1 Symplectic geometry

1.1 Archimedes’ theorem

Theorem 1.1 (Archimedes). The area of a unit sphere S? is equal to the
area of the cylinder of radius 1 and a height 2.

Exercise 1.2. Assume that the sphere is inscribed in the cylinder. Project
the sphere radially onto the cylinder from the cylinder’s symmetry axis.
Prove that the map preserves the area.

Question 1.3. What about other dimensions?

1.2 Poincare’s last geometric theorem

Theorem 1.4 (Poincare-Birkhoff). Every area and orientation preserving
homeomorphism of an annulus that rotates the two boundaries in opposite
directions has at least two fized points.

Exercise 1.5. Provide an example where the theorem fails when the area-
preserving condition is omitted.

1.3 Symplectic forms
Example 1.6. dz A dy on R?. More generally, on R?",
w= Z dx; N\ dy;. (1)

i=1

w can be used to assign area to any oriented surface in R?",

Exercise 1.7. Calculate w”.

Example 1.8. Let M be a manifold and let T*M be the co-tangent bundle.
There is a canonical/tautological /Liouville, 1-form 6 T*M .

Definition. Let 7 : T*M — M be the projection. For a point (z,q) €
T*M and v € TT*M. Set

0(v) = q(mv).
Example 1.9. M = (R, z), T*M = (R?, (z,y)), 0 = ydz, w = —db.
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Exercise 1.10. Set w = —df. Prove that w" is a volume form.

Definition 1.11. A symplectic form w on an even dimensional manifold M/2?
is a 2-form such that

1. dw = 0.
2. w™ never vanishes.
A map f: M** — M?" is a symplectomorphism if f*w = w.

Exercise 1.12. Let zq, ..., 2, be coordinates in C" with z, = xp +iy,. Take
any complex-analytic submanifold V' C C". Prove that w = ), dai A dyy
restricts to V' as a symplectic form.

1.4 Poincare’s motivation: classical Mechanics

The Newton’s equations of motion can be written

&=-VU(z) (xcRY, U - afunction)
This can be rewritten as linear equation:
r=vy, y=—-VU.
Exercise 1.13. The flow on R?" preserves w = —df, and preserves H =

ty®+ U'. (Hint: use that the Hamiltonian flow preserves symplectic form).

1.5 Hamiltonians

Definition 1.14. Let (M, w) be a symplectic manifold and H (for Hamilto-
nian) be a smooth function on it. The Hamiltonian vector field Xy of H is
the unique vector field Xy satisfying

dH(Y) = w(Xg,Y).
Exercise 1.15. Check that 8(?3(_HH =0. (dH(Xp) = w(Xg, Xn)).

Example 1.16. Consider again the standard symplectic form ) . dx; A dy;.

! This is denoted more often as E - energy.



Yi 8$Z :

_ 9 G}
1. X,, = ~ Xy, = 75—
2 Set H = %21(95@2 + ;)% Then Xy = Zi(—xia% + yi%).

Conjecture 1.17 (Arnold’s conjecture). Let (M,w) be a compact symplectic
manifold. Call a symplectomorphism F : M — M Hamiltonian if it is
generated by a time-dependent Hamiltonian flow. Then

#{ fized points of F'}> #{critical points of a smooth function on M}.

1.6 Hamiltonian reduction, CP", non-squeezing.

Consider Example 1.16(2). Take the level set H = % - the unit sphere S**~1.
The field X generates a circle action on S*"~! and the quotient is CP™ L.

Lemma 1.18. The restricted form wl|sz—1 descends to a symplectic form on
cprt.
Proof. The orbits of the S'-action span the kernel of w|szn—1 and w is invariant
under the action. [

Moral I. Complex projective manifolds are symplectic manifolds.

Moral II The symplectic structure can see the unit sphere - the kernel
of wlgen—1 is tangent to the Hopf fibration.

Two generic smooth balls B; and B; of the same volume f B W= f By W
are not symplectomorphic.

