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I Symplectic Manifolds

Newton's second law is the second order ODE

mG = F(q)

In celestial mechanics, one is primarily concerned with conservative
force fields , i.e. we assume that work done in moving a particle
from one position to other is independent of the path.
Mathematically, this means that the vector valued function F(q) is

given as a gradient
F(qg) =—-VgqV

of a scalar function V.

Ex. Consider F(q1,q2) = q20q, — G104, on R?. Is it conservative?



In the Hamiltonian formulation, we can write equations of motion
as

G = OH/0p (1)
p=—0H/dq )

where p = mgq is the momentum and H(gq, p) is the Hamiltonian
function given by the sum of kinetic and potential energy:
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In the Hamiltonian formulation, we can write equations of motion
as

G = OH/0p (1)
p=—0H/dq )

where p = mgq is the momentum and H(gq, p) is the Hamiltonian
function given by the sum of kinetic and potential energy:

2

H(q,p) = 2%7 + V(q)

Note that if V/(q) = const., § = const.. This is the law of inertia.
In particular, the trajectories are “geodesics” traversed so as to
keep the energy, H, constant.
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Hamilton (1835) H:R?” - R, p = (p1,.-.,Pn), = (q1,--.,qn).

qg=0H/op
p=—0H/dq

The phase flow ¢! of H is the one-parameter group of
transformations R?” — R2"

(p(0),4(0)) — (p(t), q(t))

For any function f : R2" — R, classical observable, we determine
the evolution f; = f(p(t), q(t)) of such f,

df;

St _(H,f

dt LA fel
where OHOf OH of
H, )} =2090  9RoT
{H,f} Op 0q Oq Op

Energy conservation law: {H, H} = 0.
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The Poisson bracket is antisymmetric, and satisfies the Jacobi
identity

{{f. g}, h} + {{g, b}, f} +{{h,f},g} =0

We can express an anti-symmetric bracket via an anti-symmetric
matrix n¥ of o
— i £
{f,g}(x) =n"(x) 5555
To understand what Jacobi identity means, let A = O(R?") be
algebra of classical observables. Define one-parameter family of
operators

Ut:A—>A
f—f

Ex. Jacobi identity holds if and only if U; is automorphism of A
that respects the Poisson bracket (for any H).
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Besides the Jacobi, we also have the Leibniz rule:
{H,FG} ={H,F}G + F{H, G}
In terms of evolution with respect to H, this simply says

d(FG)/dt = (dF /dt)G + F(dG/dt)

Definition: A mechanical system is a Poisson bracket {, } on the
algebra of differentiable functions O(M) on some space M called
the phase space and a Hamiltonian function H.

Noether’s theorem: If F is a symmetry, i.e {F, H} =0, then its
conserved {H, F} = 0.

Poisson’s theorem: If F,G are conservation laws (i.e

{H,F} ={H,G} =0), then {F, G} is also a conservation law
({H, {F, G}} = 0).

Ex. Describg} the n210tion for the harmonic oscillator
H(p,q) = -+ k%, where k is the rigidity coefficient of the string.
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I Symplectic Manifolds

If det(n¥) # 0, then define
w = 77,-J-dxi A dx!
Then, Jacobi identity holds if and only if dw = 0.

Def. A manifold M equipped with a non-degenerate closed 2-form
w is called a symplectic manifold.

Ex. Show that a 2-form w on M?" is non-degenerate if and only if
w™ is a volume form on M.

Ex. Show that on a compact symplectic manifold (M, w), the class
[w] € H?(M) is non-zero.
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On a general symplectic manifold M, given a (Hamiltonian)
function H : M — R, we can define a vector field

w(Xy, -) = dH

Xy is called the Hamiltonian vector field, and its flow (motion) is
the Hamiltonian flow associated with H.



On a general symplectic manifold M, given a (Hamiltonian)
function H : M — R, we can define a vector field

w(Xy, -) = dH

Xy is called the Hamiltonian vector field, and its flow (motion) is
the Hamiltonian flow associated with H.

Ex. Show that

(OM), {, }) = (Vect(M), [, ])
H—)XH

is a Lie algebra homomorphism. The image is denoted by
ham(M, w).
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I Examples

m Let @ be any smooth manifold, T*@ is a symplectic manifold.
Given (q1, ..., qn) local co-ordinates for Q, and co-ordinates
(p1, ..., pn) for the fiber, one can construct a 1-form

a = Z pidq;
P

Ex. Check that « is intrinsically defined. We define w = —da
as the canonical symplectic form on T*Q.

m Suppose (M, g, J) is Kdhler manifold, define
w(X,Y)=g(JX,Y), then (M,w) is symplectic.

m G be a real Lie group with Lie algebra g. G acts on g via
adjoint action, and thus also on the dual space g*. Then
every G-orbit M C g* has a canonical symplectic form: the
corresponding Poisson bracket is given by {x,y} = [x, y]|
where x,y € g are considered as functions on g*.
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Def. Symp(M,w) ={¢p: M - M : ¢*w = w}
{X 1 1xw € Kerd} = Lie(Symp(M,w))

Ham(M,w) C Symp(M, w) is the unique subgroup of Symp(M,w)
with Lie algebra ham(M,w) = {X : t.xw € Imd}

Ex. Let M be the 2-torus R?/Z? = {(x,y) modl } equipped with
the symplectic form dx A dy. Consider the flow ¢; given by

x=1 y=a, foraeR
Show that the flow on M is symplectic but not Hamiltonian.

