Math 7502

Homework 7

Due: March 6, 2008

1. * Solve the games with payoff matrices

(a)
$$\begin{pmatrix} 1 & 4 \\ 7 & 2 \end{pmatrix}$$
, (b) $\begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix}$.

(a) The matrix $\begin{pmatrix} 1 & 4 \\ 7 & 2 \end{pmatrix}$ has no saddle point as

			row min
Î	1	4	1
	7	2	2
ĺ	1	4	$\leftarrow \max$

and minimax = $1 \neq \text{maximin} = 2$. We look for mixed (randomized) strategies. Assume that Player I plays row 1 with probability p and row 2 with probability 1-p, where $0 \leq p \leq 1$. If Player II plays column 1, Player I expects a payoff

$$1 \cdot p + 7(1 - p) = 7 - 6p$$

If Player II plays column 2, Player I expects a payoff

$$4p + 2(1-p) = 2 + 2p$$

Player I wants to guarantee wins of at least $\min(7-6p, 2+2p)$. And he wants to make sure this is as large as possible. So his strategy is to maximize (over $p \in [0, 1]$) the $\min(7-6p, 2+2p)$. The figure shows the minimum and we see that this is maximized at the intersection of the two lines v = 7-6p and v = 2+2p (v represents the value of the game). We solve

$$7 - 6p = 2 + 2p \Longrightarrow p = \frac{5}{8}$$

Then the value of the game is $2+2\cdot 5/8 = 13/4$. Player I plays row 1 with probability 5/8 and row 2 with probability 1-5/8 = 3/8. If Player II plays column 1 with probability q and column 2 with probability 1-q, the his expected payoff, assuming Player I plays row 1, is

$$1 \cdot q + 4(1 - q) = 4 - 3q$$

The slack variable corresponding to this constraint has to be 0, as $p \neq 0$. So $4-3q = 13/4 \implies q = 1/4$. Player II will play column 1 with probability 1/4 and column 2 with probability 3/4.

Figure 1: Player I's viewpoint

Figure 2: Player II's viewpoint

Second method: If Player I plays row 1, the expected payoff for Player II is

$$1 \cdot q + 4(1 - q) = 4 - 3q$$

If Player I plays row 2, the expected payoff for Player II is

$$7q + 2(1 - q) = 5q + 2$$

Player II can make sure that Player I wins at most $\max(4 - 3q, 5q + 2)$. And he wants to make sure this is as small as possible. So his strategy is to minimize (over $q \in [0, 1]$) the $\max(4 - 3q, 5q + 2)$. The figure shows the maximum and we see that this is minimized at the intersection of the two lines v = 4 - 3q and v = 5q + 2 (v represents the value of the game). We solve

$$4 - 3q = 5q + 2 \Longrightarrow q = \frac{1}{4}.$$

(b) The matrix $\begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix}$ has a saddle point $a_{11} = 3$. So the players will settle for strategy (row) 1 for Player I and strategy (column) 1 for Player II. They will play pure strategies.

Second method: Assume that Player I plays row 1 with probability p and row 2 with probability 1 - p, where $0 \le p \le 1$. If Player II plays column 1, Player I expects a payoff

$$3p + 2(1-p) = p + 2$$

If Player II plays column 2, Player I expects a payoff

$$6p + 4(1-p) = 2p + 4$$

Player I wants to guarantee wins of at least $\min(p+2, 2p+4)$. And he wants to make sure this is as large as possible. So his strategy is to maximize (over $p \in [0, 1]$) the $\min(p+2, 2p+4)$. For all $p \in [0, 1]$ we have p+2 < 2p+4. So he wants to maximize p+2. This is achieved for p = 1. So he will play row 1 all the time. His expected payoff is $p+2=3=a_{11}$.

