
∈ SL2(C).

They have many well-known properties that are studied e.g. in complex analysis [1].
For instance, they are meromorphic functions with a simple pole at −d/c and map
lines and circles in the complex plane to lines and circles of the complex plane. They
are conformal in the extended complex plane C∪{∞}. Given two triples of points in
the extended complex plane (z1, z2, z3) and (w1, w2, w3), there exists a unique l.f.t. T
mapping T (zi) = wi, i = 1, 2, 3. We saw that in a lattice we can take a basis of 1 and z
with =(z) > 0. Which linear fractional transformations preserve the positivity of the
imaginary part of z, i.e. for =(z) > 0 we also have =(γz) > 0. Such transformations
should map the real line to itself, and, therefore can be written with real coefficients
(see the exercises). Here is a good point to include the fundamental calculation for
a, b, c, d ∈ R:

(4.2) =(γz) =
1

2i

(
az + b

cz + d
− az̄ + b

cz̄ + d

)
=

1

2i

ad(z − z̄)− cd(z − z̄)

|cz + d|2
=

(ad− bc)=(z)

|cz + d|2
.

In fact we can consider these transformations preserving =(z) > 0 as forming a group.
Closely associated is the group

SL2(R) =

{
γ =

(
a b
c d

)
, a, b, c, d ∈ R, ad− bc = 1

}
.

We call the complex numbers with positive imaginary part the hyperbolic plane H,
i.e.

H = {z ∈ C,=(z) > 0} .
The group SL2(R) acts on it by (4.1). Strictly speaking this is not the group of linear
fractional transformations, which are mappings, because two matrices give the same
l.f.t. if they are related by multiplication by −I. Automorphic forms and modular
forms are really the study of functions that transform in a certain way under the
action (4.1). We would like to study the geometry of this action. Before we do so, we
can define an automorphic form of weight k for SL2(Z) to be a function on lattices,
which is homogeneous of degree −k. This means that

F (λL) = λ−kF (L), ∀L.
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We set f : H → C, f(z) = F (〈1, z〉), where 〈, 〉 means the lattice generated by the
vectors. We determine the behavior of f under the action of SL2(Z). We have

f(γz) = F (〈1, γz〉) = F ((cz + d)−1〈cz + d, az + b〉) = (cz + d)kF (〈cz + d, az + b〉)

= (cz + d)kF (〈1, z〉) = (cz + d)kf(z),

since the lattice is determined by the two bases 1, z and cz + d, az + b.
If we ask that f is holomorphic in H, we are lead to the theory of classical modular

forms. For the spectral theory of automorphic forms, we ask instead that f satisfies
appropriate partial differential equations. This is not simply an effort to generalize.
There is a theory of invariant differential operators out of the Lie algebra of SL2(R)
that justifies this. This will not be explained further in the notes.

5. Hyperbolic Geometry

Since for γ ∈ SL2(R)

(5.1) γ′(z) =
a(cz + d)− c(az + b)

(cz + d)2
=

1

(cz + d)2

(a simple calculation, using that det(γ) = 1), and the formula for computing the
length of a curve s(t), t ∈ [a, b] is

l =

∫ b

a

|s′(t)| dt

we get by the formula for change of variables that the length of γ(s(t)) is

l̃ =

∫ b

a

1

|cs(t) + d|2
|s′(t)| dt.

This shows that inside the circle |cz + d| = 1, given by |cz + d| < 1, the length is
increased, while outside it is decreased. However, this does not remain true if we
change the way we measure lengths. We can turn γ to be an isometry of H, if we
adjust the metric. The clue is in Eq. (4.2). We have (using the complex derivative
in the form df/dz = f ′(z))

|d(γz)|
=(γz)

=
|γ′(z)| |dz|
=(z)/ |cz + d|2

=
|dz|
=(z)

.

This means that if we set

ds2 =
|dz|2

(=z)2
=
dx2 + dy2

y2

to be the metric, then γ ∈ SL2(R) is an isometry, since it preserves the lengths (at
least locally). This is the hyperbolic metric on H, and H is called the hyperbolic
plane. Notice that angle measurements between (tangent) vectors are the same as in
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the Euclidean case. This is seen by the absence of the dx dy term. We can know find
the hyperbolic length of the curve s(t) = x(t) + iy(t), t ∈ [a, b] by the formula

L =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt.

Once we know how to compute lengths of curves, we define the distance d(p, q)
between two points as the infimum of the lengths of the smooth curves connecting p
and q. Curves which locally minimize the distance are called geodesics. We compute
the geodesics in hyperbolic space:

Theorem 5.1. The geodesics in H are the half circles with center on the x-axis and
the half-lines parallel to the imaginary axis.

Proof. We begin by considering z = ia, w = ib with b > a > 0. Let s : [0, 1]→ H be
any curve with s(0) = z, s(1) = w. Then for its length we have

L =

∫ 1

0

√
x′(t)2 + y′(t)2

y(t)
dt ≥

∫ 1

0

y′(t)

y(t)
dt = ln

(
y(1)

y(0)

)
= ln(b/a).

On the other hand the most obvious choice of curve between these points is the
segment on the imaginary axis z(t) = i((1− t)a+ tb), t ∈ [0, 1] with length∫ 1

0

b− a
t(b− a) + a

dt =

∫ b

a

du

u
= ln(b/a).

This means that the imaginary axis minimizes the distance between any of its points
and it, therefore, a geodesic.

In general z and w are arbitrary. We can find a l.f.t. g that maps them on the
imaginary axis. The geodesic through g · z and g · w is the imaginary axis. Since
l.f.t’s are isometries, the image of the imaginary axis by g−1 is a geodesic. We claim
that it is one of the two kinds described in the theorem.

Case 1. <(z) = <(w), so that g(u) = u − <(z). Then the geodesic is the vertical
ray through z and w and is the image under g−1 of the imaginary axis. Case 2.
<(z) 6= <(w). By drawing the perpendicular bisector of the segment through z and
w, which is not parallel to the real axis, we find a point of its intersection with the
real axis. Make this a center for a circle passing through z and w. We claim this is
the image of the imaginary axis under g−1, or, equivalently, that g maps this circle
to the imaginary axis. We can specifically write down g as follows: Let α and β be
the points of intersection of the circle with the real axis. Then

g(u) =
u− β
u− α

.

This is seen as follows: g maps α to ∞ and β to 0. Since it preserves angles and the
circle is perpendicular to the real axis, its image will be perpendicular to the image
of the real axis, which is the real axis again (g has real entries). The only line-circle
through ∞ and 0 perpendicular to the real axis is the imaginary axis. �
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x

Figure 3. Various geodesics for H

In fact, it is not too difficult to compute the distance between the points z and w:

(5.2) d(z, w) = ln

(
|z − w̄|+ |z − w|
|z − w̄| − |z − w|

)
.

See the exercises below.
In practice another form of the distance formula is more useful. Set

(5.3) u(z, w) =
|z − w|2

4=(z)=(w)

Then
cosh d(z, w) = 1 + 2u(z, w).

The function u is called the standard point-pair invariant.
It is interesting to notice that hyperbolic circles are Euclidean circles at the same

time. Set the center to be w and the radius r = d(z, w). The formula (5.2) shows
that z satisfies the equation ∣∣∣∣z − wz − w̄

∣∣∣∣ = k, er =
1 + k

1− k
.

