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Introduction Financial Industry and Products

Financial Industry

Finance: Putting the ‘RIGHT’ money in the ‘RIGHT’ place with the
‘RIGHT’ amount for the ‘RIGHT’ price.

Financial Market
Based on Market levels

Primary Market
Secondary Market

Based on security types

Money Market (Purely Short-term Funds)
Capital Market (Equity Market/Debt Market)
Derivative Market
Financial Service Market ( ATM, Credit Cards, Credit Rating, Stock
Broking etc.)
Depository Market (Giving loans or purchasing other debt instruments
such as treasure bills.)
Non-Depository market (Mutual Funds, Insurance Companies, Pension
Funds, Brokerage Firms etc.)
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Introduction Financial Products

Financial Products and its Stochastic Modelling

Commodities [Ornstein-Uhlenbeck type models (with Jumps)]

Currencies [Stochastic Volatility Models: The Heston Model, The
Stein and Stein Model, Longstaff’s double square root Model, Scott’s
exponential Ornstein-Uhlenbeck model, The SABR model]

Indices/ETFs [GBM with Jump Diffusion Models, SV models:
GARCH Models]

Shares/Equities [Similar to Indices/ETFs]

Treasuries/Bonds [Short-rate model: Merton’s model, The Vasicek
model, The Rendleman-Bartter model, The Cox-Ingersoll-Ross model,
The Ho-Lee model, The Hull-White model, The Black-Derman-Toy
model, The Black-Karasinski model, The Kalotay-Williams-Fabozzi
model , The Longstaff-Schwartz model, The Chen model]
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Introduction Equities/ETFs and their Derivatives

Equities/ETFs and their Derivatives

Flow of funds (Assets/Liabilities)

What is the role of Investment Banks?
What is the role of Exchanges and Dealers?
What is the role of Hedge Funds/Asset Managers?

Sell Side

Derivative(Option) Pricing & Risk Sensitivities

Buy Side

Portfolios Optimisation
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Sell Side: Option Pricing Downloading the data

Downloading the data from Yahoo! Finance

Yahoo! Finance

Ticker Symbol/Stock Symbol

Date, Open, High, Low, Close, Volume, Adj Close

Start/End Date

Try price2ret & ret2price !

1 % Connect to Yahoo! Finance.

2 c = yahoo;

3 % Obtain the adjusted closing price for the ’Apple Inc.’ equity from 01/01/2007

to 01/12/2015.

4 ClosePrice = fetch(c,’AAPL’,’Adj Close’,’01/01/2007 ’,’01/12/2015 ’);

5 % Set the price equal to the adjusted closing price in the second column

6 % and flip array in up/down direction

7 Price = flipud(ClosePrice (:,2));

8 % Close Yahoo! connection.

9 close(c)
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Sell Side: Option Pricing Modelling with Basic Stochastic Processes: GBM

The Geometric Brownian Motion

0 50 100 150 200 250
80

85

90

95

100

105

110

115

120

Figure: MATLAB
Simulate GBM Sample
Paths.

1 function S= GBM_simulation(N_Sim ,T,dt,mu ,sigma ,S0)

2 mean=(mu -0.5* sigma ^2)*dt/T;

3 S=S0*ones(N_Sim ,T + 1);

4 BM=sigma*sqrt(dt/T)*normrnd (0,1,N_Sim ,T);

5 S(:,2:end)=S0* exp(cumsum(mean+BM ,2));

6
7 for i=1: N_Sim

8 plot ([0:dt:T],S(i,:));

9 hold on;

10 end

11 hold off;

12 end

13
14 %S= GBM_simulation (10 , 250 , 1 , 0.01 , 0.1 , 100);
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Sell Side: Option Pricing Modelling with Basic Stochastic Processes: GBM

Parameter Estimation

Time Series Model

Autocorrelation function (ACF)

Partial Auto-Correlation function (PACF)

Maximum Likelihood Estimation

1 function [mu sigma ]= GBM_calibration(Price ,T,dt,params)

2 Ret=price2ret(Price);

3 n=length(Ret);

4 options=optimset (’MaxFunEvals ’ ,100000,’MaxIter ’ ,100000);

5 fminsearch(@normalLL ,params ,options);

6 % The MLE Function for iid Normal Distribution.

