
Math 7502

Homework 2

Due: January 24, 2008

In this homework you will work on two problems with the simplex method, as presented
in class. For both follow the instructions:

(a) Find an initial basic feasible solution for the system in canonical form.
(b) Check whether it is optimal.
(c) Search for another basic feasible solution.
(d) Move to this better solution.
(e) Go back to (b).
(f) After you find the optimal solution with the simplex method, graph the feasible

region in standard form, and show the successive vertices of it visited during the simplex
method.

Provide explanations for each step, as done in class.

1. (Continuation from Homework 1)

Maximize the daily profit in manufacturing two alloys A1 and A2 which are different
mixtures of two metals M1 and M2 as shown:

Proportion of metal Proportion of metal
Metal In Alloy A1 In Alloy A2 Daily supply in tons

M1 0.5 0.25 10
M2 0.5 0.75 15

Net Profit per ton 30 25

We wrote the system in canonical form

maximize 30x1 + 25x2

subject to x1, x2, x3, x4 ≥ 0

0.5x1 + 0.25x2 + x3 = 10

0.5x1 + 0.75x2 + x4 = 15

where x1 and x2 are the production of alloy A1 and A2 in tons per day, and x3 and
x4 are slack variables.

(a) We start with basic variables x3 and x4 and nonbasic x1 and x2, as it is easy to
find x3 and x4 given that x1 = x2 = 0. We find x3 = 10 and x4 = 15. So the basic
feasible solution we start with is (x1, x2, x3, x4) = (0, 0, 10, 15).
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(b) We need to check for optimality. In this case f(x1, x2) = 30x1 + 25x2 gives
f(0, 0) = 0. Intuitively this cannot be the maximum daily profit. Since the coefficients
of the objective function are 30 and 25, any increase of either x1 or x2 from the current
values 0 will increase the objective function.

(c) We solve for the basic variables:

x3 = 10− 0.5x1 − 0.25x2 (1)

x4 = 15− 0.5x1 − 0.75x2 (2)

If we keep x2 = 0, we can increase x1, while at the same time we keep x3 ≥ 0 and
x4 ≥ 0.

The maximum increase ∆x1 for x1 out of (1) can be found by setting x3 = 0 in (1).
The maximum increase ∆x1 for x1 out of (2) can be found by setting x4 = 0 in (2).

(1) =⇒ ∆x1 = 20, (2) =⇒ ∆x1 = 30. (3)

This means that we can increase x1 at most 20, the minimum of the two numbers, in
order to remain in the feasible region (all variables nonnegative). An increase of 20
for x1 implies an increase ∆f of 30 · 20 = 600 for the objective function.

If we keep x1 = 0, we can increase x2, while at the same time we keep x3 ≥ 0 and
x4 ≥ 0.

The maximum increase ∆x2 for x2 out of (1) can be found by setting x3 = 0 in (1).
The maximum increase ∆x2 for x2 out of (2) can be found by setting x4 = 0 in (2).

(1) =⇒ ∆x2 = 40, (2) =⇒ ∆x2 = 15
4

3
= 20. (4)

This means that we can increase x2 at most 20, the minimum of the two numbers, in
order to remain in the feasible region (all variables nonnegative). An increase of 20
for x2 implies an increase ∆f of 25 · 20 = 500 for the objective function.

It is clear that this way we find two basic feasible solutions: (20, 0, 0, 5) and (0, 20, 5, 0)
giving increases of the objective function 600 and 500 respectively. Since we want to
maximize the profit, we choose the first option.

(d) We move to the basic feasible solution (20, 0, 0, 5). Now the basic variables are
x1 and x4, while x2 and x3 are nonbasic (= 0).