With T (z) = (z − w)/(z − w̄), ζ = T (z), we have |ζ| = k and this is a circle. Then
the locus of z is T−1 of this circle. Since T−1 is a l.f.t., this is also a circle.

Remark. Since l.t.f. maps circles to circles (or lines) but do not preserve the centers,
a hyperbolic circle is a Euclidean circle with different center.
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Figure 4. The hyperbolic disc and its geodesics

Remark. There is another model of the hyperbolic space, which is the Poincaré disc
D. This is the unit disc with the metric

(5.4) ds2 = 4
dx2 + dy2

(1− (x2 + y2))2
= 4

|dz|2

(1− |z|2)2
.

As a domain in the complex plane it is conformal with the upper-half space H using

f : D→ H, z → −iz + 1

z − 1
.

The normalization guarantees that the origin of D corresponds to the point i ∈
H. Here the geodesics are the images of the ones in H under f , which is a l.f.t.
Consequently, they are also arcs of circles, or line segments. Since the geodesics of
H meet the real axis at right angles, conformality implies that the geodesics in D
are perpendicular to the circle |z| = 1. So they are circular arcs with this property
and diameters of the circle. We see that Euclid’s fifth postulate is not satisfied, for
instance, in the figure there are many geodesics from P parallel to (not intersecting)
b, e.g. h and g.

Let us show how formula (5.4) is obtained. Setting w = f(z) and w = x + iy, we
have

dw

dz
= − 2

(z − i)2
, w =

−i |z|2 + 2<(z) + i

|z − i|2

which implies that

|dw|2

=(w)2
=

4 |dz|2 / |z − i|4

(1− |z|2)2/ |z − i|4
=

4 |dz|2

(1− |z|2)2
.

Eq. (5.4) is useful when using polar coordinates.
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How does one measure area in the hyperbolic plane? The formula for the metric
tells us that in the x direction we measure lengths infinitesimally as dx/y and in the
y direction as dy/y. The area should be the product of the lengths so we arrive at
the hyperbolic measure

(5.5) dµ(z) =
dx dy

y2
.

We are interested in calculating areas of hyperbolic circles and triangles (and more
generally polygons).

Theorem 5.2 (Gauss defect or Gauss-Bonnet formula). The area of a hyperbolic
triangle with vertices in H ∪ {∞} is

π − (α + β + γ),

where α, β, γ are the interior angles at the vertices. If a vertex is at R ∪ {∞} (we
say that the vertex is at the boundary of H), then its interior angle is 0.

Proof. Let us assume first that there is a vertex at the boundary of H. By using 1/(z−
a) we can further assume that it is at infinity. Then two of the sides are segments
parallel to the imaginary axis. The third side is an arc. By using a translation we
can assume the arc is given by Reiθ, θ ∈ [a, b]. Then the area is

A =

∫ R cos b

R cos a

∫ ∞
√
R2−x2

dx dy

y2
=

∫ R cos b

R cos a

1√
R2 − x2

dx = [arcsin θ]cos b
cos a = (π/2− a)

−(π/2− b) = (b− a) = β + π − α,
since on the interior angles, say β matches with b and the other α is supplementary
to a. This is π − (α + β + 0) and the formula is correct.

If no vertex is on the boundary of H, we use a l.f.t. to move one of the sides to
become parallel with the imaginary axis. Call α, β, γ the interior angles. If the side
is AB is vertical, consider the two triangles ACD and BCD, where D is at infinity.
Using the result above

Area(ABC) = Area(ACD)− Area(BCD) = π − (α + ÂCD) + π − (D̂BC + D̂CB)

= π − (α + β + γ)

since ÂCD = γ + B̂CD and D̂BC = π − β. This proves the result. �

Remark. In particular it follows that the sum of the interior angles is strictly less
than π, unlike Euclidean geometry.

Remark. There are many reasons why we care about hyperbolic triangles. One
is that fundamental domains for many arithmetically defined discrete subgroups of
SL2(R) are unions of simple hyperbolic triangles.
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We compute the area of a hyperbolic ball of radius r. By using the model of
hyperbolic space in the unit disc we can assume that the center is at (0, 0) and
the Euclidean radius is R (a hyperbolic circle is also a Euclidean circle). Putting
the center at (0, 0) makes both centers agree (with (ρ, θ) polar coordinates in the
Euclidean plane)

d(0, R) =

∫ R

0

2

1− ρ2
dρ = ln

1 +R

1−R
= r,

which shows how R and r are related:

er =
1 +R

1−R
=⇒ R =

er − 1

er + 1
= tanh(r/2).

Now the area of the hyperbolic disc is

A(r) =

∫ 2π

0

∫ R

0

4

(1− ρ2)2
ρ dρdθ = 4π

[
1

1− ρ2

]R
0

= 4π

(
1

1−R2
− 1

)
= 4π

(
cosh2(r/2)− 1

)
= 4π sinh2(r/2).

It is extremely instructive to compute the length of the hyperbolic circle of radius
r. Using the standard formula from calculus dx2 + dy2 = dρ2 + ρ2dθ2 we get on a
circle of radius R

L(r) =

∫ 2π

0

2R

1−R2
dθ = 4π

R

1−R2
= 4π tanh(r/2) cosh2(r/2)

= 4π sinh(r/2) cosh(r/2) = 2π sinh r.

Notice that L(r) ∼ πer and A(r) ∼ πer, as r →∞, so the area and the length grow
at the same rate!

Remark. We also notice that although in Euclidean geometry the circle |z| = 1 is
at finite distance from the origin, it is at infinite distance in hyperbolic geometry:
r = ln(1 + R)/(1 − R) → ∞ as R → 1. This way the hyperbolic disc D (and H)
becomes a complete Riemannian manifold. It can be proved that its curvature is
constant = −1. The Gauss defect formula can alternatively be proved from the value
of the curvature and the general Gauss-Bonnet theorem.

6. Holomorphic modular forms for SL2(Z)

In this section we only consider Γ = SL2(Z). The orbit of a point z ∈ H is defined
to be orb(z) = {γz, γ ∈ Γ}.

Definition. A fundamental domain D of Γ is a subset of H such that every orbit of
Γ in H has one element in D and two points in D are in the same orbit iff they are
on ∂D.
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7. Epstein zeta function and Eisenstein series

The natural generating function for counting the lattice points for a lattice L is
the function

D(z, s) =
∑

(m,n) !=(0,0)

1

|m + nz|s .

However, this converges for !(s) > 2, and analytic number theorists prefer to work
with Dirichlet series converging for !(s) > 1, in accord with the Riemann zeta
function

ζ(s) =
∞∑

n=1

1

ns
.

So we modify it first to
∑

(m,n) !=(0,0)

1

|m + nz|2s

and then to the Epstein zeta function

B(z, s) =
∑

(m,n) !=(0,0)

"(z)s

|m + nz|2s .

The introduction of "(z)s allows to write the term as "(γz)s, where the second row
of γ is (n, m) (at least this is possible when (n, m) = 1).

For the Gauss circle problem we need to plug in z = i. Another function that
plays a role here is the Dirichlet L-series associated with the (nontrivial) character
(mod 4), χ(·), defined as

χ(n) =






1, n ≡ 1 (mod 4),
−1, n ≡ 3 (mod 4),
0, n ≡ 0 (mod 2).

Theorem 6.1. (a) The standard fundamental domain for SL2(Z): Let

D = {z ∈ H,−1

2
≤ <(z) ≤ 1

2
, |z| ≥ 1}.

Then D is a fundamental domain of Γ.