7 function mll=normalLL (params)

8 mu=params (1);

9 sigma=abs(params (2));

10 ll=n* log (1/ sqrt (2*pi* dt/T)/ sigma )+ sum(-(Ret -mu*dt/T).^2/2/( dt/T

*sigma ^2));

11 mll=-ll;

12 end

13 end

14 % Initial params =[0 0];
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Sell Side: Option Pricing Option Pricing and Risk Sensitivities

Option Pricing via BSM model

Pricing Equity Derivatives and Greeks Calculation

1 % To illustrate toolbox Black -Scholes functions (check assumptions)

2 [OptCall , OptPut] = blsprice (100, 95, 0.10, 0.25, 0.50, 0);

3 % Delta of a derivative security is the rate of change of its price relative to

4 % the price of the underlying asset.

5 [CallVal , PutVal] = blsdelta (100, 95, 0.10, 0.25, 0.50, 0);

6 % Gamma of a derivative security is the rate of change of delta relative to

7 % the price of the underlying asset.

8 GammaVal = blsgamma (100, 95, 0.10, 0.25, 0.50, 0);

9 % Vega is the rate of change in the price of a derivative security relative to

10 % the volatility of the underlying security.

11 VegaVal = blsvega (100, 95, 0.10, 0.25, 0.50, 0);

12 % Lambda , also known as the elasticity of an option , represents the percentage

change

13 % in the price of an option relative to a 1% change in the price of the

underlying security.

14 [LamCall , LamPut] = blslambda (100, 95, 0.10, 0.25, 0.50, 0);

15 % The implied volatility of an option is the standard deviation that makes

16 % an option price equal to the market price.

17 Volatility = blsimpv (100, 95, 0.10, 0.25, OptCall);

Try the ‘AAPL’ data and price the one year option @ K=120.

Check the value in Thomson Reuters and calculate the Implied Vol.
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Buy Side: Portfolio Optimisation

Portfolio Optimization and Performance Backtesting

In this section, we are going to find out how to construct a optimal
portfolio in a universe of 30 US stocks and backtest the performance
of several portfolio strategies using historical data.

The dataset ‘equity dataset 30.csv’ can be downloaded from
http://www.homepages.ucl.ac.uk/~ucahgon/. It contains the
daily closing prices (adjusted for stock splits and cash/stock
dividends) for 30 blue-chip stocks over past 10 years. The dataset has
31 columns in total, with the first column being the date index in ISO
format (yyyy-mm-dd) and the rest 30 columns containing price data
for 30 stocks respectively.
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Buy Side: Portfolio Optimisation

Portfolio Optimization

Step 1 Import the csv data file ‘equity dataset 30.csv’ into Matlab, and
extract the numeric price data into a variable named ‘px mat’. ‘px
mat’ should be a T-by- N matrix where T = 2641 and N = 30.

Step 2 Calculate the log return series for all 30 stocks according to formula
Ri ,t = log(Pi ,t)− log(Pi ,t−1), where i ∈ [1, 30] and t ∈ [2, 2641].

Step 3 Split the whole sample period into In-Sample (training dataset, from
2005-01-01 to 2012-12-31) and Out-of-Sample (testing dataset, from
2013-01-01 to 2015-06- 30) periods. Use two variables ‘ret mat is’
and ‘ret mat oos’ to store the stock return matrix for In-Sample and
Out-of-Sample periods respectively.

Step 4 Calculate the historical average daily return for each stock and the
historical covariance matrix by using only the In-Sample dataset.
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Buy Side: Portfolio Optimisation

Data Preprocessing

1 % Portfolio Optimization and Performance Backtesting %

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Step 1

4 % import the csv data file

5 Table = readtable(’equity_dataset_30.csv’,’ReadVariableNames ’,true ,’ReadRowNames

’,true);

6 % extract the numeric price data

7 px_mat = table2array(Table);

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 % Step 2

10 % calculate the log return. Note: here T will change to 2640

11 ret_mat = diff(log(px_mat));

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % Step 3

14 % calculate the in sample size of In -Sample

15 date = Table.Properties.RowNames;

16 in_length = length(find(datenum(date)<datenum(’2013 -01 -01’)));

17 % split the sample into In-Sample and Out -of-Sample , delete the first day

18 ret_mat_is = ret_mat (1: in_length -1,:);

19 ret_mat_oos = ret_mat (( in_length):end ,:);

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 % Step 4

22 % calculate the In -Smaple mean

23 M_is = mean(ret_mat_is , 1);

24 % calculate the In -Smaple covariance

25 C_is = cov(ret_mat_is);

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Buy Side: Portfolio Optimisation

Portfolio Optimization and Performance Backtesting

Step 5 Consider the following 4 portfolios:
Benchmark 1/N portfolio: allocate capital equally.
Portfolio 1: Maximize Sharpe ratio (short-selling is allowed).
Portfolio 2: Maximize Sharpe ratio (no short-selling).
Portfolio 3: Minimize portfolio variance (short-selling is allowed).