(b’) We check whether this new basic solution is optimal. We express f as a function
of the nonbasic variables x2 and x3. Using (1), we get

f = 30x1 + 25x2 = 30 · 2 · (10− 0.25x2 − x3) + 25x2 = 600 + 10x2 − 60x3. (5)

If we increase x2 from its current value of 0, we can increase the objective function,
as the coefficient of x2 is 10 > 0. So the solution we have is not optimal.
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(c’) We search for another basic feasible solution. We solve for the basic variables,
which are x1 and x4. We get

x1 = 2(10− 0.25x2 − x3) (6)

x4 = 15− 0.75x2 − 10 + 0.25x2 + x3 = 5− 0.5x2 + x3 (7)

Because the coefficient of x3 in (5) is positive, we cannot increase the objective func-
tion by taking larget values of x3 than the current value of 0.

We search for the maximum increase of x2 that will keep us in the feasible region.

If we keep x3 = 0, we can increase x2, while at the same time we keep x1 ≥ 0 and
x4 ≥ 0.

The maximum increase ∆x2 for x2 out of (6) can be found by setting x1 = 0 in (6).
The maximum increase ∆x2 for x2 out of (7) can be found by setting x4 = 0 in (7).

(6) =⇒ ∆x2 = 40, (7) =⇒ ∆x2 = 10. (8)

This means that we can increase x2 at most 10, the minimum of the two numbers, in
order to remain in the feasible region (all variables nonnegative). An increase of 10
for x1 implies an increase ∆f of 10 · 20 = 100 for the objective function, using (5).

(d’) and (b”) We move to the new basic feasible solution (15, 10, 0, 0). We need to
check whether it is optimal. Now the basic variables are x1 and x2 and the nonbasic
variables are x3 and x4. We express the objective function in terms of the nonbasic
variables. Using (5) and (7), we get

f = 600+10·2·(5−x4+x3)−60x3 = 600+100−20x4+20x3−60x3 = 700−20x4−40x3.

Since the coefficients of x3 and x4 are now negative, this is the optimal solution.

(f) We successively moved to the following sequence of basic feasible solutions (in
canonical form): (0, 0, 10, 15), (20, 0, 0, 5), (15, 10, 0, 0). In standard form we moved
successively to the following points (0, 0), (20, 0), (15, 10). This is seen in the figure
below.

2. Maximize 3x1 + 2x2 subject to the constraints: x1 ≥ 0, x2 ≥ 0,

3x1 + 4x2 ≤ 60, 4x1 + 2x2 ≤ 60, 10x1 + 2x2 ≤ 120.

We write the system in canonical form:

maximize 3x1 + 2x2

subject to 3x1 + 4x2 + x3 = 60

4x1 + 2x2 + x4 = 60

10x1 + 2x2 + x5 = 120

xi ≥ 0, i = 1, 2, 3, 4, 5.
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Figure 1: The order of visiting the vertices in the simplex algorithm for problem 1

Figure 2: The feasible region in problem 2
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Figure 3: The order of visiting the vertices in the simplex algorithm in problem 2

(a) We start with a basic feasible solution with x1 = x2 = 0. This way x1 and x2 are
nonbasic variables and x3, x4, x5 are basic variables. We easily find from the system
above the values

x3 = 60, x4 = 60, x5 = 120,

so that the basic feasible solution is (x1, x2, x3, x4, x5) = (0, 0, 60, 60, 120).

(b) The corresponding value of the objective function f = 3x1 + 2x2 is 0. This
function has coefficients of x1 and x2 positive, so any increase of the values of x1 or
x2 from the current values of 0, will increase the objective function. So the basic
feasible solution (0, 0, 60, 60, 120) is not optimal.

(c) We solve the system for the basic variables:

x3 = 60− 3x1 − 4x2 (9)

x4 = 60− 4x1 − 2x2 (10)

x5 = 120− 10x1 − 2x2 (11)

If we keep x2 = 0, we can increase x1, while at the same time we keep x3 ≥ 0, x4 ≥ 0
and x5 ≥ 0.

The maximum increase ∆x1 for x1 out of (9) can be found by setting x3 = 0 in (9).
The maximum increase ∆x1 for x1 out of (10) can be found by setting x4 = 0 in (10).
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The maximum increase ∆x1 for x1 out of (11) can be found by setting x5 = 0 in (11).