(b) Let T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
be the matrices acting as translation

T (z) = z + 1 and inversion S(z) = −1/z. Then Γ is generated by them, Γ = 〈T, S〉.
Moreover, S2 = −I and (ST )3 = −I. The stabiliser of i is 〈S〉 and the stabiliser of
ρ = e2πi/3 is 〈ST 〉.

Hint of proof: Given a point z ∈ H, we can apply enough powers of T to move
it within the strip {w,−1

2
≤ <(w) ≤ 1

2
}. If m = dist(<(z),Z), then <(T−mz) ∈

[−1/2, 1/2], since every number is within 1/2 from an integer. If z2 = T−mz ∈ D,
we are done. Otherwise, |z2| < 1. Then this implies that |S(z2)| = | − 1/z2| > 1.
We repeat the process to get z3 with <(z3) ∈ [−1/2, 1/2]. The process cannot be
continued indefinitely, as SL2(Z) is a discrete subgroup of SL2(R).

We consider the set CB = {z ∈ H, |<(z)| ≤ 1/2,=(z) > B}. This is called a
cuspidal sector. The map q = e2πiz maps it to the punctured disc of radius e−2πB,
called D∗B, in a biholomoprhic way, up to the identification of <(z) = −1/2 with
<(z) = 1/2. A function which is periodic with period 1 on CB induced a function

f̃ on D∗B. If f̃ is meromorphic at 0, i.e. has at most a pole and not an essential
singularity, then we say that f is meromorphic at ∞. This is equivalent to ∃N ∈
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N,∃K, |f̃(q)qN | ≤ K. Then f̃(q) =
∑∞

n=−N cnq
n is the Laurent expansion of f̃ and

f(z) =
∞∑

n=−N

cne
2πinz

is the Fourier expansion of f at the cusp i∞. The integer −N is the order of f at∞.
If N = 0, we say that f is holomorphic at ∞ and if N ≥ 1 that f is cuspidal at ∞.

Naturally in our mind we have automorphic functions, i.e. functions f : H→ C of
weight k for Γ, i.e.

(6.1) f(γz) = (cz + d)kf(z).

These are periodic, since f(z + 1) = f(z), i.e. the lower row of T is (0, 1. So the
above commends on q expansion at ∞ apply.

Definition. A modular form for Γ is a function f : H → C that is holomorphic
in H and at ∞ and transforms according to (6.1). If f is cuspidal, then we call it
holomorphic cusp form.

We easily see that for Γ = SL2(Z), k has to be even. This follows from the remark
that −I ∈ SL2(Z), but introduces the same Möbius transformation as I, so that
f(−Iz) = f(z) = (−1)kf(z).

Remark. The cuspidality condition may see not well motivated. The following is
an important point of view in the theory of elliptic curves: If f(z) is a cusp form
of weight 2, then f(z)dz is a holomorphic differential on H and at ∞ and invariant
under Γ. First we check that f(z)dz is invariant:

f(γz)d(γz) = (cz + d)2f(z)γ′(z)dz = (cz + d)2f(z)
1

cz + d)2
dz = f(z)dz,

using (5.1). The holomorphicity in H is obvious, it is only ∞ that can be an issue.
We have dq = 2πie2πizdz = 2πiqdz, so that

f(z)dz = f̃(q)
dq

2πiq
=

1

2πi

∑
n≥1

cnq
n−1.

Lemma 6.1. If f is a cusp form, then f(z) = O(e−2πy), as y →∞.

Proof. Having a convergent Taylor series at q = 0 with c0 = 0 means f̃(q) = O(q),
which translates to the result, as |q| = e−2πy.

�

Lemma 6.2. (Hecke bound on the Fourier coefficients of cusp forms) If f is a cusp
form of weight k with Fourier expansion

f(z) =
∞∑
n=1

ane
2πinz,
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then

|an| = O(nk/2).

Proof. We look at g(z) = yk/2|f(z)|. Using (4.2) we get

=(γz)k/2|f(γz)| =
(

y

|cz + d|2

)k/2
|(cz + d)kf(z)| = yk/2|f(z)|.

As f(z) is decaying exponentially in y, as y → ∞, this decay overpowers the poly-
nomial increase of yk/2 and g(z) decays at ∞. In particular it is bounded on the
fundamental domain D. Since it is automorphic of weight 0, it is bounded on all of
H. Hecke’s bound will use y → 0 in the proof. We recover the Fourier coefficients of
f by Fourier analysis on [0, 1]:

e−2πnyan =

∫ 1

0

f(x+ iy)e−2πinx dx = O(y−k/2).

(One needs to know that the Fourier expansion is valid on all of H). Plugging y = 1/n
produces the result, as it makes e−2πny = e−2π fixed.

�

7. Epstein zeta function and Eisenstein series

The natural generating function for counting the lattice points for a lattice L is
the function

D(z, s) =
∑

(m,n) 6=(0,0)

1

|m+ nz|s
.

However, this converges for <(s) > 2, and analytic number theorists prefer to work
with Dirichlet series converging for <(s) > 1, in accord with the Riemann zeta
function

ζ(s) =
∞∑
n=1

1

ns
.

So we modify it first to ∑
(m,n)6=(0,0)

1

|m+ nz|2s

and then to the Epstein zeta function

B(z, s) =
∑

(m,n) 6=(0,0)

=(z)s

|m+ nz|2s
.

The introduction of =(z)s allows to write the term as =(γz)s, where the second row
of γ is (n,m) (at least this is possible when (n,m) = 1).
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For the Gauss circle problem we need to plug in z = i. Another function that
plays a role here is the Dirichlet L-series associated with the (nontrivial) character
(mod 4), χ(·), defined as

χ(n) =

 1, n ≡ 1 (mod 4),
−1, n ≡ 3 (mod 4),
0, n ≡ 0 (mod 2).

Then

L(s, χ) =
∞∑
n=1

χ(n)

ns

Unlike the Riemann zeta function this converges for <(s) > 0, although not absolutely
in the strip 0 < <(s) ≤ 1. And it can be evaluated at 1:

L(1, χ) = 1− 1

3
+

1

5
− · · · = arctan(1) =

π

4
.

Since B(i, s) = 4ζ(s)L(s, χ) (see exercises below), this is the generating series for
the Gauss circle problem introduced above. Since ζ(s) has an analytic continuation to
<(s) > 0 with single pole at s = 1 with residue 1, then B(i, s) satisfies the conditions
of the theorem with a = π. The result is the main term in the Gauss circle problem.

Here is a slightly more advanced point of view: Let R2 act by translation on itself:
(x, y) · (z, w) = (x + z, y + w), where · denotes the action. This is clearly a group
action, since (0, 0) does not move the point and g1 · (g2 · p) = (g1g2) · p (associativity
of addition!). If we restrict the action to the subgroup Z2, then the integer lattice is
the orbit of the origin (0, 0). So the Gauss circle problem asks to count the number
of points in this orbit at distance ≤

√
x from a fixed point, here the origin.

8. From counting lattice points to the hyperbolic lattice point
problem

In number theory one also imposes extra conditions at our counting problems. For
instance, we can ask for the number of lattice points with relative prime coordinates
(these points are visible from the origin, i.e. the segment from (0, 0) to (m,n) does
not contain other lattice points.) These lead to consider

E(z, s) =
∑

(c,d)=1

=(z)s

|cz + d|2s

for z = i, which gives

E(i, s) =
∑

(c,d)=1

1

(c2 + d2)s
.



