
Math 7502
Homework 6

Due: February 28, 2008

1. Consider the two problems
minimize
subject to

ct · x
Ax ≥ b
x ≥ 0,

(1)

and
minimize
subject to

ct · x
Ax ≥ b + v
x ≥ 0,

(2)

where v is a vector is Rm of small ‘size’. We consider the problem (2) as a ‘pertur-
bation’ of the problem (1). For instance, if (1) is the diet problem with daily need
prescribed by the vector b, then in the problem (2) we are allowing a small change in
the dietary needs. The question is how does this affect the cost of the diet. Let y0

be the optimal for the dual problem to (1). Show that the optimal (minimal) cost of
the (diet) problem (2) is

f = (b + v)ty0.

Hint: Use duality.

Remark: The vector −y0 appeared in the last row of the last simplex tableau. This
problem explains why the last row gives information on the shadow prices.

Consider the dual to (1):
maximize
subject to

bt · y
Aty ≤ c
y ≥ 0,

(3)

Let y0 be the point where this is achieved. The dual problem of (2) is

maximize
subject to

(b + v)t · y
Aty ≤ c
y ≥ 0,

(4)

The problems (3) and (4) have the same constraints. Therefore they have the same
feasible region. The objective functions are close to each other, as the vector v is
small. This means that the optimal point will be the same for both of them. (Think
of two lines in R2 which, although not parallel, they have slopes close to each other.
When we move them in a parallel fashion to themselves we will reach the same
extreme point, as this is far away from the other extreme points). This optimal point
is y0. So the maximum for (4) is (b + v)ty0. By the strong duality theorem, this is
the minimum for its primal problem, i.e. (2).
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2. (a) Suppose that the problem

maximize
subject to

ct · x
Ax ≤ b
x ≥ 0

has a finite optimal solution. Here A is an m × n matrix, b ∈ Rm, c ∈ Rn. Show
that, no matter what the vector b′ ∈ Rm might be, the problem

maximize
subject to

ct · x
Ax ≤ b′

x ≥ 0

cannot be unbounded.

Hint: Use duality.

By the strong duality theorem the minimum for

minimize
subject to

bt · y
Aty ≥ c

y ≥ 0
(5)

is equal to the finite maximum of the primal problem. In particular we have a solution
y to the constraints of the dual program (5), i.e. a feasible point for the dual program.
Consider now the second max problem with an arbitrary b′. Let x be any feasible
point for it. By the weak duality theorem,

ctx ≤ b′ty (6)

for any feasible point of the dual program

minimize
subject to

b′t · y
Aty ≥ c

y ≥ 0
(7)

But the constraints in (7) are the same as in (5), so we have a feasible point y for
(7). By (6) we have an upper bound for ctx for the second problem, so the second
problem with arbitrary b′ cannot be unbounded.

3. (a) Suppose that a two-person zero-sum game with payoff matrix A has a saddle-
point. Show that all saddle points have the same value.

Let aij and akl be saddle points, i.e. they are minima in their rows and maxima in
their columns. Then

aij ≤ ail as aij is minimum in its row

≤ akl as akl is maximum in its column.
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Similarly

akl ≤ akj as akl is minimum in its row

≤ aij as aij is maximum in its column.

The conclusion is that aij = akl.

(b) Show that, if aij is a saddle point then the row i is a maximin row and the column
j is a minimax column and

max
k

min
l

akl = min
l

max
k

akl = aij. (8)

Fix k for the k row. We need to show that minl ail ≥ minl akl. Then the i row
is a maximin row. Since aij is a saddle point it is the minimum of its row, i.e.
minl ail = aij ≥ akj, as it is also the maximum of its column. Obviously akj ≥ minl akl.
In fact as i is one of the rows, we have

aij = max
k

min
l

akl.

We also need to show column j is a minimax column. We fix a column l. We need
to show that maxs asj ≤ maxs asl. Since aij is maximum in its column, we have
maxs asj = aij ≤ ail, as it is also a minimum in its row. Obviously ail ≤ maxs asl. In
fact, since j is one of the columns we have

aij = min
l

max
k

akl.

This proves (8).

(c) If
max

k
min

l
akl = min

l
max

k
akl

then the intersection on the maximin row and the minimax column is a saddle point.

Let i be the k for which the maxk is achieved and let j be the l for which minl is
achieved. Then

min
l

ail = max
k

akj.

Consider now the intersection of the i row and the j column, i.e. aij. Then

aij ≥ min
l

ail = max
k

akj ≥ aij.

The conclusion is that the inequalities are all equalities, i.e.

aij = min
l

ail = max
k

akj,

i.e. aij is minimum in its row and maximum in its column, i.e. a saddle point.
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