Ex. M as in the previous exercise. Consider the Hamiltonian
H: M — R given by H(x,y) = cos(2mx). Describe the
Hamiltonian flow.
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I Integrable systems

By Noether's theorem, the integral curves of a Hamiltonian flow
are contained in the level sets of the conservations laws, i.e F such
that {H, F} = 0. Such F are also called integrals of motion.

If there are many such independent conservation laws, one can
characterise the motion by intersecting the level sets.

Def. A Hamiltonian (mechanical) system (M?", w, H) is
completely integrable if it possesses n integrals of motion
Hy = H,H,, ..., H, such that

i) {Hi,H;} =0 forall i,j,
i) w:M—R" x — (Hi(x),...,Hs(x)) has no critical points.
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Thm. Let Hi, ..., H, define a completely integrable system on
(M,w). For b € R", let M = u~1(b) where ju = (Hy, ..., Hp).
m If M} is non-empty and compact, then each of its connected
components is a diffeomorphic to a torus T" = R"/Z"

m One can choose (angle) co-ordinates (¢1, ..., ¢,) identifying
connected component of M, with R”/Z" such that the flows
of the vector field Xy, ..., Xy, are linear.

m The restriction of the symplectic form to M, is trivial.

m In a neighborhood of M}, one can choose (action)
co-ordinates (ay, ..., a,) complementary to (¢1,...,®,) such
that the a; are integrals of motion and the symplectic form in
these co-ordinates is given by

w=Y dajAdg;



The connected components of the level sets M, are Lagrangian
tori.

The equations of motion (Hamiltonian flow with respect to
H = H1) in these co-ordinates are given by

éj:07 Qﬁ.j:wj(a)ﬂj:]ﬂ""n

for some wj(a) = dH/daj € R. Thus, the motion on the invariant
torus is conditionally periodic, that is

aj = 3;(0) , &;(t) = wjt+ ¢;(0)

for some constants w; = wj(a(0)).



The connected components of the level sets M, are Lagrangian
tori.

The equations of motion (Hamiltonian flow with respect to
H = H1) in these co-ordinates are given by

éj:07 Qﬁ.j:wj(a)ﬂj:]ﬂ""n

for some wj(a) = dH/daj € R. Thus, the motion on the invariant
torus is conditionally periodic, that is

aj = 3;(0) , &;(t) = wjt+ ¢;(0)

for some constants w; = wj(a(0)).

Def. A submanifold L C M?" is called isotropic if w|L = 0 and is
called Lagrangian if in addition dimL = n.

Ex. Show that an isotropic submanifold of M?" has dimL < n.
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I Moment map

Let G be a connected Lie group acting on a symplectic manifold
(M,w) by symplectomorphims. We call such an action a
symplectic G-action.

m H: M — R any function such that Xy is complete, then its
flow defines a symplectic R-action.

m More generally, if Hy,..., H, are k commuting functions
({Hi, H;} =0 for all i, ), their flows define a symplectic
Rk-action.

One way to interpret Arnold-Liouville theorem is that we can find
co-ordinates such that a neighborhood of the fiber T”, can be
identified (symplectically) with T” x B with B C R" and the orbits
of the original system gets identified with T" x {b}, for b € B. We
shall next study the case there is a global action of a torus.
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a € g defines a vector field £, on M. The action is symplectic if
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I Hamiltonian group actions

Given a G-action on M, by linearizing the action, every element
a € g defines a vector field £, on M. The action is symplectic if
d(te,w) = 0 for all a. The correct definition of a global
Hamiltonian action is given as follows:

Def. A symplectic action of G on M is called Hamiltonian if there
exists a map, called the moment map,

w:M— g

such that
m For any a € g, the function H,(x) = (u(x), a) is the
Hamiltonian for the vector field &,.
m Forany a,b € g, {Ha, Hp} = Ha
m [ is G-equivariant.

Ex. Show that the last condition is automatic if G is connected.
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Suppose a torus T acts on M?". Choose a basis a; of the Lie
algebra t = LieT. If we can find H; such that ¢,,w = dH;, then for
a=)_;\jaj, we can define p(x) by

(1(x),3) = 3" NiHi(x)

Ex. Let T" = {(t1,...,t,) € C"||tj| = 1} act on C" by
(t1,.--,tn) - (z1,...,20) = (t121, ..., tnzn). Then check that

1
w(zi, ... zp) = —§(|21|2, o zal?)

is a moment map.



I Convexity

Thm. (Atiyah, Guillemin-Sternberg)

The image of a compact connected symplectic manifold under the
moment map of an (quasi) effective Hamiltonian torus action is a
Delzant polytope. In fact,

m (M) it is the convex hull of u(MT),
m p1(b) is connected for all b € R”.