Step 6 Now we have 4 portfolio trading strategies, that is we can allocate
capital according to the optimal weights calculated in Step 5. Assume
that we can buy/sell any fraction of shares and ignore the transaction
cost associated with rebalancing portfolio daily. Backtest the strategy
performances of benchmark 1/N portfolio and optimized portfolio 1, 2
and 3 using In-sample dataset. Construct and plot the equity curve
and drawdown curve. Calculate annualized Sharpe Ratio and
annualized Cumulative Average Return (CAR) for each strategy.

Step 7 Repeat the same backtesting process in Step 6 using out-of-sample
dataset. Compare the out-of-sample performance with in-sample
performance for each portfolio strategy.
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Buy Side: Portfolio Optimisation

Portfolio Optimization (1)

1 % Step 5

2 % Benchmark 1/N portfolio

3 w0 = repmat (1/ length(M_is),length(M_is) ,1);

4 % Portfolio 1: Maximize Sharpe ratio

5 % short -selling is allowed , i.e. weights can be negative

6 % constraint: sum of weights is 1

7 Aeq = ones(1,length(M_is)); beq = 1;

8 % suppress optimization message

9 options = optimset(’Display ’, ’off’);

10 % NOTE: use - to convert max optimization to a min optimization problem

11 w1 = fmincon(@(w)-compute_sharpe(w, M_is *252, C_is *252), w0, [], [], Aeq , beq ,

[], [], [], options);

12 sr1 = compute_sharpe(w1, M_is *252, C_is *252);

13 fprintf(’The maximized Sharpe Ratio is %.4f.\n’, sr1);

14 % Portfolio 2: Maximize Sharpe ratio

15 % short -selling is not allowed , i.e. weights should be non -negative

16 % constraint: sum of weights is 1

17 Aeq = ones(1,length(M_is)); beq = 1;

18 % constraint: weights are non -negative

19 lb = zeros (1 ,30);

20 ub = ones(1,length(M_is));

21 % suppress optimization message

22 options = optimset(’Display ’, ’off’);

23 % NOTE: use - to convert max optimization to a min optimization problem

24 w2 = fmincon(@(w)-compute_sharpe(w, M_is *252, C_is *252), w0, [], [], Aeq , beq ,

lb, ub , [], options);

25 sr2 = compute_sharpe(w2, M_is *252, C_is *252);

26 fprintf(’The maximized Sharpe Ratio is %.4f.\n’, sr2);
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Buy Side: Portfolio Optimisation

Portfolio Optimization (2)

1 % Portfolio 3: Minimize portfolio variance

2 % short -selling is allowed , i.e. weights can be negative

3 % constraint: sum of weights is 1

4 Aeq = ones(1, length(M_is)); beq = 1;

5 % suppress optimization message

6 options = optimset(’Display ’, ’off’);

7 % column vector for initial weight

8 w3 = fmincon(@(w)compute_pvar(w, C_is *252), w0, [], [], Aeq , beq , [], [], [],

options);

9 pvar = compute_pvar(w3, C_is *252);

10 fprintf(’The minimum portfolio variance is %.4f.\n’, sqrt(pvar));

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 % Step 6

13 % Aunualized Sharpe Ratio

14 sr0 = compute_sharpe(w0, M_is *252, C_is *252);

15 sr3 = compute_sharpe(w3, M_is *252, C_is *252);

16 Sharpe_Ratio_is = [sr0 , sr1 , sr2 , sr3]

17 % Aunualized Cumulative Average Return (CAR), i.e. construct Equity Curve

18 car0 = cumprod (1 + ret_mat_is * w0);

19 car1 = cumprod (1 + ret_mat_is * w1);

20 car2 = cumprod (1 + ret_mat_is * w2);

21 car3 = cumprod (1 + ret_mat_is * w3);

22 CAR_is = [car0(end), car1(end), car2(end), car3(end)]

23 % construct Drawdown Curve

24 dd0 = drawdown(car0);

25 dd1 = drawdown(car1);

26 dd2 = drawdown(car2);

27 dd3 = drawdown(car3);
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Buy Side: Portfolio Optimisation

Performance Checking

1 % Plot the equity curve

2 % Setup the In-sample date

3 date_is = datenum(date (2:( in_length

)));

4
5 % figure 1 Benchmark 1/N portfolio

6 figure (1);

7 subplot (2,1,1)

8 plot(date_is , car0)

9 datetick(’x’)