L-FUNCTIONS 27

Figure 5. Visible points from (0, 0) in the first quadrant

The relation between B(z, s) and E(z, s) is very simple. Setting d = (m,n),
m = dm′, n = dn′, (m′, n′) = 1, we have

B(z, s) =
∞∑
d=1

1

d2s

∑
(m′,n′)=1

=(z)s

|m′z + n′|2s
= ζ(2s)E(z, s).

So the residue of E(i, s) at s = 1 is π/ζ(2) = 6/π. This gives

#{(m,n), (m,n) = 1, |(m,n)| ≤
√
x} ∼ 6

π
x, x→∞.

One can consider lattice-counting problems in higher-dimensional Euclidean space.
As far as the main term of the counting function is concerned, Gauss’ argument works
the same way, e.g.

#
{

(a, b, c, d) ∈ Z4, a2 + b2 + c2 + d2 ≤ x
}
∼ c4x

2

where c4 is the volume of the unit ball in R4. What if we impose the restriction that
ad− bc = 1? i.e. we consider the 2× 2 matrix(

a b
c d

)
from SL2(R). How many such matrices with integer entries have norm a2 + b2 + c2 +
d2 ≤

√
x? This is really a question about the growth of the group SL2(Z). First of
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all we realize that actually a2 + b2 + c2 + d2 = 4u(γi, i) + 2. This is because

u(γi, i) =
|γi− i|2

4=(γi)
=
|ai+ b+ c− di|2

4
=
a2 + b2 + c2 + d2 − 2(ad− bc)

4
.

We also know that cosh d(γi, i) = 2u(γi, i) + 1. So the condition a2 + b2 + c2 +d2 ≤ X
can be understood as d(γi, i) ≤ cosh−1(X/2). So we are asking to count the number
of points in the orbit of i that are within distance cosh−1(X/2) from the point i.
More generally: We fix two points z and w in H and consider the orbit Γz of z. Here
Γ can be SL2(Z), or other similar group. We are interested to count the points in
this orbit with a certain distance from w. Set

P (X) = # {γ ∈ Γ, 4u(γz, w) + 2 ≤ X} .

We would like to estimate P (X) as X →∞. This is the hyperbolic lattice counting
problem. For SL2(Z) here is the result

P (X) = 6X +O(X2/3).

In view of the fact that the length of the hyperbolic circle and the area of the hy-
perbolic disc it encloses are comparable for large r, the argument of Gauss for the
standard lattice-counting problem cannot possible work. The spectral method does
(as well as methods from dynamical systems, introduced by Margulis et al.) The
spectral method does not only provide the main term in the asymptotics but gives
information on the error term. Here is the general result:

P (X) =
∑

sj∈(1/2,1]

2π1/2 Γ(sj − 1/2)

Γ(sj + 1)
uj(z)uj(w)Xsj +O(X2/3).

We need to introduce (and study) the quantities of the right-hand side. The Gamma
function is Γ(s) =

∫∞
0
e−ttsdt/t for <(s) > 0 and generalizes the factorial as Γ(n) =

(n − 1)!, n ∈ N. More, importantly, sj are ‘spectral parameters’: the numbers
λj = sj(1 − sj) are eigenvalues of the Laplace operator on L2(Γ\H) and uj(z) are
the corresponding eigenfunctions. As a prelude of things to come, we mention that
the Laplace operator can have infinitely many L2 eigenvalues but only those < 1/4
contribute to the above sum. It could be that actually the error term is larger than
some terms of the sum: If sj < 2/3 the corresponding term is smaller than the error
term. This corresponds to eigenvalues sj(1−sj) > (2/3)(1/3) = 2/9. It can be proved
that SL2(Z) has no eigenvalues in the interval (0, 1/4] corresponding to sj ∈ [1/2, 1).
In general, eigenvalues λj < 1/4 are called small eigenvalues. The Selberg eigenvalue
conjecture is that

λ1 ≥ 1/4

for groups of ‘arithmetic nature’, called congruence subgroups. For SL2(Z) the con-
tribution to the sum of the eigenvalue λ0 = 0, i.e. s0 = 1 is calculated as follows. We
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have Γ(1/2) =
√
π. The eigenfunction corresponding to λ0 is the constant

u0(z) =
1√

Area(Γ\H)
=

1√
π/3

.

The area of Γ\H is in this case the area of a hyperbolic triangle with vertices at ∞,
eiπ/3, e2πi/3 and interior angles 0, π/3, π/3.

9. Properties of the Eisenstein series and the Laplace operator

What about computing the number of lattice points inside a disc of radius R but for
the skewed lattice generated by 1 and z? The technique with the factorization of the
Epstein zeta function B(i, s) is not available. According to Th. 1.3 it is expedient to
know the analytic/meromorphic continuation of B(z, s) for values of s with <(s) ≤ 1.
Here are two important points:

• B(z, s) is a function periodic in the x = <(z) variable with period 1. This
is obvious, since changing z to z + 1, simply changes the basis of the lattice
(recall 1 is a basis element).
• B(z, s) is certainly not holomorphic, or harmonic is z. Let us apply ∆ =
∂2
x +∂2

y to ys = =(z)s, which is the function we are somehow automorphizing.
We get

∆ys = s(s− 1)ys−2,

and this is certainly not zero. However, is we multiply it with y2 we get almost
what we started with, up to the factor s(s − 1). In fact, this means that ys

satisfies the eigenvalue equation

y2
(
∂2
x + ∂2

y

)
f(z) = −s(1− s)f(z).

The question is what kind of operator is the one appearing on the left. It ends up
that this is the hyperbolic Laplacian

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

The spectral theory of automorphic forms is essentially the study of the hyperbolic
laplacian and its eigenvalues/eigenfunction, not on the whole hyperbolic plane (al-
though this is a first step) but on domains in it representing the action of discrete sub-
groups of SL2(R) (fundamental domains) with appropriate boundary conditions. We
start with explaining the factor y2 in front of the Euclidean Laplacian ∆eucl = ∂2

x+∂2
y .

The general form for the Laplacian in the metric gij is

(9.1) ∆ =
1
√
g

∑
ij

∂

∂xi

√
ggij

∂

∂xj
,

where g =
√

det(gij) and gij is the inverse matrix to gij. This definition for the general
Laplace operaror agrees with the alternative ∆f = div(grad(f)), where grad(f) is the
gradient vector field and div represents its divergence. Rather than introduce these
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notions for general Riemannian manifolds, we stick to the definition (9.1). Here
g11 = g22 = y−2 and g12 = g21 = 0, g11 = g22 = y2, g12 = g21 = 0, and g = y−2.
The following heuristic (or aposteriori argument) shows that this makes sense. Let f
and g be two smooth functions, say, vanishing on the boundary of the region V . We
would like the Laplace operator to be symmetric for such functions. This means∫

V

f(∆g)dµ(z) =

∫
V

g(∆f)dµ(z).

If we use ∆f = y2∆eucl and (5.5) we get∫
V

f(∆g)dµ(z)−
∫
V

g(∆f)dµ(z) =

∫
V

f∆euclg − g∆euclf dx dy =

∫
∂V

f
∂g

∂n
− g∂f

∂n
dl

by the standard Green’s formula in R2. Here ∂/∂n is the normal derivative. With the
assumption of vanishing on ∂V , the right-hand side is 0 and the hyperbolic Laplacian
is symmetric.