(9) =⇒ ∆x1 = 20, (10) =⇒ ∆x1 = 15, (11) =⇒ ∆x1 = 12. (12)

This means that we can increase x1 at most 12, the minimum of the three numbers,
in order to remain in the feasible region (all variables nonnegative). An increase of
12 for x1 implies an increase ∆f of 3 · 12 = 36 for the objective function.

If we keep x1 = 0, we can increase x2, while at the same time we keep x3 ≥ 0, x4 ≥ 0
and x5 ≥ 0.

The maximum increase ∆x2 for x2 out of (9) can be found by setting x3 = 0 in (9).
The maximum increase ∆x2 for x2 out of (10) can be found by setting x4 = 0 in (10).
The maximum increase ∆x2 for x2 out of (11) can be found by setting x5 = 0 in (11).

(9) =⇒ ∆x2 = 15, (10) =⇒ ∆x2 = 30, (11) =⇒ ∆x2 = 60. (13)

This means that we can increase x2 at most 15, the minimum of the three numbers,
in order to remain in the feasible region (all variables nonnegative). An increase of
15 for x2 implies an increase ∆f of 2 · 15 = 30 for the objective function.

Since the largest increase of the objective function occurs when we set x2 = 0 and
∆x1 = 12, we choose as basic variables x1 and x3 and x4 and nonbasic x2 and x5,
i.e we remove x5 and include x1. The new basic feasible solution is (12, 0, 24, 12, 0),
using (9), (10), (11).

We need to check whether it is optimal or not. For this we rewrite the objec-
tive function in terms of the nonbasic variables x2 and x5. Eq. (11) gives x1 =
(1/10)(120− 2x2 − x5) so that

f = 3 · 1

10
(120− 2x2 − x5) + 2x2 = 36− 6

10
x2 −

3

10
x5 + 2x5 = 36 +

14

10
x2 −

3

10
x5.

Since the coefficient of x5 is negative, we cannot increase x5 and increase the objective
function. On the other hand, if we increase x2, we can increase f . So we decide to
include x2 in the basic variables. We solve the equations (9), (10), (11) to express
the basic variables x1, x3 and x4, in terms of the nonbasic x2 and x5. We get

x1 = 12− 0.2x2 − 0.1x5 (14)

x3 = 60− 3 · (12− 0.2x2 − 0.1x5)− 4x2 = 24− 3.4x2 + 0.3x5 (15)

x4 = 60− 4(12− 0.2x2 − 0.1x5)− 2x2 = 12− 1.2x2 + 0.4x5 (16)

If we keep x5 = 0, we can increase x2, while at the same time we keep x3 ≥ 0, x4 ≥ 0
and x1 ≥ 0.

The maximum increase ∆x2 for x2 out of (14) can be found by setting x1 = 0 in (14).
The maximum increase ∆x2 for x2 out of (15) can be found by setting x3 = 0 in (10).
The maximum increase ∆x2 for x2 out of (16) can be found by setting x4 = 0 in (16).

(14) =⇒ ∆x2 = 60, (15) =⇒ ∆x2 =
120

17
, (16) =⇒ ∆x2 = 100. (17)
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This means that we can increase x2 at most 120/17, the minimum of the three
numbers, in order to remain in the feasible region (all variables nonnegative). An

increase of 120/17 for x2 implies an increase ∆f of
14

10
· 120

17
=

168

17
for the objective

function. The new basic feasible solution is

(
180

17
,
120

17
, 0, 12− 144

17
, 0

)
. We get these

numbers by plugging x2 = 120/17 and x5 = 0 into (14), (15), (16).

We need to check whether this basic feasible solution is optimal or not. We express
the objective function in terms on the nonbasic variables x3 and x5. Out of (15) we
get x2 = (10/34)(24− x3 + 0.3x5) so that

f = 36 + 1.4 · 10

34
(24− x3 + 0.3x5)− 0.3x5 = 36 +

168

17
− 7

17
x3 −

3

17
x5.

Since the coefficients of x3 and x5 are negative, we can no longer increase f and the
basic solution found in optimal. The maximum of f is 780/17 = 45.8823....
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