Useful Toolkit for Trading & Risk Management J

Hui Gong

University College London
Crescent Quant Co., Ltd
http://www.homepages.ucl.ac.uk/~ucahgon/

17 December, 2015

University College London 17 December, 2015 1/20


http://www.homepages.ucl.ac.uk/~ucahgon/

@ Introduction
@ Financial Industry and Products
@ Financial Products
e Equities/ETFs and their Derivatives

© Sell Side: Option Pricing
@ Downloading the data
@ Modelling with Basic Stochastic Processes: GBM
@ Option Pricing and Risk Sensitivities

© Buy Side: Portfolio Optimisation

University College London 17 December, 2015

2/20



Financial Industry

@ Finance:

Putting the ‘RIGHT" money in the 'RIGHT" place with the

‘RIGHT" amount for the ‘RIGHT" price.

@ Financial Market
o Based on Market levels

Primary Market
Secondary Market

o Based on security types

Money Market (Purely Short-term Funds)

Capital Market (Equity Market/Debt Market)

Derivative Market

Financial Service Market ( ATM, Credit Cards, Credit Rating, Stock
Broking etc.)

Depository Market (Giving loans or purchasing other debt instruments
such as treasure bills.)

Non-Depository market (Mutual Funds, Insurance Companies, Pension
Funds, Brokerage Firms etc.)
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Introduction Financial Products

Financial Products and its Stochastic Modelling

e Commodities [Ornstein-Uhlenbeck type models (with Jumps)]

o Currencies [Stochastic Volatility Models: The Heston Model, The
Stein and Stein Model, Longstaff's double square root Model, Scott’s
exponential Ornstein-Uhlenbeck model, The SABR model]

o Indices/ETFs [GBM with Jump Diffusion Models, SV models:
GARCH Models]

@ Shares/Equities [Similar to Indices/ETFs]

@ Treasuries/Bonds [Short-rate model: Merton's model, The Vasicek
model, The Rendleman-Bartter model, The Cox-Ingersoll-Ross model,
The Ho-Lee model, The Hull-White model, The Black-Derman-Toy
model, The Black-Karasinski model, The Kalotay-Williams-Fabozzi
model , The Longstaff-Schwartz model, The Chen model]
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Equities/ETFs and their Derivatives
Equities/ETFs and their Derivatives

o Flow of funds (Assets/Liabilities)

e What is the role of Investment Banks?
o What is the role of Exchanges and Dealers?
o What is the role of Hedge Funds/Asset Managers?

@ Sell Side
o Derivative(Option) Pricing & Risk Sensitivities
@ Buy Side

e Portfolios Optimisation
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Sell Side: Option Pricing Downloading the data

Downloading the data from Yahoo! Finance

Yahoo! Finance

Ticker Symbol/Stock Symbol

Date, Open, High, Low, Close, Volume, Adj Close
Start/End Date

Try price2ret & ret2price !

1 7% Connect to Yahoo! Finance.

2 ¢ = yahoo;

3 /. Obtain the adjusted closing price for the ’Apple Inc.’ equity from 01/01/2007
to 01/12/2015.

4 ClosePrice = fetch(c,’AAPL’,’Adj Close’,’01/01/2007°,°01/12/2015°);

5 J Set the price equal to the adjusted closing price in the second column

6 % and flip array in up/down direction

7 Price = flipud(ClosePrice(:,2));

8 J Close Yahoo! connection.

9 close(c)
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Sell Side: on Pricing Modelling with Basic Stochastic Processes: GBM

The Geometric Brownian Motion

Figure: MATLAB
Simulate GBM Sample
Paths.
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function S= GBM_simulation(N_Sim,T,dt,mu,sigma,S0)
mean=(mu-0.5*sigma~2)*dt/T;

S=SO*ones(N_Sim,T + 1);

BM=sigma*sqrt (dt/T)*normrnd (0,1,N_Sim,T);
S(:,2:end)=S0% exp(cumsum(mean+BM,2));

for i=1:N_Sim
plot ([0:dt:T],S(i,:));

hold on;
end
hold off;
end

%S= GBM_simulation(10 , 250 , 1 , 0.01 , 0.1 , 100);
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Sell Side: Option Pricing Modelling with Basic Stochastic Processes: GBM

Parameter Estimation

@ Time Series Model
@ Autocorrelation function (ACF)
e Partial Auto-Correlation function (PACF)
© Maximum Likelihood Estimation
1 function [mu sigmal=GBM_calibration(Price,T,dt,params)
2 Ret=price2ret(Price);
3 n=length(Ret);
4 options=optimset (’MaxFunEvals’,100000,’MaxIter’,100000) ;
5 fminsearch(@normallLl ,params,options) ;
6 /% The MLE Function for iid Normal Distribution.
7 function mll=normalLL (params)
8 mu=params (1) ;
9 sigma=abs (params (2));
10 1l=n* log (1/ sqrt (2*pi* dt/T)/ sigma )+ sum(-(Ret -mux*dt/T)."~2/2/(dt/T
xsigma ~2));
11 mll=-11;
12 end
13  end
14 % Initial params=[0 0];
v
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Option Pricing and Risk Sensitivities