Assume that Player II plays column 1 with probability q and column 2 with probability 1-q, where $0 \le q \le 1$. If Player I plays row 1, Player II expects a payoff

$$3q + 6(1 - q) = -3q + 6.$$

If Player I plays row 2, Player II expects a payoff

$$2q + 4(1 - q) = 4 - 2q.$$

Player II can make sure that Player I does not win more than $\max(-3q+6, 4-2q)$. And he wants to make sure this is as small as possible. So his strategy is to minimize (over $q \in [0,1]$) the $\max(-3q+6, 4-2q)$. For all $q \in [0,1]$ we have 6-3q > 4-2q. So he wants to minimize 6-3q. This is achieved for q = 1. So he will play column 1 all the time. His expected payoff (loss) is $6-3 \cdot 1 = 3 = a_{11}$. 2. What happens if you solve a linear program to find the equilibrium for Paper- Scissors-Rock using the payoff matrix

$$A = \left(\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

without adding a number to make all entries positive.

If we set up the program

maximize
$$y_1 + y_2 + y_3$$

subject to $Ay \le (1, 1, 1)^t$ (1)
 $y \ge 0,$

we get the simplex tableau

0	1	-1	1	0	0	1
-1	0	1	0	1	0	1
1	-1	-1 1 0	0	0	1	1
1	1	1	0	0	0	0

We pivot on $a_{31} = 1$ to get

0	1	-1	1	0	0	1
0	-1	1	0	1	1	2
1	-1	0	0	0	1	1 2 1
0	2	1	0	0	-1	-1

We now pivot on $a_{12} = 1$ as the largest element in the last row is 2. This gives

0	1	-1	1	0	0	1
0	0	0	1	1	1	3
1	0	-1	1	0	1	2
0	0	3	-2	0	-1	-3

Now we have a positive entry $(a_{43} = 3)$ on the last row but the entries above it (in the same column) are negative or zero. This means that the program is unbounded.

3. * Let A be the payoff matrix for a two person zero-sum game. Show that, if $A = -A^t$, then the value of the game is 0.

 Set

$$v = \min_{q} \max_{p} p^{t} A q$$

the value of the game. Here $p, q \in \mathbf{R}^n$ are probability vectors, i.e. $p, q \ge 0$, and $\sum_j p_j = \sum_j q_j = 1$. The dimensions of the vectors are the same, as the matrix A is antisymmetric, i.e. a square matrix.

Then

$$v = \min_{q} \max_{p} (p^{t}Aq)^{t} \quad \text{as it is a } 1 \times 1 \text{ matrix-number}$$

$$= \min_{q} \max_{p} q^{t}A^{t}p \quad \text{as } (BC)^{t} = C^{t}B^{t}$$

$$= \min_{q} \max_{p} (-q^{t}Ap) \quad \text{as } A^{t} = -A$$

$$= \min_{q} (-\min_{p} q^{t}Ap) \quad \text{as } \max(-S) = -\min S \text{ for any set } S$$

$$= -\max_{q} \min_{p} q^{t}Ap \quad \text{as } \min(-S) = -\max S \text{ for any set } S$$

$$= -\max_{p} \min_{q} p^{t}Aq \quad \text{we relabel } p \text{ into } q \text{ and vice versa}$$

$$= -v \qquad \text{by the von Neumann minimax theorem}$$

The result is v = -v i.e. v = 0.

4. * Solve using the simplex algorithm the undercut game with payoff matrix

$$A = \begin{pmatrix} 0 & -1 & 2 & 2\\ 1 & 0 & -1 & 2\\ -2 & 1 & 0 & -1\\ -2 & -2 & 1 & 0 \end{pmatrix}.$$

Let V be the value of the game and p_i , $q_i i = 1, 2, 3, 4$ the probabilities of the strategies of the two players. We first add 3 to all the entries of A, so that we get a payoff matrix with positive entries. This gives

$$B = \begin{pmatrix} 3 & 2 & 5 & 5 \\ 4 & 3 & 2 & 5 \\ 1 & 4 & 3 & 2 \\ 1 & 1 & 4 & 3 \end{pmatrix}.$$

Let v > 0 be the value of the game with payoff *B*. We transform it into a standard linear programming by setting

$$y_i = \frac{q_i}{v}, \quad i = 1, 2, 3, 4.$$

The original program was: minimize v subject to

$$Bq \le v \cdot \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
$$\sum_{j=1}^{4} q_j = 1, \quad q \ge 0$$

