The Heston Model

Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/

May 6, 2014

イロト イヨト イヨト イヨト

æ

Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ The Heston Model

Outline

Introduction Stochastic Volatility Monte Carlo simulation of Heston Additional Exercise

Introduction

Stochastic Volatility

Generalized SV models The Heston Model Vanilla Call Option via Heston

Monte Carlo simulation of Heston

Itô's lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA

Additional Exercise

Introduction

- 1. Why the Black-Scholes model is not popular in the industry?
- 2. What is the stochastic volatility models? Stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed.

- 4 回 2 - 4 □ 2 - 4 □

æ

Generalized SV models The Heston Model Vanilla Call Option via Heston

< 同 > < 臣 > < 臣 >

A general expression for non-dividend stock with stochastic volatility is as below:

$$dS_t = \mu_t S_t dt + \sqrt{v_t} S_t dW_t^1 , \qquad (1)$$

$$dv_t = \alpha(S_t, v_t, t)dt + \beta(S_t, v_t, t)dW_t^2, \qquad (2)$$

with

$$dW_t^1 dW_t^2 = \rho dt \; ,$$

where S_t denotes the stock price and v_t denotes its variance. **Examples:**

- Heston model
- SABR volatility model
- GARCH model
- ► 3/2 model
- Chen model

Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ The Heston Model

Generalized SV models The Heston Model Vanilla Call Option via Heston

The Heston model is a typical Stochastic Volatility model which takes $\alpha(S_t, v_t, t) = \kappa(\theta - v_t)$ and $\beta(S_t, v_t, t) = \sigma \sqrt{v_t}$, i.e.

$$dS_t = \mu S_t dt + \sqrt{v_t} S_t dW_{1,t} , \qquad (3)$$

$$dv_t = \kappa(\theta - v_t)dt + \sigma\sqrt{v_t}dW_{2,t} , \qquad (4)$$

with

$$dW_{1,t}dW_{2,t} = \rho dt , \qquad (5)$$

イロン イヨン イヨン イヨン

where θ is the long term mean of v_t , κ denotes the speed of reversion and σ is the volatility of volatility. The instantaneous variance v_t here is a CIR process (square root process).

Generalized SV models The Heston Model Vanilla Call Option via Heston

Let $x_t = \ln S_t$, the risk-neutral dynamics of Heston model is

$$dx_t = \left(r - \frac{1}{2}v_t\right)dt + \sqrt{v_t}dW_{1,t}^*, \qquad (6)$$

$$dv_t = \kappa^* (\theta^* - v_t) dt + \sigma \sqrt{v_t} dW_{2,t}^* , \qquad (7)$$

with

$$dW_{1,t}^* dW_{2,t}^* = \rho dt . (8)$$

イロン イヨン イヨン イヨン

where $\kappa^* = \kappa + \lambda$ and $\theta^* = \frac{\kappa\theta}{\kappa + \lambda}$. Using these dynamics, the probability of the call option expires in-the-money, conditional on the log of the stock price, can be interpreted as risk-adjusted or risk-neutral probabilities. Hence,

$$F_j(x, v, T; \ln K) = Pr(x(T) \ge \ln K | x_t = x, v_t = v)$$

Generalized SV models The Heston Model Vanilla Call Option via Heston

The price of vanilla call option is:

$$C(S, v, t) = SF_1 - e^{-r(T-t)}KF_2$$
, (9)

where F_1 and F_2 should satisfy the PDE (for j = 1, 2)

$$\frac{1}{2}v\frac{\partial^{2}F_{j}}{\partial x^{2}} + \rho\sigma v\frac{\partial^{2}F_{j}}{\partial x\partial v} + \frac{1}{2}\sigma^{2}v\frac{\partial^{2}F_{j}}{\partial v^{2}} + (r + u_{j}v)\frac{\partial F_{j}}{\partial x} + (a_{j} - b_{j}v)\frac{\partial F_{j}}{\partial v} + \frac{\partial F_{j}}{\partial t} = 0.$$
(10)

イロト イヨト イヨト イヨト

æ

The parameter in Equation (10) is as follows

$$u_1 = \frac{1}{2},$$
 $u_2 = -\frac{1}{2},$ $a = \kappa\theta,$ $b_1 = \kappa + \lambda - \rho\sigma,$ $b_2 = \kappa + \lambda.$

