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Symplectic Manifolds
-Classical Mechanics

Newton’s second law is the second order ODE

mq̈ = F (q)

In celestial mechanics, one is primarily concerned with conservative
force fields , i.e. we assume that work done in moving a particle
from one position to other is independent of the path.
Mathematically, this means that the vector valued function F (q) is
given as a gradient

F (q) = −∇qV

of a scalar function V .

Ex. Consider F (q1, q2) = q2∂q1 − q1∂q2 on R2. Is it conservative?
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In the Hamiltonian formulation, we can write equations of motion
as

q̇ = ∂H/∂p (1)

ṗ = −∂H/∂q (2)

where p = mq̇ is the momentum and H(q, p) is the Hamiltonian
function given by the sum of kinetic and potential energy:

H(q, p) =
p2

2m
+ V (q)

Note that if V (q) = const., q̇ = const.. This is the law of inertia.
In particular, the trajectories are “geodesics” traversed so as to
keep the energy, H, constant.
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Hamilton (1835) H : R2n → R, p = (p1, . . . , pn), q = (q1, . . . , qn).

q̇ = ∂H/∂p

ṗ = −∂H/∂q

The phase flow ϕH
t of H is the one-parameter group of

transformations R2n → R2n

(p(0), q(0)) → (p(t), q(t))

For any function f : R2n → R, classical observable, we determine
the evolution ft = f (p(t), q(t)) of such f ,

dft
dt

= {H, ft}

where

{H, f } =
∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p

Energy conservation law: {H,H} = 0.
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The Poisson bracket is antisymmetric, and satisfies the Jacobi
identity

{{f , g}, h}+ {{g , h}, f }+ {{h, f }, g} = 0

We can express an anti-symmetric bracket via an anti-symmetric
matrix ηij

{f , g}(x) = ηij(x)
∂f

∂x i
∂g

∂x j

To understand what Jacobi identity means, let A = O(R2n) be
algebra of classical observables. Define one-parameter family of
operators

Ut : A → A

f → ft

Ex. Jacobi identity holds if and only if Ut is automorphism of A
that respects the Poisson bracket (for any H).
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Besides the Jacobi, we also have the Leibniz rule:

{H,FG} = {H,F}G + F{H,G}
In terms of evolution with respect to H, this simply says

d(FG )/dt = (dF/dt)G + F (dG/dt)

Definition: A mechanical system is a Poisson bracket { , } on the
algebra of differentiable functions O(M) on some space M called
the phase space and a Hamiltonian function H.

Noether’s theorem: If F is a symmetry, i.e {F ,H} = 0, then its
conserved {H,F} = 0.
Poisson’s theorem: If F ,G are conservation laws (i.e
{H,F} = {H,G} = 0), then {F ,G} is also a conservation law
({H, {F ,G}} = 0).

Ex. Describe the motion for the harmonic oscillator
H(p, q) = p2

2m +k q2

2 , where k is the rigidity coefficient of the string.
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Symplectic Manifolds

If det(ηij) ̸= 0, then define

ω = ηijdx
i ∧ dx j

Then, Jacobi identity holds if and only if dω = 0.

Def. A manifold M equipped with a non-degenerate closed 2-form
ω is called a symplectic manifold.

Ex. Show that a 2-form ω on M2n is non-degenerate if and only if
ωn is a volume form on M.
Ex. Show that on a compact symplectic manifold (M, ω), the class
[ω] ∈ H2(M) is non-zero.
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On R2n with co-ordinates (q1, . . . , qn, p1, . . . , pn) the standard
symplectic structure is defined by

ωstd =
∑
i

dqi ∧ dpi

In terms of the associated Poissson bracket,

{qj , pk} = δjk , {qj , qk} = 0, {pj , pk} = 0

Thm. (Darboux) Any symplectic manifold is locally
symplectomorphic to (R2n, ωstd).
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On a general symplectic manifold M, given a (Hamiltonian)
function H : M → R, we can define a vector field

ω(XH , · ) = dH

XH is called the Hamiltonian vector field, and its flow (motion) is
the Hamiltonian flow associated with H.

Ex. Show that

(O(M), { , }) → (Vect(M), [ , ])

H → XH

is a Lie algebra homomorphism. The image is denoted by
ham(M, ω).
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Examples

Let Q be any smooth manifold, T ∗Q is a symplectic manifold.
Given (q1, . . . , qn) local co-ordinates for Q, and co-ordinates
(p1, . . . , pn) for the fiber, one can construct a 1-form

α =
∑
i

pidqi

Ex. Check that α is intrinsically defined. We define ω = −dα
as the canonical symplectic form on T ∗Q.