Since $q_1 + q_2 + q_3 + q_4 = 1$, we have that $y_1 + y_2 + y_3 + y_4 = 1/v$, so that we try to maximize $\sum_{j=1}^{4} y_j$ subject to

$$By \le \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
$$y \ge 0$$

We add slack variables z_1, z_2, z_3, z_4 to get the system

maximize
$$\sum_{j=1}^{4} y_j$$

subject to
$$By + z = \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$$

$$y \ge 0, z \ge 0.$$

This gives the simplex tableau

			5	1	0	0	0	1
4	3					0		
1	4	3				1		1
1	1	4	3	0	0	0	1	1
1	1	1	1	0	0	0	0	0

The basic feasible solution (0, 0, 0, 0, 1, 1, 1, 1) is not optimal. We pivot on $a_{21} = 4$. This gives

	3	2	5	5	1	0	0	0	1
	1	3/4	1/2	5/4	0	1/4	0	0	1/4
	1	4	3	2	0	0	1	0	1
	1	1	4	3	0	0	0	$1 \mid$	1
	1	1	1	1	0	0	0	0	0
()	-1/4	7/2	5/4	1	-3/4	0	0	1/4
]	L	3/4	1/2	5/4	0	1/4	0	0	1/4
()	13/4	5/2	3/4	0	-1/4	1	0	3/4
()	1/4	7/2	7/4	0	-1/4	0	1	3/4
()	1/4	1/2	-1/4	0	-1/4	0	0	-1/4

The basic feasible solution (1/4, 0, 0, 0, 1/4, 0, 3/4, 3/4) is not optimal. we decide to include y_3 in the basic variables and pivot on $a_{13} = 7/2$. We get

0	-1/14	1	5/14	2/7	-3/14	0	0	1/14
1	3/4	1/2	5/4	0	1/4	0	0	1/4
0	13/4	5/2	3/4	0	-1/4	1	0	3/4
0	1/4	7/2	7/4	0	-1/4	0	1	3/4
0	1/4	1/2	-1/4	0	-1/4	0	0	-1/4
0	-1/14	1	5/14	2/7	-3/14	0	0	1/14
1	11/14	0	15/14	-1/7	5/14	0	0	3/14
0	24/7	0	-1/7	-5/7	2/7	1	0	4/7
0	1/2	0	1/2	-1	1/2	0	1	1/2
0	2/7	0	-3/7	-1/7	-1/7	0	0	-2/7

The basic feasible solution (3/14, 0, 1/14, 0, 0, 0, 4/7, 1/2) is not optimal. We pivot on $a_{32} = 24/7$. We get

0	-1/	/14	1	5/	'14	2/	$^{\prime}7$	-3/1	4	0	0	1/14
1	$11_{/}$	/14	0	15/	'14	-1/	$^{\prime}7$	5/1	4	0	0	3/14
0		1	0	-1/	24	-5/2	24	1/1	$2 \ 7/$	24	0	1/6
0]	1/2	0	1	-/2	-	-1	1/	2	0	1	1/2
0	4	2/7	0	-3	8/7	-1/	$^{\prime}7$	-1/	7	0	0	-2/7
0	0	1	17/	48	13	/48	-5	/24	1/-	48	0	1/12
1	0	0	53/	$^{\prime}48$	1	/48	7	/24	-11/-	48	0	1/12
0	1	0	-1/	24	-5	/24	1	/12	7/2	24	0	1/6
0	0	0	25/	$^{\prime}48$	-43	/48	11	/24	-7/-	48	1	5/12
0	0	0	-5/	/12	-1	/12	-	1/6	-1/	12	0	-1/3

The basic feasible solution is (1/12, 1/6, 1/12, 0, 0, 0, 0, 5/12) and is optimal, as all the entries on the last row are ≤ 0 . The maximum of $\sum_{j=1}^{4} y_j = 1/3 = \frac{1}{v}$. So v = 3. The probabilities q_j are

$$(q_1, q_2, q_3, q_4) = v \cdot y = 3(1/12, 1/6, 1/12, 0) = (1/4, 1/2, 1/4, 0).$$

To find the actual value of the game we take off the 3 added to the entries of the matrix A to get V = v - 3 = 0. This is naturally expected, since $A = -A^t$. The probabilities for player I are $(p_1, p_2, p_3, p_4) = (1/4, 1/2, 1/4, 0)$ as the game is symmetric.