A standard technique to understand partial differential operators is to separate
variables and also to consider solutions that have a special symmetry. For instance,
we already noticed that ys satisfies the eigenvalue equation

(9.2) ∆f(z) + s(1− s)f(z) = 0.

There should be a second linearly independent solution, and this is y1−s as easily
seen. Clearly they are linearly independent, unless s = 1− s =⇒ s = 1/2. In such a
case we verify that y1/2 ln y is the second solution. These solutions are independent
of the x variable. They show in the zeroth Fourier coefficient of the Eisenstein series.

On the other hand it is interesting (in fact necessary) to know the eigenfunctions
of the Laplace operaror that depend only on the hyperbolic distance and not on the
polar angle. For this we write the Laplace operator as

∆ =
∂2

∂r2
+

cosh r

sinh r

∂

∂r
+

1

sinh2 r

∂2

∂θ2

and using u as

∆ = u(u+ 1)
∂2

∂u2
+ (2u+ 1)

∂

∂u
+

1

4u(u+ 1)

∂2

∂θ2
.

For the proofs look at the exercises. We assume that f(z) = f(r) = F (u) = Fs(u)
and it satisfies (9.2). Then

u(u+ 1)F ′′(u) + (2u+ 1)F ′(u) + s(1− s)F (u) = 0

A solution of this is the hypergeometric function

Fs(u) = F (s, 1− s, 1,−u).

Students are usually not familiar with the hypergeometric functions. Unfortunately
special functions, like hypergeometric functions, Legendre functions, and Bessel func-
tions show up regularly in the spectral theory of automorphic forms (depending on



L-FUNCTIONS 31

what expansion one works with) and are quite intimidating at the beginning. Here
is a quick note on hypergeometric functions. The Gauss hypergeometric function
F (a, b, c, z) is defined as

F (a, b, c, z) =
∞∑
n=0

a(a+ 1) · · · (a+ n− 1)b(b+ 1) · · · (b+ n− 1)

n!c(c+ 1) · · · (c+ n− 1)
zn,

where |z| < 1, c ∈ C \ {0,−1,−2, . . .}. We need to know the differential equation
satisfied by it and it is

z(1− z)F ′′(z)− ((a+ b+ 1)z − c)F ′(z)− abF (z) = 0

and the integral representation

F (a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt,

for <(c) > <(b) > 0. We see by substituting z = −u that F (s, 1− s, 1,−u) satisfies
the eigenvalue equation in u and is independent of θ. Its value at u = 0 is 1. There
should be a second linear independent solution. This is the Green’s function for
functions invariant under rotations. It is defined as

Gs(u) =
1

4π

∫ 1

0

(t(1− t))s−1(t+ u)−s dt.

We need to show that ∆ in the u coordinates has eigenfunction∫ 1

0

(t(1− t))s−1(t+ u)−s dt

with eigenvalue s(1− s). If we prove that

(∆ + s(1− s))(t(1− t))s−1(t+ u)−s = s
d

dt
{(t(1− t))s(t+ u)−s−1

then differentiation under the integral sign will give 0 as∫ 1

0

d

dt
{(t(1− t))s(t+ u)−s−1} dt = (t(1− t))s(t+ u)−s|10 = 0

as ts vanishes at 0 and (1 − t)s vanishes at 1 for <(s) > 0. The calculation is not
inspiring, using (10.2)

(∆ + s(1− s))(t+ u)−s = u(u+ 1)s(s+ 1)(t+ u)−s−2 + (2u+ 1)(−s)(t+ u)−s−1

+s(1− s)(t+ u)−s.

Afterwards we multiply with (t(1− t))s which is independent of u, while

s
d

dt
{(t(1−t))s(t+u)−s−1} = s2(ts−1(1−t)s−ts(1−t)s−1(t+u)−s−1+s(−s−1)ts(1−t)s(t+u)−s−2
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The factor ts−1(1 − t)s−1(t + u)−s−2 appears throughout so we need to prove the
simpler looking:

u(u+ 1)s(s+ 1) + (2u+ 1)(−s)(t+u) + s(1− s)(t+u)2 = s2(1−2t)− s(s+ 1)t(1− t).
Both sides are quadratic polynomials in u, so we compare the coefficients of 1, u and
u2 on both sides:

u2 : s(s+ 1)− 2s+ s(1− s) = 0

from the left-hand side with no quadratic term on the right-hand side.

u : s(s+ 1)− 2st− s+ s(1− s)2t = s2(1− 2t)

1 : −st+ s(1− s)t2 = ts(−1 + t− ts)
from the left-hand side, while from the right-hand side we get

s2(1− 2t)t− s(s+ 1)t(1− t) = ts[s(1− 2t)− (s+ 1)(1− t)] = ts(−2ts− 1 + st+ t)

10. Exercises

(1) In this problem
∫ c+i∞
c−i∞ denotes a contour integral along the vertical line <(s) =

c traversed upwards.

(a) Prove that, for c > 0,
1

2πi

∫ c+i∞

c−i∞

xs

s
ds =

 1, x > 1,
1/2, x = 1,
0, 0 < x < 1.

(Perron

formula)
Look at Figure 6 for the contour to consider.
For x > 1, inside the contour there is a pole at s = 0, which is simple:

Res(f, 0) = lim
s→0

s
xs

s
= x0 = 1.

We need to control the integral on γR. As above, on the left semicircle s(t) =
c+Reit, π/2 ≤ t ≤ 3π/2.

|xs| = |es log x| = elog x(c+R cos t)

We also remark that the inequality sin y ≥ 2y/π holds for 0 ≤ y ≤ π/2. This
follows from the concavity of sin y on [0, π/2]. The secant line 2y/π from (0, 0)
to (π/2, 1) is below the graph. Now∣∣∣∣∫

γR

xs

s
ds

∣∣∣∣ =

∣∣∣∣∣
∫ 3π/2

π/2

xcxR cos t

c+Reit
iReitdt

∣∣∣∣∣ =

∣∣∣∣∫ π

0

xcx−R sin y

c+Rei(y+π/2)
Reiydy

∣∣∣∣ ≤ ∫ π

0

xcx−R sin y

R− c
Rdy

with the substitution t = y + π/2. The last integral can be split into two
equal integrals over [0, π/2] and [π/2, π], since sin y takes the same values in
both. We get∣∣∣∣∫

γR

xs

s
ds

∣∣∣∣ ≤ 2

∫ π/2

0

Rxcx−R sin y

R− c
dy ≤ 2

∫ π/2

0

Rxcx−R2y/π

R− c
dy =

Rxc

R− c

[
x−2Ry/π

−R(log x)2/π

]π/2
0
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=
πxc

(R− c)(log x)2

(
−x−R + 1

)
→ 0, R→∞,

as x > 1.
For 0 < x < 1 the parametrization of the right semicircle is s(t) = c+Reit,
−π/2 ≤ t ≤ π/2. We substitute t = y − π/2:∣∣∣∣∫

γR

xs

s
ds

∣∣∣∣ =

∣∣∣∣∣
∫ π/2

−π/2

xcxR cos t

c+Reit
iReitdt

∣∣∣∣∣ ≤
∫ π/2

−π/2
R
xcxR cos t

R− c
dt = 2

∫ π/2

0

RxcxR sin y

R− c
dy

Now x < 1, so log x < 0 and

xR sin y = elog xR sin y ≤ elog xR2y/π = x2Ry/π.∣∣∣∣∫
γR

xs

s
ds

∣∣∣∣ ≤ 2

∫ π/2

0

RxcxR2y/π

R− c
dy =

Rxc

R− c

[
x2Ry/π

R(log x)2/π

]π/2
0

=
πxc

(R− c)(log x)2

(
xR − 1

)
→ 0, R→∞,

as x < 1.
For x = 1 we compute the integral directly:

1

2πi

∫ c+i∞

c−i∞

1

s
ds =

1

2πi

∫ ∞
∞

idt

c+ it
=

1

2π

∫ ∞
−∞

c

c2 + t2
− it

c2 + t2
dt =

1

2π

∫ ∞
−∞

c

c2 + t2
dt

as the function t/(c2 + t2) is odd. This integral is elementary: substitute
t = cu to get

1

2πi

∫ c+i∞

c−i∞

1

s
ds =

1

2π

∫ ∞
−∞

c · cdt
c2 + c2u2

=
1

2π

∫ ∞
−∞

du

1 + u2
=

[
arctan(u)

2π

]∞
−∞

=
1

2π
π =

1

2
.

