- 1. Show that if a fine moduli space exists for a moduli functor, then it is unique up to isomorphism.
- 2. Prove that there is a fine moduli space parameterizing plane conics, and it is indeed isomorphic to the five-dimensional projective space.
- 3. Show that the cuspidal cubic $y^2 z = x^3 \subset \mathbb{P}^2$ has a natural bijection with \mathbb{P}^1 , but it is not a coarse moduli space for the moduli problem of lines through the origin in the plane.
- 4. Prove that Harder-Narasimhan filtration with respect to μ_H -stability is unique.
- 5. Prove that if two vector bundles E_1 and E_2 are μ_H -semistable, then $E_1 \otimes E_2$ is also μ_H -semistable.
- 6. Let E be a rank r vector bundle on the projective space $\mathbb{P}^n(\mathbb{C})$. Prove that if

$$H^0(\mathbb{P}^n(\mathbb{C}), (\wedge^q E)_{norm}) = 0 \text{ for } 1 \le q \le r-1,$$

then E is μ -stable.

- 7. Prove that there exists a rank 2 μ -stable vector bundle E on $\mathbb{P}^2(\mathbb{C})$ with $c_1(E) = -1$ and $c_2(E) = c_2$ if and only if $c_2 \ge 1$.
- 8. Let E be a rank 2 vector bundle on $\mathbb{P}^3(\mathbb{C})$ associated to a curve $Y \subset \mathbb{P}^3(\mathbb{C})$, i.e. we have a short exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^3(\mathbb{C})}(-c_1(E)) \to E(-c_1(E)) \to I_Y \to 0$$

Show that E is μ -stable if and only if $c_1(E) > 0$ and Y is not contained in any surface of degree $\leq \frac{c_1(E)}{2}$