Itô's lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA

The simulated variance can be inspected to check whether it is negative (v < 0). In this case, the variance can be set to zero (v = 0), or its sign can be inverted so that v becomes -v. Alternatively, the variance process can be modified in the same way as the stock process, by defining a process for natural log variances by using Itô's lemma

$$d\ln v_t = \frac{1}{v_t} \left(\kappa^* (\theta^* - v_t) - \frac{1}{2} \sigma^2 \right) dt + \sigma \frac{1}{\sqrt{v_t}} dW_{2,t}^* .$$
 (11)

Itô's lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA

The Heston model can be discretized as following

$$\ln S_{t+\Delta t} = \ln S_t + \left(r - \frac{1}{2}v_t\right) \Delta t + \sqrt{v_t} \sqrt{\Delta t} \epsilon_{S,t+1} ,$$

$$\ln v_{t+\Delta t} = \ln v_t + \frac{1}{v_t} \left(\kappa^*(\theta^* - v_t) - \frac{1}{2}\sigma^2\right) \Delta t + \sigma \frac{1}{\sqrt{v_t}} \sqrt{\Delta t} \epsilon_{v,t+1} .$$

Shocks to the volatility, $\epsilon_{v,t+1}$, are correlated with the shocks to the stock price process, $\epsilon_{S,t+1}$. This correlation is denoted ρ , so that $\rho = Corr(\epsilon_{S,t+1}, \epsilon_{v,t+1})$ and the relationship between the shocks can be written as

$$\epsilon_{\mathbf{v},t+1} = \rho \epsilon_{\mathbf{S},t+1} + \sqrt{1 - \rho^2} \epsilon_{t+1}$$

where ϵ_{t+1} are independently with $\epsilon_{S,t+1}$.

Itô's lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA

・ロン ・四 と ・ ヨ と ・ ヨ と

æ

He	ston (1993) Call Price		
by	Monte Carlo		
Sp	ot Price (S)	100	
Str	ike Price (K)	100	
Ris	sk Free Rate (r)	0.05	
Tir	me to Maturity (T – t)	30	
Rh	ο (ρ)	-0.7	
Ka	рра (к)	2	
Th	eta (θ)	0.01	
Lai	mbda (λ)	0.05	
Va	latility of Variance (σ)	0.1	
Cu	rrent variance (v)	0.01	
Nu	mber of Simulations	5,000	
He	ston Call Price	1.3444	

Figure: Heston (1993) Call Price by Monte Carlo

Itô's lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA

イロン イボン イヨン イヨン 三日

Option Base 1

```
' Heston Call Price by Monte Carlo Simulation
Function HestonMC(kappa, theta, lambda, rho, sigmay, davnum, startS, r, starty, K, ITER)
Dim allS() As Double, Stock() As Double
simPath = 0
ReDim allS(davnum) As Double, Stock(ITER) As Double
deltat = (1 / 365)
For itcount = 1 To ITER
   lnSt = Log(startS)
   lnvt = Log(startv)
    curv = startv
    curS = startS
        For daycnt = 1 To daynum
            e = Application.NormSInv(Rnd)
            eS = Application.NormSInv(Rnd)
            ev = rho \star eS + Sar(1 - rho \wedge 2) \star e
            'update the stock price
            lnSt = lnSt + (r - 0.5 * curv) * deltat + Sgr(curv) * Sgr(deltat) * eS
            curS = Exp(lnSt)
            lnvt = lnvt + (1 / curv) * ((kappa + lambda) * (kappa * theta / (kappa + lambda) - curv)
                   - 0.5 * sigmay ^ 2) * deltat + sigmay * (1 / Sgr(curv)) * Sgr(deltat) * ev
            curv = Exp(lnvt)
            allS(davcnt) = curS
        Next davcnt
    simPath = simPath + Exp((-davnum / 365) * r) * Application.Max(allS(davnum) - K. 0)
Next itcount
  HestonMC = simPath / ITER
End Function
```

Figure: VBA code for Heston (1993) Call Price by Monte Carlo

Additional Exercise

Use the Closed-Form Approach to implement Heston Call & Put.

イロト イヨト イヨト イヨト

æ

Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ The Heston Model