I Convexity

Thm. (Atiyah, Guillemin-Sternberg)
The image of a compact connected symplectic manifold under the
moment map of an (quasi) effective Hamiltonian torus action is a
Delzant polytope. In fact,

m (M) it is the convex hull of u(MT),

m p1(b) is connected for all b € R”.
Thm. (Delzant) When the torus acting is half the dimension of
the manifold and the action is effective, the polytope determines
the manifold. More precisely, there is a 1-1 correspondence

{ toric manifolds } <+ { Delzant polytopes }
(M2, 0,7, 1) 5 (M)
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Def. A rational convex polytope P is a subset of R” defined as the
intersection of halfplanes

Sapb={x€eR":aix1+...+anxp, < b},3, €Q,beR"

We say that P is a Delzant (unimodular) polytope if it is a convex
rational polytope such that each point on a k-dimensional facet
has a neighborhood isomorphic via an intergral affine
transformation to a neighborhood of the origin in [0, 00)" % x R,



I Polytopes

Def. A rational convex polytope P is a subset of R” defined as the
intersection of halfplanes

Sapb={x€eR":aix1+...+anxp, < b},3, €Q,beR"

We say that P is a Delzant (unimodular) polytope if it is a convex
rational polytope such that each point on a k-dimensional facet
has a neighborhood isomorphic via an intergral affine
transformation to a neighborhood of the origin in [0, 00)" % x R,

Ex. Let M be compact symplectic manifold with a Hamiltonian
S'-action, prove that there exists a fixed point of the Sl-action. In
this case, it is enough to check that Delzant condition at each
vertex for the polytope.
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I Examples

Ex. St acts on (52, ws; = d A dh) by rotations with moment map
p = h equal to the height function and moment polytope [—1,1].

Ex. Consider the T?-action on CP? given by
(&%, e%2) . [z, 1, 2] — |20, €% 21, €/ 2]
This has moment map

ulz0, 21, 22] = ;1( L1 2l
e 2 Yz 4 |z1]? + |22[? |20]2 + |z1]? + | 22)?

)

The moment map image is a triangle with vertices
(07 O)a (_1/27 O)a (07 _1/2)



I Examples

Ex. The Lie algebra 50(3) can be identified with R® with the Lie
bracket [a, b] = & x b (exterior product).
Consider the diagonal action of G = SO(3) on R® = R3 x R3 by
®(x,y) = (¢x, ¢y)
Show that the moment map p : R® — 50(3)* ~ R? is given by
ux,y) =xxy

This is called the angular momentum.



I Examples

Ex. Consider the total space of the line bundle O(—1) over CP?,
which can be described explicitly as

{(x,y,[a: b]) € C?> x CP! : ay = bx}

Construct a Hamiltonian T? action on this. Compute the moment
map and decribe its image. (Generalize to O(n).)



I Examples

Ex. Consider the total space of the line bundle O(—1) over CP?,
which can be described explicitly as

{(x,y,[a: b]) € C?> x CP! : ay = bx}

Construct a Hamiltonian T? action on this. Compute the moment
map and decribe its image. (Generalize to O(n).)

Ex. Consider the natural action of U(k) on (CK*" wgy) Identify
the Lie algebra u(k) with its dual via the inner product

(A, B) = trace(A*B). Prove that the moment map for this action
is given by

u(A) = éAA*, for A€ Ckxn



I Hamiltonian Reduction

Thm. (Marsden-Weinstein-Meyer) Let (M, w, G, i) be a
Hamiltonian G-space for a compact Lie group G. Let p € g* be a
regular value of y and ¢ : u~%(p) — M be the inclusion map.
Assume the stabilizer G, C G of p acts freely on u~1(p), then

m orbit space M,eq = 1~ 1(p)/ G, is a manifold,

m 7 1 Y(p) = Myeq is a principal G,-bundle,

m there exists a symplectic form w,q on M,y satisfying
W = T Wred.-



I Examples

Consider S! action on C"*! diagonally by

0

eig(zo, ey Zn) = (e"@zo7 o.e zp)

The moment map is

1
w(zo, 21, .., 20) = ) Z \z,-]2

i
For every r > 0, we get a symplectic structure on
’u—l(r2/2)/51 _ S2n+1/51 — CP"
The associated symplectic form is the unique form wgs such that
T *WES = Wentt | g2n41

where 7 : §2"t1 — CP" is the quotient map.



Ex. For the action of U(k) on Ck*" with moment map computed
above show that

u () U(K) = G(k, )

is the Grassmannian of k-panes in C".

Ex. Suppose Q is a smooth manifold with a free proper action of a
Lie group G. Then the corresponding action of G on T*X is
Hamiltonian. Compute the moment map. Show that there is a
symplectomorphism

T*(X/G) = n"(0)/G



I Some other follow-up topics

Morse theory for Hamiltonians
Equivariant cohomology and localization
Relation with GIT (Kempf-Ness)

Infinite-dimensional Hamiltonian reduction (moduli of flat
connections)

Quantization
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