Option Pricing via BSM model
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@ Pricing Equity Derivatives and Greeks Calculation

% To illustrate toolbox Black-Scholes functions (check assumptions)

[0OptCall, OptPut] = blsprice (100, 95, 0.10, 0.25, 0.50, 0);

% Delta of a derivative security is the rate of change of its price relative to

% the price of the underlying asset.

[CallVal, PutVall] = blsdelta (100, 95, 0.10, 0.25, 0.50, 0);

% Gamma of a derivative security is the rate of change of delta relative to

% the price of the underlying asset.

GammaVal = blsgamma (100, 95, 0.10, 0.25, 0.50, 0);

% Vega is the rate of change in the price of a derivative security relative to

% the volatility of the underlying security.

VegaVal = blsvega (100, 95, 0.10, 0.25, 0.50, 0);

% Lambda, also known as the elasticity of an option, represents the percentage
change

% in the price of an option relative to a 1% change in the price of the
underlying security.

[LamCall, LamPut] = blslambda (100, 95, 0.10, 0.25, 0.50, 0);

% The implied volatility of an option is the standard deviation that makes

% an option price equal to the market price.

Volatility = blsimpv (100, 95, 0.10, 0.25, OptCall);

@ Try the 'AAPL’ data and price the one year option @ K=120.

@ Check the value in Thomson Reuters and calculate the Implied Vol.
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Buy Side: Portfolio Optimisation

Portfolio Optimization and Performance Backtesting

@ In this section, we are going to find out how to construct a optimal
portfolio in a universe of 30 US stocks and backtest the performance
of several portfolio strategies using historical data.

@ The dataset ‘equity_ dataset_ 30.csv’ can be downloaded from
http://www.homepages.ucl.ac.uk/~ucahgon/. It contains the
daily closing prices (adjusted for stock splits and cash/stock
dividends) for 30 blue-chip stocks over past 10 years. The dataset has
31 columns in total, with the first column being the date index in ISO
format (yyyy-mm-dd) and the rest 30 columns containing price data
for 30 stocks respectively.

University College London 17 December, 2015 10 / 20


http://www.homepages.ucl.ac.uk/~ucahgon/

Buy Side: Portfolio Optimisation

Portfolio Optimization

Step 1

Step 2

Step 3

Step 4

Import the csv data file ‘equity_ dataset_ 30.csv’ into Matlab, and

extract the numeric price data into a variable named ‘px_ mat’. ‘px_
mat’ should be a T-by- N matrix where T = 2641 and N = 30.

Calculate the log return series for all 30 stocks according to formula
Ri + = log(Pj+) — log(Pj+-1), where i € [1,30] and t € [2,2641].
Split the whole sample period into In-Sample (training dataset, from
2005-01-01 to 2012-12-31) and Out-of-Sample (testing dataset, from
2013-01-01 to 2015-06- 30) periods. Use two variables ‘ret_ mat_ is’'
and ‘ret_ mat_ oos’ to store the stock return matrix for In-Sample and
Out-of-Sample periods respectively.

Calculate the historical average daily return for each stock and the
historical covariance matrix by using only the In-Sample dataset.

University College London 17 December, 2015 11 / 20



Buy Side: Portfolio Optimisation

Data Preprocessing

G W R

% Portfolio Optimization and Performance Backtesting 7
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% Step 1

% import the csv data file

Table = readtable(’equity_dataset_30.csv’,’ReadVariableNames’,true,’ReadRowlNames

’,true);
% extract the numeric price data
px_mat = table2array(Table);
°/"A'Z"/,%%%ZZZ%%%ZZZ%%%%ZZ%%%%ZZZ%%%
% Step 2
% calculate the log return. Note: here T will
ret_mat = diff (log(px_mat));
Dttt ot To sttt Tolo et to et %o
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% Step 3
% calculate the in sample size of In-Sample
date = Table.Properties.RowNames;

in_length = length(find(datenum(date)<datenum(’2013-01-01")));

% split the sample into In-Sample and Out-of-Sample, delete the first day
ret_mat_is = ret_mat(l:in_length-1,:);
ret_mat_oos = ret_mat((in_length):end,:);
TRttt ottt Tttt to oo to T to T e to o T o oo o o o
% Step 4

% calculate the In-Smaple mean

M_is = mean(ret_mat_is, 1);

% calculate the In-Smaple covariance

C_is = cov(ret_mat_is);

DRl bl hh Tt hhte s hhhhhh sttt hhhhhhttththhhtththhthhthhhthhththhhhhhhhhhhhhh
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Buy Side: Portfolio Optimisation

Portfolio Optimization and Performance Backtesting

Step 5 Consider the following 4 portfolios:

Benchmark 1/N portfolio: allocate capital equally.

e Portfolio 1: Maximize Sharpe ratio (short-selling is allowed).

o Portfolio 2: Maximize Sharpe ratio (no short-selling).

e Portfolio 3: Minimize portfolio variance (short-selling is allowed).