Remark 1.19 (Symplectic cut). Consider the unit ball {H < 1/2} C R**
and quotient its boundary S**~! by the S!'-action. This is CP".

Exercise 1.20. Consider now the set {H > 1/2} and contract all S'-orbits
in it’s boundary S?*~! to points. Prove that the resulting space is a simple
blow up of C™.

Moral. To blow up a point is equivalent to cut out a round ball,

Theorem 1.21 (Gromov’s non-squeezing). It is impossible to symplectically
embed the unit ball {|z| < 1} C C™ into the subset |z1| < a with a < 1.

Proof. 1t’s enough to prove that you can’t embed a unit symplectic ball in
(Big CP™!) x (CP! of area < ).
Embedding symplectic ball=blowing up and change the Kahler class.
The area of the exceptional curve should be positive. [
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1.7 Darboux’s theorem

Theorem 1.22 (Darboux). Let (M?",w) be a 2n-dimensional symplectic
manifold, and let p € M?" be a point. Then there is a coordinate chart
(U, z1,...,%n,Y1,--.,Yn) centered at p such that on U

w= dei A dy;.

Proof. We will use induction.
e Choose as x; any function with dz;(p) # 0.
e Consider the Hamiltonian flow X,,. Le. w(X,,,.) = dz;.

e Take a hypersurface V' through p transversal to X, (p). This will be
the hypersurface y; = 0.

e Define y; in a neighborhood of p as the time needed to reach V' along
the flow of X,,.

e Observe that 1 = y; = 0 is a symplectic submanifold near p. So we
can use induction to find Darboux coordinates xs, ys, ... on it.

e To extend z3,¥s ..., to a neighbourhood of p note that X, and X,
commute.

O
Exercise 1.23. Try to fill in some gaps in the proof, or have a look into

Arnold’s Mathematical methods of classical mechanics.

1.8 What about other k-forms?

Exercise 1.24. For which pairs n > k the action of GL(n,R) on A*R" has
an open orbit?



2 Hamiltonian actions and moment maps

2.1 Back to Archimedes

Consider C" and let again S*"~! be the unit sphere.
Consider the map p: C* — R",

(21,5 20) = (I21], - L))

Observation 2.1. The image u(C") is the positive octant (¢; > 0) C R".

The image of S?~! is a simplex A"~! — the convex hull of points (1,0...,0),...

(0,...,0,1). Furthermore, the map factors through CP"~.

Exercise 2.2 (Archimedes). Prove that that for any open U in the positive
octant
Volen (11~ H(U)) = 7™ Volga (U).

Deduce a similar formula for y : CP"! — A"~ 1,

2.2 Poisson brackets and Hamiltonian actions

Definition 2.3. Let (M,w) be a symplectic manifold. The Poisson bracket
is the following operation on smooth functions:

{f7 g} = w(Xfa Xh)
Exercise 2.4. Show that the Poisson bracket is a Lie bracket.

Definition 2.5. Let g be a Lie algebra and (M, w) be a symplectic manifold.
A Hamiltonian action of g on (M,w) is a Lie algebra homomorphism

g — (C*(M), {, }).

An action of a Lie group G on (M, w) by symplectomorphism is called Hamil-
tonian if the Lie homomorphism g — Vect(M) lifts to a Hamiltonian action
of gon (M,w).

Example 2.6. The action of 7™ on C" = R?" generated by |21/, ..., |z.]*.

Exercise 2.7. Prove that any smooth action of G on M induces a Hamilto-
nian action of G on T*M. (Hint use Liouville form to construct the Hamil-
tonians).



2.3 Moment maps

Definition 2.8. Consider a Hamiltonian action of G on (M, w) and let [ :
g — C°(M) be the associated Lie algebra homomorphism. Then the dual
map? p : M — g* is called the moment map.

Exercise 2.9. Check that the Archimedes’ map (21, ...,2,) — (|23],...,|2%])
is the moment map of a Hamiltonian 7™ action.

2Every point of M defines a linear function on g - i.e., an element of g*.
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