Suppose (M, g , J) is Kähler manifold, define
ω(X ,Y ) = g(JX ,Y ), then (M, ω) is symplectic.
G be a real Lie group with Lie algebra g. G acts on g via
adjoint action, and thus also on the dual space g∗. Then
every G -orbit M ⊂ g∗ has a canonical symplectic form: the
corresponding Poisson bracket is given by {x , y} = [x , y ]
where x , y ∈ g are considered as functions on g∗.
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Symplectomorphism group

A vector field X is a Hamiltonian vector field if ιXω is exact. More
generally, a vector field X on M is called symplectic if ιXω is
closed.

If ϕt is a flow of a symplectic vector field, by Cartan’s magic
formula, we have:

d

dt
ϕ∗
tω = LXω = d(ιXω) + ιXdω = 0

Cor. (Liouville’s theorem) Hamiltonian flow ϕH
t : M → M

preserves volume (i.e. Hamiltonian flow is incompressible).
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Def. Symp(M, ω) = {ϕ : M → M : ϕ∗ω = ω}

{X : ιXω ∈ Kerd} = Lie(Symp(M, ω))

Ham(M, ω) ⊂ Symp(M, ω) is the unique subgroup of Symp(M, ω)
with Lie algebra ham(M, ω) = {X : ιXω ∈ Imd}

Ex. Let M be the 2-torus R2/Z2 = {(x , y) mod1 } equipped with
the symplectic form dx ∧ dy . Consider the flow ϕt given by

ẋ = 1, ẏ = α, for α ∈ R

Show that the flow on M is symplectic but not Hamiltonian.

Ex. M as in the previous exercise. Consider the Hamiltonian
H : M → R given by H(x , y) = cos(2πx). Describe the
Hamiltonian flow.
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Integrable systems

By Noether’s theorem, the integral curves of a Hamiltonian flow
are contained in the level sets of the conservations laws, i.e F such
that {H,F} = 0. Such F are also called integrals of motion.

If there are many such independent conservation laws, one can
characterise the motion by intersecting the level sets.

Def. A Hamiltonian (mechanical) system (M2n, ω,H) is
completely integrable if it possesses n integrals of motion
H1 = H,H2, . . . ,Hn such that

i) {Hi ,Hj} = 0 for all i , j ,

ii) µ : M → Rn, x → (H1(x), . . . ,Hn(x)) has no critical points.
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Arnold-Liouville theorem

Thm. Let H1, . . . ,Hn define a completely integrable system on
(M, ω). For b ∈ Rn, let Mb = µ−1(b) where µ = (H1, . . . ,Hn).

If Mb is non-empty and compact, then each of its connected
components is a diffeomorphic to a torus Tn = Rn/Zn

One can choose (angle) co-ordinates (ϕ1, . . . , ϕn) identifying
connected component of Mb with Rn/Zn such that the flows
of the vector field XH1 , . . . ,XHn are linear.
The restriction of the symplectic form to Mb is trivial.
In a neighborhood of Mb, one can choose (action)
co-ordinates (a1, . . . , an) complementary to (ϕ1, . . . , ϕn) such
that the aj are integrals of motion and the symplectic form in
these co-ordinates is given by

ω =
∑

daj ∧ dϕj



Arnold-Liouville theorem

Thm. Let H1, . . . ,Hn define a completely integrable system on
(M, ω). For b ∈ Rn, let Mb = µ−1(b) where µ = (H1, . . . ,Hn).

If Mb is non-empty and compact, then each of its connected
components is a diffeomorphic to a torus Tn = Rn/Zn

One can choose (angle) co-ordinates (ϕ1, . . . , ϕn) identifying
connected component of Mb with Rn/Zn such that the flows
of the vector field XH1 , . . . ,XHn are linear.
The restriction of the symplectic form to Mb is trivial.
In a neighborhood of Mb, one can choose (action)
co-ordinates (a1, . . . , an) complementary to (ϕ1, . . . , ϕn) such
that the aj are integrals of motion and the symplectic form in
these co-ordinates is given by

ω =
∑

daj ∧ dϕj



Arnold-Liouville theorem

Thm. Let H1, . . . ,Hn define a completely integrable system on
(M, ω). For b ∈ Rn, let Mb = µ−1(b) where µ = (H1, . . . ,Hn).