Step 6 Now we have 4 portfolio trading strategies, that is we can allocate
capital according to the optimal weights calculated in Step 5. Assume
that we can buy/sell any fraction of shares and ignore the transaction
cost associated with rebalancing portfolio daily. Backtest the strategy
performances of benchmark 1/N portfolio and optimized portfolio 1, 2
and 3 using In-sample dataset. Construct and plot the equity curve
and drawdown curve. Calculate annualized Sharpe Ratio and
annualized Cumulative Average Return (CAR) for each strategy.

Step 7 Repeat the same backtesting process in Step 6 using out-of-sample
dataset. Compare the out-of-sample performance with in-sample
performance for each portfolio strategy.
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Buy Side: Portf

Portfolio Optimization (1)

% Step 5

% Benchmark 1/N portfolio

w0 = repmat (1/length(M_is),length(M_is) ,1);

% Portfolio 1: Maximize Sharpe ratio

% short-selling is allowed, i.e. weights can be negative
% constraint: sum of weights is 1

Aeq = ones(1,length(M_is)); beq = 1;

% suppress optimization message

options = optimset(’Display’, ’off’);

HOWVONOOHWN R

=

wl = fmincon(@(w)-compute_sharpe(w, M_is*252, C_is*252),
(1, [1, [1, optiomns);

12 srl = compute_sharpe(wl, M_is*252, C_is*252);

13 fprintf(’The maximized Sharpe Ratio is %.4f.\n’, sril);

14 7 Portfolio 2: Maximize Sharpe ratio

% NOTE: use - to convert max optimization to a min optimization problem

w0, [1, [1, Aeq, beq,

15 % short-selling is not allowed, i.e. weights should be non-negative

16 % constraint: sum of weights is 1

17 Aeq = ones(1,length(M_is)); beq = 1;
18 % constraint: weights are non-negative
19 1b = zeros(1,30);

20 ub = ones(1,length(M_is));

21 7, suppress optimization message

22 options = optimset(’Display’, ’off’);

23 J NOTE: use - to convert max optimization to a min optimization problem
P P P

24 w2 = fmincon(@(w)-compute_sharpe(w, M_is*252, C_is*252),
1b, ub, [], options);

25 sr2 = compute_sharpe(w2, M_is*252, C_is*252);

26 fprintf(’The maximized Sharpe Ratio is %.4f.\n’, sr2);

Hui Gol
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Buy Side: Portfolio Opt

Portfolio Optimization (2)

% Portfolio 3: Minimize portfolio variance

% short-selling is allowed, i.e. weights can be negative

% constraint: sum of weights is 1

Aeq = ones (1, length(M_is)); beq = 1;

% suppress optimization message

options = optimset(’Display’, ’off’);

% column vector for initial weight

w3 = fmincon(@(w)compute_pvar(w, C_is*252), w0, [], [], Aeq, beq, [1, [1, [I,
options);

9 pvar = compute_pvar (w3, C_is*252);

10 fprintf(’The minimum portfolio variance is %.4f.\n’, sqrt(pvar));

11 R hB Rl bt Tl toto e tolo oot lothtototoatotoTo s toloatstotoa s toTolo et To et %o ToTo % %o To et to To %o to To oo To T o

12 7 Step 6

13 7% Aunualized Sharpe Ratio

14 sr0 = compute_sharpe (w0, M_is*252, C_is*252);

15 sr3 = compute_sharpe (w3, M_is*252, C_is*252);

16 Sharpe_Ratio_is = [sr0, sr1, sr2, sr3]

17 7% Aunualized Cumulative Average Return (CAR), i.e. construct Equity Curve

ONOUAWN

18 car0 = cumprod(l + ret_mat_is * w0);
19 carl = cumprod(l + ret_mat_is * wil);
20 car2 = cumprod(l + ret_mat_is * w2);
21 car3 = cumprod (1l + ret_mat_is * w3);

22 CAR_is = [carO(end), cari(end), car2(end), car3(end)]
23 % comnstruct Drawdown Curve

24 dd0 = drawdown(car0);