10 title(’Equity Curve (Benchmark 1/N

portfolio)’)

11 subplot (2,1,2)

12 plot(date_is , dd0)

13 datetick(’x’)

14 title(’Drawdown Curve’)

15
16 % figure 2 Portfolio 1

17 figure (2);

18 subplot (2,1,1)

19 plot(date_is , car1)

20 datetick(’x’)

21 title(’Equity Curve (Portfolio 1)’)

22 subplot (2,1,2)

23 plot(date_is , dd1)

24 datetick(’x’)

25 title(’Drawdown Curve’)

1 % figure 3 Portfolio 2

2 figure (3);

3 subplot (2,1,1)

4 plot(date_is , car2)

5 datetick(’x’)

6 title(’Equity Curve (Portfolio 2)’)

7 subplot (2,1,2)

8 plot(date_is , dd2)

9 datetick(’x’)

10 title(’Drawdown Curve’)

11
12 % figure 4 Portfolio 3

13 figure (4);

14 subplot (2,1,1)

15 plot(date_is , car3)

16 datetick(’x’)

17 title(’Equity Curve (Portfolio 3)’)

18 subplot (2,1,2)

19 plot(date_is , dd3)

20 datetick(’x’)

21 title(’Drawdown Curve’)

22 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Hui Gong University College London 17 December, 2015 16 / 20



Buy Side: Portfolio Optimisation

Performance Backtesting

1 % Setp 7

2 % calculate the Out -of -Smaple mean

3 M_oos = mean(ret_mat_oos , 1);

4 % calculate the Out -of -Smaple covariance

5 C_oos = cov(ret_mat_oos);

6 % Aunualized Sharpe Ratio

7 sr0_oos = compute_sharpe(w0, M_oos *252, C_oos *252);

8 sr1_oos = compute_sharpe(w1, M_oos *252, C_oos *252);

9 sr2_oos = compute_sharpe(w2, M_oos *252, C_oos *252);

10 sr3_oos = compute_sharpe(w3, M_oos *252, C_oos *252);

11 Sharpe_Ratio_oos = [sr0_oos , sr1_oos , sr2_oos , sr3_oos]

12 % Aunualized Cumulative Average Return (CAR), i.e. construct Equity Curve

13 car0_oos = cumprod (1 + ret_mat_oos * w0);

14 car1_oos = cumprod (1 + ret_mat_oos * w1);

15 car2_oos = cumprod (1 + ret_mat_oos * w2);

16 car3_oos = cumprod (1 + ret_mat_oos * w3);

17 CAR_oos = [car0_oos(end), car1_oos(end), car2_oos(end), car3_oos(end)]

18 % construct Drawdown Curve

19 dd0_oos = drawdown(car0_oos);

20 dd1_oos = drawdown(car1_oos);

21 dd2_oos = drawdown(car2_oos);

22 dd3_oos = drawdown(car3_oos);
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Buy Side: Portfolio Optimisation

Functions Used (1)

Calculate the Portfolio Variance

1 function [ result ] = compute_pvar(weights , Covariance)

2 % weights are suppose to be a column vector

3 result = weights ’ * Covariance * weights;

4 end

Calculate the Portfolio Sharpe Ratio

1 function [ result ] = compute_sharpe( weights , mean , covarience )

2 % weights are suppose to be a column vector

3 pvar = weights ’ * covarience * weights;

4 pret = mean * weights;

5 % assumes rf = 3% annually

6 result = (pret - 0.03) / sqrt(pvar);

7 end
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Buy Side: Portfolio Optimisation

Functions Used (2)

Construct Drawdown Curve

1 function [ dd_curve ] = drawdown( equity_curve )

2
3 high_water_mark = 1;

4 dd_curve = zeros(length(equity_curve) ,1);

5
6 for i = 1: length(equity_curve)

7
8 if equity_curve(i) > high_water_mark

9 high_water_mark = equity_curve(i);

10 end

11
12 drawdown = (high_water_mark - equity_curve(i)) / equity_curve(i);

13 dd_curve(i) = drawdown;

14
15 end
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Buy Side: Portfolio Optimisation

Additional Exercise

Simulate GBM with NGARCH vol.

Estimate Parameters for GBM with NGARCH.

Simulate GBM with Jumps.

Estimate Parameters GBM with Jumps.

Find out the Moving-Average Crossover Strategy for Buy Side
Portfolio Optimisation Case.

Feel free to email me (h.gong.12@ucl.ac.uk) and Join the Crescent Quant
for the additional materials. (http://www.crescentquant.com)
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