If Mb is non-empty and compact, then each of its connected
components is a diffeomorphic to a torus Tn = Rn/Zn

One can choose (angle) co-ordinates (ϕ1, . . . , ϕn) identifying
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The connected components of the level sets Mb are Lagrangian
tori.

The equations of motion (Hamiltonian flow with respect to
H = H1) in these co-ordinates are given by

ȧj = 0, ϕ̇j = ωj(a), j = 1, . . . , n

for some ωj(a) = dH/daj ∈ R. Thus, the motion on the invariant
torus is conditionally periodic, that is

aj = aj(0) , ϕj(t) = ωj t + ϕj(0)

for some constants ωj = ωj(a(0)).

Def. A submanifold L ⊂ M2n is called isotropic if ω|L = 0 and is
called Lagrangian if in addition dimL = n.

Ex. Show that an isotropic submanifold of M2n has dimL ≤ n.
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ȧj = 0, ϕ̇j = ωj(a), j = 1, . . . , n

for some ωj(a) = dH/daj ∈ R. Thus, the motion on the invariant
torus is conditionally periodic, that is

aj = aj(0) , ϕj(t) = ωj t + ϕj(0)

for some constants ωj = ωj(a(0)).

Def. A submanifold L ⊂ M2n is called isotropic if ω|L = 0 and is
called Lagrangian if in addition dimL = n.

Ex. Show that an isotropic submanifold of M2n has dimL ≤ n.



Moment map

Let G be a connected Lie group acting on a symplectic manifold
(M, ω) by symplectomorphims. We call such an action a
symplectic G -action.

H : M → R any function such that XH is complete, then its
flow defines a symplectic R-action.
More generally, if H1, . . . ,Hk are k commuting functions
({Hi ,Hj} = 0 for all i , j), their flows define a symplectic
Rk -action.

One way to interpret Arnold-Liouville theorem is that we can find
co-ordinates such that a neighborhood of the fiber Tn, can be
identified (symplectically) with Tn × B with B ⊂ Rn and the orbits
of the original system gets identified with Tn × {b}, for b ∈ B. We
shall next study the case there is a global action of a torus.
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Hamiltonian group actions

Given a G -action on M, by linearizing the action, every element
a ∈ g defines a vector field ξa on M. The action is symplectic if
d(ιξaω) = 0 for all a. The correct definition of a global
Hamiltonian action is given as follows:

Def. A symplectic action of G on M is called Hamiltonian if there
exists a map, called the moment map,

µ : M → g∗

such that

For any a ∈ g, the function Ha(x) = ⟨µ(x), a⟩ is the
Hamiltonian for the vector field ξa.
For any a, b ∈ g, {Ha,Hb} = H[a,b]

µ is G -equivariant.

Ex. Show that the last condition is automatic if G is connected.
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Suppose a torus T acts on M2n. Choose a basis ai of the Lie
algebra t = LieT. If we can find Hi such that ιaiω = dHi , then for
a =

∑
i λiai , we can define µ(x) by

⟨µ(x), a⟩ =
∑
i

λiHi (x)

Ex. Let Tn = {(t1, . . . , tn) ∈ Cn||ti | = 1} act on Cn by
(t1, . . . , tn) · (z1, . . . , zn) = (t1z1, . . . , tnzn). Then check that

µ(z1, . . . , zn) = −1

2
(|z1|2, . . . , |zn|2)

is a moment map.



Suppose a torus T acts on M2n. Choose a basis ai of the Lie
algebra t = LieT. If we can find Hi such that ιaiω = dHi , then for
a =

∑
i λiai , we can define µ(x) by

⟨µ(x), a⟩ =
∑
i

λiHi (x)

Ex. Let Tn = {(t1, . . . , tn) ∈ Cn||ti | = 1} act on Cn by
(t1, . . . , tn) · (z1, . . . , zn) = (t1z1, . . . , tnzn). Then check that

µ(z1, . . . , zn) = −1

2
(|z1|2, . . . , |zn|2)

is a moment map.



Convexity

Thm. (Atiyah, Guillemin-Sternberg)
The image of a compact connected symplectic manifold under the
moment map of an (quasi) effective Hamiltonian torus action is a
Delzant polytope. In fact,

µ(M) it is the convex hull of µ(MT),

µ−1(b) is connected for all b ∈ Rn.