(b) Let the function f(s) be defined by the absolutely convergent series

f(s) =
∞∑
n=1

an
ns
, <(s) > a ≥ 0.

Show that for x 6∈ Z∑
n≤x

an =
1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds, c > a.

Since |ns| = n<(s) and the series converges absolutely for <(s) > a, we have
that the series

∞∑
n=1

|an|
n<(s)

<∞, <(s) > a.
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This implies that, if we fix <(s) = c > a, then the convergence of the series
in the s variable is uniform (Weierstraß test). Moreover, on the vertical line
<(s) = c we have ∣∣∣∣xss

∣∣∣∣ =
xc

|s|
,

which is bounded so we get uniform convergence of the series even when mul-
tiplied by xs/s. This means we can interchange summation and integration
to get

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds =

∞∑
n=1

an
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s
ds =

∞∑
n=1

an

{
0, x < n,
1, x > n

}
=
∑
n<x

an.

(2) Let an be multiplicative. Show that its Dirichlet series has a product expan-
sion

D(s) =
∏
p

∞∑
j=0

apjp−js.

This is a generalisation of the Euler product for the Riemann zeta function.
We use the unique factorisation of the integers into primes and expand the
infinite product on the right-hand side. We use the multiplicativity of an in
the form apmaqj = apmqj and its generalisation to any finite number of factors.

(3) Show that
∞∑
n=1

σk(n)

ns
= ζ(s− k)ζ(s).

We have

ζ(s−k)ζ(s) =
∞∑
l=1

1

ls−k

∞∑
m=1

1

ms
=
∑
l,m

lk

(lm)s
=
∞∑
n=1

∑
lm=n

lk

ns
=
∞∑
n=1

∑
l|n l

k

ns
=
∞∑
n=1

σk(n)

ns
.

(4) Prove that B(s) converges absolutely for <(s) > 1.
(5) Prove that r(n) = 4

∑
d|n χ(d), where χ is the quadratic character (mod 4).

Show that this implies that

B(i, s) = 4ζ(s)L(s, χ).

Let p and q be primes. It is well-known that a prime is a sum of two squares
iff it is congruent to 1 (mod 4). Use the fact that Z[i] is a unique factorization
domain with primes
• 1 + i, 1− i,
• q, if q ≡ 3 (mod 4),
• a+ ib, a− ib with a2 + b2 = p, p ≡ 1 mod 4.

Proof: The units in Z[i] are ±i, ±1. When we write

n = A2 +B2 = (A+ iB)(A− iB) = 2α
∏

pr
∏

qs
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with p ≡ 1 (mod 4) and q ≡ 3 mod 4 we have

n = (1 + i)α(1− i)α
∏

(a+ ib)r(a− ib)r
∏

qs.

This gives that

A+ iB = it(1 + i)a1(1− i)a2

∏
(a+ ib)r1(a− ib)r2

∏
qs1

A− iB = i−t(1− i)a1(1 + i)a2

∏
(a− ib)r1(a+ ib)r2

∏
qs2

so that a1 + a2 = a, r1 + r2 = r, s1 + s2 = s and s1 = s2. So s has to be even
and we must split the powers of q equally between A+ iB and A− iB. If s is
odd for a prime q ≡ (mod 4), then r(n) = 0. Otherwise, we will show that
r(n) = 4

∏
(r + 1). We have r + 1 choices for r1, which, therefore, force the

value of r2. We have α+ 1 choices for a1 and these fix a2. We have 4 choices
for t. However, since (1− i)/(1 + i) = −i,

(1 + i)a1(1− i)a2 = (1 + i)a1+a2(−i)a2 = (1 + i)a(−i)a2 .

This shows that, varying a1 produces only modifications in the exponent of
the unit i. So the choices for a1 are irrelevant. We are left with independent
choices only for r1 and t. These are 4

∏
(r + 1).

Notice that, if we define a(n) =
∑

d|n χ(d), we need to show that r(n) =

4a(n). We have that a(n) is a multiplicative function, so that

a(2α) = 1, a(pr) =
r∑
i=0

χ(pi) = r + 1,

a(qs) =
s∑
j=0

χ(qj) = 1− 1 + · · · ± 1 =
1 + (−1)s

2
,

a(n) =
∏

(r + 1)
∏ 1 + (−1)s

2
.

This means that a(n) is 0 if there is a factor qs with s odd and q ≡ 3 (mod 4).
In such a case we also know that r(n) = 0 from the discussion above. Other-
wise, the two formulas agree.

To show that

B(i, s) =
∞∑
n=1

r(n)

ns
= 4ζ(s)L(s, χ)

we notice that the coefficient of n−s from the right-hand side is

4
∑
d|n

1 · χ(d).
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(6) Show that ζ(2) = π2/6.
We use Parceval’s identity on R/Z, said differently, for any periodic function

f : R→ R with period 1 and Fourier coefficients

f̂(n) =

∫ 1

0

f(x)e−2πinx dx

we have ∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 = ‖f‖2 .

We use f(x) = x− [x], the fractional part of x. We have

‖f‖2 =

∫ 1

0

x2 dx =
1

3
, f̂(0) =

∫ 1

0

x dx =
1

2
.

On the other hand, for n 6= 0 we use integration by parts to get

f̂(n) =

∫
xe−2πinx dx =

[
xe−2πinx

−2πin

]1

0

+

∫ 1

0

e−2πinx

2πin
dx = − 1

2πin
.

These give

1

4
+
∑
n6=0

1

4π2n2
=

1

3
=⇒ 2

∞∑
n=1

1

4π2n2
=

1

3
− 1

4
=

1

12
=⇒

∞∑
n=1

1

n2
=
π2

6
.

(7) Use the summation by parts formula in the form∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(u)f ′(u) du,

where

A(x) =
∑
n≤x

an

and f(x) is a continuously differentiable function on [1, x] to show that ζ(s),
which initially converges for <(s) > 1 has a meromorphic continuation to the
region <(s) > 0 with single simple pole at s = 1 with residue 1.

Proof: Let an = 1, so that A(x) = [x], and f(u) = u−s, so that f ′(u) =
−su−s−1. Then we get∑

n≤x

1

ns
= [x]x−s −

∫ x

1

[u](−s)
us+1

du = [x]x−s + s

∫ x

1

u− {u}
us+1

du

= [x]x−s + s

[
u−s+1

−s+ 1

]x
1

− s
∫ x

1

{u}
us+1

du

= [x]x−s − sx
−s+1

s− 1
+

s

s− 1
− s

∫ x

1

{u}
us+1

du.