25 ddl1 = drawdown(carl);

26 dd2 = drawdown(car2);

27 dd3 = drawdown(car3);
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Buy Side: Portfolio O

Performance Checking

[N

% Plot the equity curve

% Setup the In-sample date

date_is = datenum(date(2:(in_length
1))

% figure 1 Benchmark 1/N portfolio
figure (1) ;

subplot (2,1,1)
plot (date_is,
datetick(’x’)
title(’Equity Curve (Benchmark 1/N

portfolio)’)

subplot (2,1,2)
plot (date_is,
datetick(’x’)
title (’Drawdown Curve’)

car0)

ddo)

% figure 2 Portfolio 1
figure (2);

subplot (2,1,1)
plot(date_is,
datetick(’x’)
title (’Equity Curve (Portfolio 1))
subplot (2,1,2)
plot (date_is,
datetick(’x’)
title (’Drawdown Curve’)

carl)

dd1)

v
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% figure 3 Portfolio 2
figure (3);

subplot (2,1,1)
plot (date_is,
datetick (’x’)
title (’Equity Curve (Portfolio 2)7)
subplot (2,1,2)
plot (date_is,
datetick(’x’)
title(’Drawdown Curve’)

car2)

dd2)

% figure 4 Portfolio 3
figure (4);

subplot (2,1,1)
plot (date_is,
datetick (’x’)
title (’Equity Curve
subplot (2,1,2)
plot (date_is,
datetick (’x’)
title(’Drawdown Curve’)

%

car3)
(Portfolio 3)?)

dd3)

BTl to Tl toTo e to o To o to o T To To o To T o o o
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Buy Side: Portf Optimisation

Performance Backtesting

WONOUI A WN R
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% Setp 7

% calculate the Out-of-Smaple mean

M_oos = mean(ret_mat_oos, 1);

% calculate the Out-of-Smaple covariance

C_oos = cov(ret_mat_oos);

% Aunualized Sharpe Ratio

srO_oos = compute_sharpe (w0, M_oos*252, C_oos*252);
srl_oos = compute_sharpe(wl, M_oos*252, C_oos*252);
sr2_oos = compute_sharpe (w2, M_oos*252, C_oos*252);
sr3_oos = compute_sharpe (w3, M_oos*252, C_oos*252);
Sharpe_Ratio_oos = [sr0O_oos, srl_oos, sr2_oos, sr3_oos]
% Aunualized Cumulative Average Return (CAR), i.e. construct Equity Curve
car0O_oos = cumprad(l + ret_mat_oos * w0);

carl_oos = cumprcd(i + ret_mat_oos * wl);

car2_oos = cumprod(i + ret_mat_oos * w2);

car3_oos = cumprod(l + ret_mat_oos * w3);

CAR_oos = [carO_oos(end), carl_oos(end), car2_oos(end), car3_oos(end)]
% construct Drawdown Curve

dd0_oos = drawdown(car0O_oos);

dd1_oos = drawdown(carl_oos);

dd2_oos = drawdown(car2_oos);

dd3_oos = drawdown(car3_oos);
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Buy Side: Portfolio Optimisation

Functions Used (1)

B WN

N U A WN R

@ Calculate the Portfolio Variance

function [ result ] = compute_pvar (weights, Covariance)
% weights are suppose to be a column vector

result = weights’ * Covariance * weights;

end

@ Calculate the Portfolio Sharpe Ratio

function [ result ] = compute_sharpe( weights, mean, covarience )
% weights are suppose to be a column vector

pvar = weights’ * covarience * weights;

pret = mean * weights;

% assumes rf = 3% annually

result = (pret - 0.03) / sqrt(pvar);

end
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Buy Side: Portfolio Optimisation

Functions Used (2)

@ Construct Drawdown Curve

1 function [ dd_curve ] = drawdown( equity_curve )
2

3 high_water_mark = 1;

4 dd_curve = zeros(length(equity_curve),1);

5

6 for i = 1:length(equity_curve)

7

8 if equity_curve(i) > high_water_mark

9 high_water_mark = equity_curve(i);

10 end

11

12 drawdown = (high_water_mark - equity_curve(i)) / equity_curve(i);
13 dd_curve (i) = drawdown;

14

15 end
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Buy Side: Portfolio Optimisation

Additional Exercise

Simulate GBM with NGARCH vol.

Estimate Parameters for GBM with NGARCH.
Simulate GBM with Jumps.

Estimate Parameters GBM with Jumps.

Find out the Moving-Average Crossover Strategy for Buy Side
Portfolio Optimisation Case.

Feel free to email me (h.gong.12@ucl.ac.uk) and Join the Crescent Quant
for the additional materials. (http://www.crescentquant.com)
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