Thm. (Delzant) When the torus acting is half the dimension of
the manifold and the action is effective, the polytope determines
the manifold. More precisely, there is a 1-1 correspondence

{ toric manifolds } ↔ { Delzant polytopes }
(M2n, ω,Tn, µ) ↔ µ(M)
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Polytopes

Def. A rational convex polytope P is a subset of Rn defined as the
intersection of halfplanes

Sa,b = {x ∈ Rn : a1x1 + . . .+ anxn ≤ b}, ai ∈ Q, b ∈ Rn

We say that P is a Delzant (unimodular) polytope if it is a convex
rational polytope such that each point on a k-dimensional facet
has a neighborhood isomorphic via an intergral affine
transformation to a neighborhood of the origin in [0,∞)n−k × Rk .

Ex. Let M be compact symplectic manifold with a Hamiltonian
S1-action, prove that there exists a fixed point of the S1-action. In
this case, it is enough to check that Delzant condition at each
vertex for the polytope.
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Examples

Ex. S1 acts on (S2, ωst = dθ ∧ dh) by rotations with moment map
µ = h equal to the height function and moment polytope [−1, 1].

Ex. Consider the T2-action on CP2 given by

(e iθ1 , e iθ2) · [z0, z1, z2] → [z0, e
iθ1z1, e

iθ2z2]

This has moment map

µ[z0, z1, z2] =
−1

2
(

|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2
)

The moment map image is a triangle with vertices
(0, 0), (−1/2, 0), (0,−1/2).
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Examples

Ex. The Lie algebra so(3) can be identified with R3 with the Lie
bracket [a⃗, b⃗] = a⃗× b⃗ (exterior product).
Consider the diagonal action of G = SO(3) on R6 = R3 × R3 by

Φ(x , y) → (Φx ,Φy)

Show that the moment map µ : R6 → so(3)∗ ≃ R3 is given by

µ(x⃗ , y⃗) = x⃗ × y⃗

This is called the angular momentum.



Examples

Ex. Consider the total space of the line bundle O(−1) over CP1,
which can be described explicitly as

{(x , y , [a : b]) ∈ C2 × CP1 : ay = bx}

Construct a Hamiltonian T2 action on this. Compute the moment
map and decribe its image. (Generalize to O(n).)

Ex. Consider the natural action of U(k) on (Ck×n, ωstd) Identify
the Lie algebra u(k) with its dual via the inner product
(A,B) = trace(A∗B). Prove that the moment map for this action
is given by

µ(A) =
i

2
AA∗, for A ∈ Ck×n
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Hamiltonian Reduction

Thm. (Marsden-Weinstein-Meyer) Let (M, ω,G , µ) be a
Hamiltonian G -space for a compact Lie group G . Let p ∈ g∗ be a
regular value of µ and ι : µ−1(p) → M be the inclusion map.
Assume the stabilizer Gp ⊂ G of p acts freely on µ−1(p), then

orbit space Mred = µ−1(p)/Gp is a manifold,

π : µ−1(p) → Mred is a principal Gp-bundle,

there exists a symplectic form ωred on Mred satisfying
ι∗ω = π∗ωred .



Examples

Consider S1 action on Cn+1 diagonally by

e iθ(z0, . . . , zn) = (e iθz0, . . . , e
iθzn)

The moment map is

µ(z0, z1, . . . , zn) = −1

2

∑
i

|zi |2

For every r > 0, we get a symplectic structure on

µ−1(r2/2)/S1 = S2n+1/S1 = CPn

The associated symplectic form is the unique form ωFS such that

π∗ωFS = ωCn+1 |S2n+1

where π : S2n+1 → CPn is the quotient map.



Ex. For the action of U(k) on Ck×n with moment map computed
above show that

µ−1(
Id

2i
)/U(k) = G(k , n)

is the Grassmannian of k-panes in Cn.
Ex. Suppose Q is a smooth manifold with a free proper action of a
Lie group G . Then the corresponding action of G on T ∗X is
Hamiltonian. Compute the moment map. Show that there is a
symplectomorphism

T ∗(X/G ) ≃ µ−1(0)/G



Some other follow-up topics

Morse theory for Hamiltonians

Equivariant cohomology and localization

Relation with GIT (Kempf-Ness)

Infinite-dimensional Hamiltonian reduction (moduli of flat
connections)

Quantization
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