L-FUNCTIONS 37

Letting x→∞, we have for <(s) > 1

ζ(s) =
s

s− 1
− s

∫ ∞
1

{u}
us+1

du.

Here is where we can see the meromorphic continuation. The given integral
converges not only for <(s) > 1 but for <(s) > 0, since the numerator is
bounded between 0 and 1 and (with σ = <(s))∫ ∞

1

1

uσ+1
du =

[
u−σ

−σ

]∞
1

=
1

σ
.

The convergence of the improper integral implies that it defines a holomorphic
function of s in <(s) > 0. The second term s/(s − 1) = 1 + 1/(s − 1) has a
pole at s = 1 with residue 1.

(8) Poisson summation formula. Let f be in L1(R) with f̂ ∈ L1(R) and both of
bounded variation. function, we define its Fourier transform by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξx dx.

Then ∑
n∈Z

f(n) =
∑
m∈Z

f̂(m).

We construct a periodic function

g(x) =
∑
n∈Z

f(x+ n),

which has period 1 and convergence under the assumptions on f . We calculate
the Fourier coefficients for g(x):

ĝ(m) =

∫ 1

0

g(x)e−2πimx dx =
∑
n∈Z

∫ 1

0

f(x+ n)e−2πimx dx

=
∑
n∈Z

∫ n+1

n

f(y)e−2πimy dy =

∫ ∞
−∞

f(y)e−2πimy dy = f̂(m).

By the Fourier inversion formula for g:

g(x) =
∑
m∈Z

ĝ(m)e2πimx.

We plug x = 0 to get the Poisson summation formula.

(9) Let T (z) =
az + b

cz + d
. Assume that it maps the real line to the real line. Show

that we can choose a, b, c, d to be real numbers.
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Proof: Set µ = T (0) = b/d, ν = T (∞) = a/c and s = T (1) = (a+b)/(c+d),
which are real by assumption. This gives

a+ b = s(c+ d) = νc+ µd =⇒ (s− ν)c = (µ− s)d.

If (s − ν)(µ − s) 6= 0, then c = d(µ − s)/(s − ν) = ρd, with ρ real. Also
a = νc = νρd, b = µd. These imply

Tz =
az + b

cz + d
=
νρdz + µd

ρdz + d
=
νρz + µ

ρz + 1
,

which has real coefficients. If s = ν = µ, b = sd, a = sc and

Tz =
az + b

cz + d
=
scz + sd

cz + d
= s ∈ R.

The case d = 0 is even easier: Tz = (a/d)z + (b/d) with b/d ∈ R (T (0) is
real), and T (1) = a/d+ b/d ∈ R. So a/d ∈ R.

(10) Show that

d(z, w) = ln

(
|z − w̄|+ |z − w|
|z − w̄| − |z − w|

)
for the hyperbolic distance between z and w.

Proof: If z = ia and w = ia, with a > b > 0 the formula reduces to

ln
a+ b+ a− b
a+ b− a+ b

= ln
a

b

which agrees with the proof of Theorem 5.1.
If z and w have the same real part, the right-hand side of the formula is

the same as for =(z) and =(w), so it is again obvious.
If <(z) 6= <(w), then we use the l.f.t. g introduced in Th. 5.1. We have

d(z, w) = d(g(z), g(w)) = ln
|gz − gw|+ |gz − gw|
|gz − gw| − |gz − gw|

.

So it suffices to prove that the fraction above is equal to

|z − w̄|+ |z − w|
|z − w̄| − |z − w|

.

An easy calculation shows that (α, β ∈ R)

g(z)− gw =
z − β
z − α

− w̄ − β
w̄ − α

=
(β − α)(z − w̄)

(z − α)(w̄ − α)
.

A similar calculation holds with w instead of w̄. Take absolute values, cancel
β − α and we get the result.
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(11) Show that
cosh d(z, w) = 1 + 2u(z, w).

This follows the pattern of the previous exercise. If z = ia, w = ib

u(z, w) =
(b− a)2

4ab
=⇒ 2u(z, w) + 1 =

b2 + a2

2ab
=
b/a+ a/b

2

=
eln(b/a) + e− ln(b/a)

2
= cosh ln(b/a) = cosh d(z, w).

For the general case use g. It suffices to prove that

u(gz, gw) = u(z, w).

Since =(gz) = (β − α)=(z)/ |z − α|2 and similarly for =(gw) we get

u(gz, gw) =

(α−β)2|z−w|2

|z−α|2|w−α|2

4 (β−α)=(z)

|z−α|2
(β−α)=(w)

|w−α|2
=
|z − w|2

4=(z)=(w)
= u(z, w).

(12) (The Laplacian in polar coordinates) Show that

∆ =
∂2

∂r2
+

cosh r

sinh r

∂

∂r
+

1

sinh2 r

∂2

∂θ2

The hyperbolic metric in polar coordinates is:

ds2 = dr2 + (sinh r)2dθ2

This can be seen by the hyperbolic metric in the disc

ds2 =
4(dx2 + dy2)

(1− |z|2)2

We compute the relation between ρ = |z| and r. By putting the origin of the
polar coordinates at 0 in the Poincaré disc we get

r =

∫ |z|
0

2

1− ρ2
dρ =

∫ ρ

0

1

1 + ρ
+

1

1− ρ
dρ = ln

1 + ρ

1− ρ
We solve for ρ = tanh r/2. This gives

1− tanh2(r/2) = 1/ cosh2(r/2), dρ =
1

2 cosh2(r/2)
.

Now as is well-known in Euclidean polar coordinates

dx2 + dy2 = dρ2 + ρ2dθ2

This gives

ds2 =
4(dρ2 + ρ2dθ2)

(1− ρ2)2
= 4

(1/4)dr2/ cosh4(r/2) + tanh2(r/2)dθ2

cosh−4(r/2)

= dr2 + 4 cosh2(r/2) sinh2(r/2)dθ2 = dr2 + sinh2 rdθ2.
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Now we compute the Laplacian in these coordinates: The metric matrix is

(gij) =

(
1 0
0 sinh2 r

)
, g−1

ij = gij =

(
1 0
0 sinh−2 r

)
so that g = det(gij) = sinh2 r. The general form for the Laplacian in the
metric is

∆ =
1
√
g

∑
ij

∂

∂xi

√
ggij

∂

∂xj

which gives for the hyperbolic Laplacian
(10.1)

∆ =
1

sinh r

(
∂

∂r
(sinh r

∂

∂r
) +

∂

∂θ
(sinh−1 r

∂

∂θ
)

)
=

∂2

∂r2
+

cosh r

sinh r

∂

∂r
+

1

sinh2 r

∂2

∂θ2

(13) Find the expression of the hyperbolic laplacian in u and θ coordinates.
We have for the u variable cosh r = 1+2u. We have sinh2 r = cosh2 r−1 =

(2u+ 1)2 − 1 = 4u(u+ 1). Moreover, by differentiation w e get

(sinh r)ru = 2 =⇒ ru =
2

sinh r
and

cosh r(ru)
2 + (sinh r)(r)uu = 0 =⇒ ruu = −4 cosh r

sinh3 r
We have for the differentiation operators, using the chain rule (note that since
r determines u and vice-versa (irrespective of θ, we do not need to worry about
the θ variables).

