Math 7502

Example from last lecture

Consider the transportation problem (T) with cost matrix (c_{ij}) , supply vector (p_i) and demand vector (q_i) displayed in the following array:

8	6	7	5	12
4	3	5	4	8
9	8	6	7	11
7	6	10	8	

We use the north-west rule to find the feasible solution

7	5	0	0
0	1	7	0
0	0	3	8

Since the number of nonzero entries is 6 = 3 + 4 - 1 this is a basic solution (the seven equations for the transport problem are not independent, one follows from supply=demand). We find λ_i , i = 1, 2, 3 and μ_j , j = 1, 2, 3, 4 satisfying complementary slackness, even if they do not all satisfy the constraints $\lambda_i + \mu_j \leq c_{ij}$. There is freedom in the choice of one of them, so we choose $\lambda_1 = 0$.

$\lambda_i \setminus \mu_j$	8	6	8	9
0	78	$^{5}6$	7	5
-3	4	$^{1}3$	⁷ 5	4
-2	9	8	$^{3}6$	⁸ 7

We check the constraints $\lambda_i + \mu_j \leq c_{ij}$. If a constraint is not satisfied we put a cross and write how much we are off. This gives the table

	 \times^{-1}	\times^{-4}
\times^{-1}	 	\times^{-1}

We choose the largest number -4 and decide to include x_{14} in our basic variables. We decide to increase it to ϵ . This gives as new transport solution

7	$5-\epsilon$	0	ϵ
0	$1 + \epsilon$	$7-\epsilon$	0
0	0	$3 + \epsilon$	$8-\epsilon$

This is feasible as long as $\epsilon \leq 5$ and we choose this value to exit x_{12} from our basic variables. This gives as new basic feasible solution

7	0	0	5
0	6	2	0
0	0	8	3

To check whether it is optimal we find dual variables λ_i and μ_j satisfying complementary slackness. We choose $\lambda_1 = 0$. This gives

$\lambda_i \setminus \mu_j$	8	2	4	5
0	78	6	7	$^{5}5$
1	4	$^{6}3$	$^{2}5$	4
2	9	8	⁸ 6	$^{3}7$

We check the constraints $\lambda_i + \mu_j \leq c_{ij}$. If a constraint is not satisfied we put a cross and write how much we are off. This gives the table

\times^{-5}	 	\times^{-2}
\times^{-1}	 	

We choose the largest number -5 and decide to include x_{21} in our basic variables. We decide to increase it to ϵ . This gives as new transport solution

$7 - \epsilon$	0	0	$5 + \epsilon$
ϵ	6	$2-\epsilon$	0
0	0	$8 + \epsilon$	$3-\epsilon$

This is feasible as long as $\epsilon \leq 2$ and we choose this value to exit x_{23} from our basic variables. This gives as new basic feasible solution

5	0	0	7
2	6	0	0
0	0	10	1

To check whether it is optimal we find dual variables λ_i and μ_j satisfying complementary slackness. We choose $\lambda_1 = 0$. This gives

$\lambda_i \setminus \mu_j$	8	7	4	5
0	⁵ 8	6	7	⁷ 5
-4	$^{2}4$	$^{6}3$	5	4
2	9	8	$^{10}6$	$^{1}7$

We check the constraints $\lambda_i + \mu_j \leq c_{ij}$. If a constraint is not satisfied we put a cross and write how much we are off. This gives the table

\checkmark	\times^{-1}	
\checkmark		
\times^{-1}	\times^{-1}	

We choose the largest number -1 and decide to include x_{12} in our basic variables. We decide to increase it to ϵ . This gives as new transport solution

$5-\epsilon$	ϵ	0	7
$2 + \epsilon$	$6 - \epsilon$	0	0
0	0	10	1

This is feasible as long as $\epsilon \leq 5$ and we choose this value to exit x_{11} from our basic variables. This gives as new basic feasible solution

0	5	0	7
7	1	0	0
0	0	10	1

To check whether it is optimal we find dual variables λ_i and μ_j satisfying complementary slackness. We choose $\lambda_1 = 0$. This gives

$\lambda_i \setminus \mu_j$	7	6	4	5
0	8	$^{5}6$	7	⁷ 5
-3	74	$^{1}3$	5	4
2	9	8	$^{10}6$	$^{1}7$

We check the constraints $\lambda_i + \mu_j \leq c_{ij}$. If a constraint is not satisfied we put a cross and write how much we are off. This gives the table

\checkmark	 	\checkmark
	 	\checkmark

So this solutions satisfies all the dual constraints and complementary slackness, so it is optimal. The cost for this solution (minimal cost) is

$$5 \cdot 6 + 7 \cdot 5 + 7 \cdot 4 + 1 \cdot 3 + 10 \cdot 6 + 1 \cdot 7 = 163.$$