∂

∂u
=
∂r

∂u

∂

∂r
,

∂2

∂u2
= (ru)

2 ∂
2

∂r2
+ ruu

∂

∂r
.

We plug them into (10.1)

∆ = (ru)
−2

(
∂2

∂u2
− ruur−1

u

∂

∂u

)
+

cosh r

sinh r
r−1
u

∂

∂u
+

1

sinh2 r

∂2

∂θ2

Now r−2
u = (1/4) sinh2 r = u(u+ 1). For the coefficient of ∂/∂u we get:

−r−3
u ruu +

cosh r

sinh r
r−1
u = −sinh3 r

8

−4 cosh r

sinh3 r
+

cosh r

sinh r

sinh r

2
= cosh r = 2u+ 1.

This gives for the Laplacian in the (u, θ) coordinates:

(10.2) ∆ = u(u+ 1)
∂2

∂u2
+ (2u+ 1)

∂

∂u
+

1

4u(u+ 1)

∂2

∂θ2
.

Remark. Notice the formulas 1.16, 1.20, 1.21 in [16]. They differ from the
above in the sense that 2θ = φ. This is due to the fact that he uses the matrix

T =

(
cosφ sinφ
− sinφ cosφ

)
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to act at the point i as a rotation. But in the action of SL(2,R) this acts as
rotation of angle 2φ: this is seen by computing its derivative at i:

T ′(z) =
1

(− sinφz + cosφ)2
=⇒ T ′(i) =

1

(e−iφ)2
= e2iφ

(14) Show by direct calculation that the hyperbolic volume element

dµ(z) =
dxdy

y2

is invariant under the action of SL2(R).
Using the language of differential forms we have

dx dy

y2
=
dx ∧ dy
y2

=
i

2

dz ∧ dz̄
(=z)2

.

Since d(γz) = γ′(z)dz we get

i

2

d(γz) ∧ d(γz)

(=(γz))2
=
i

2

γ′(z)dz ∧ γ′(z)dz̄

y2/ |cz + d|4
=
i

2

|γ′(z)|2 dz ∧ dz̄
y2/ |cz + d|4

=
i

2

dz ∧ dz̄
y2

,

using (4.2), and (5.1).
(15) (i) Show that the Euclidean Laplace operator can be calculated as

∆eucl = 4
∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
.

(ii) Suppose that U and V are open sets in the complex plane. Prove that
if f : U → V and g : V → C are two functions that are differentiable in the
real sense (in x and y) and h = g ◦ f , then the complex version of the chain
rule is

∂h

∂z
=
∂g

∂z

∂f

∂z
+
∂g

∂z̄

∂f̄

∂z
,

∂h

∂z̄
=
∂g

∂z

∂f

∂z̄
+
∂g

∂z̄

∂f̄

∂z̄
.

(iii) Show that ∆ commutes with any element of SL2(R), i.e

∆(f(γz)) = (∆f)(γz).

Proof:
(i) We have for a function f with continuous second partial derivatives

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
,

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
which gives

4
∂2f

∂z∂z̄
=

(
∂

∂x
− i∂f

∂y

)
(fx + ify) =

(
∂

∂x
− i∂f

∂y

)
fx + i

(
∂

∂x
− i∂f

∂y

)
fy

= fxx − ifyx + i(fxy − ifyy) = fxx − ifyx + ifxy + fyy = fxx + fyy = ∆euclf,
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since the mixed partial fxy, fyx are equal for functions with continuous second
partial derivatives. Reversing the order of the calculation gives 4∂z̄∂zf =
∆euclf.

(ii) Set f(x, y) = u(x, y)+iv(x, y), i.e., (x, y)→ (u(x, y), v(x, y))→ h(u, v).
By the standard chain rule for functions of two variables we have

∂h

∂x
=

∂g

∂x

∂u

∂x
+
∂g

∂y

∂v

∂x
(10.3)

∂h

∂y
=

∂g

∂x

∂u

∂y
+
∂g

∂y

∂v

∂y
.

Moreover,

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2
(ux + ivx − i(uy + ivy))(10.4)

∂f̄

∂z
=

1

2

(
∂f̄

∂x
− i∂f̄

∂y

)
=

1

2
(ux − ivx − i(uy − ivy)).

By the definition of ∂/∂z and ∂/∂z̄ we have

∂g

∂z
=

1

2

(
∂g

∂x
− i∂g

∂y

)
∂g

∂z̄
=

1

2

(
∂g

∂x
+ i

∂g

∂y

)
.

We add and subtract the last two equations to get

∂g

∂x
=
∂g

∂z
+
∂g

∂z̄
,

∂g

∂y
=

1

i

(
∂g

∂z̄
− ∂g

∂z

)
.

We substitute the last equations to (10.3), multiply the second equation in
(10.3) by i, subtract them to get

∂h

∂z
=

∂g

∂x

(
1

2

∂u

∂x
− 1

2
i
∂u

∂y

)
+
∂g

∂y

(
1

2

∂v

∂x
− 1

2
i
∂v

∂y

)
(10.5)

= (gz + gz̄)
1

2
(ux − iuy) +

1

i
(gz̄ − gz)

1

2
(vx − ivy)

= gz
1

2
(ux − iuy + ivx + vy) + gz̄

1

2
(ux − iuy − ivx − vy)

= gzfz + gz̄f̄z



L-FUNCTIONS 43

using equations (10.4). Similarly we get

∂h

∂z̄
=

∂g

∂x

(
1

2

∂u

∂x
+

1

2
i
∂u

∂y

)
+
∂g

∂y

(
1

2

∂v

∂x
+

1

2
i
∂v

∂y

)
(10.6)

= (gz + gz̄)
1

2
(ux + iuy) +

1

i
(gz̄ − gz)

1

2
(vx + ivy)

= gz
1

2
(ux + iuy + ivx − vy) + gz̄

1

2
(ux + iuy − ivx + vy)

= gzfz̄ + gz̄f̄z̄,

since

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2
(ux + ivx + i(uy + ivy))

∂f̄

∂z̄
=

1

2

(
∂f̄

∂x
+ i

∂f̄

∂y

)
=

1

2
(ux − ivx + i(uy − ivy)).

(iii) We remark that, since γ(z) is holomorphic we have

∂γ

∂z
= γ′(z),

∂γ

∂z̄
= 0.

Also ∂γ̄/∂z̄ = γ′(z). This gives by applying (ii)

∂

∂z̄
f ◦ γ =

(
∂f

∂z̄

)
◦ γ · γ′.

Now we calculate

∂

∂z

((
∂f

∂z̄

)
◦ γ · γ′

)
=

(
∂2f

∂z∂z̄

)
◦ γ · γ′ · γ′ =

(
∂2f

∂z∂z̄
◦ γ
)
|γ′|2 ,

since an application of the product rule gives ∂γ′/∂z = 0 (γ′ is anti-holomorphic,
so is killed by ∂/∂z. So we have proved

∆eucl(f ◦ γ) = (∆euclf) ◦ γ · |γ′|2 ,

which gives

∆(f ◦ γ) =
(
y2∆eucl

)
(f ◦ γ) = y2(∆euclf) ◦ γ · |γ′|2 =

y2

|cz + d|4
(∆euclf) ◦ γ

= (=(γz)2)(∆euclf) ◦ γ = (y2∆euclf) ◦ γ = (∆f) ◦ γ.
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Figure 6. Contours for the Perron formula: on the left x > 1, on the
right x < 1.


