
1. Introduction

Setup: X=(projective) algebraic variety over C of dimen-
sion n.
A fibration f : X → Y is a proper morphism with con-
nected fibres (i.e. f∗OX = OY ).
Zariski: a birational morphism f : X → Y always admits
connected fibres.
By the Stein factorization theorem, any morphism X → Z
factors through a fibration X → Y so that the induced
morphism Y → Z is finite. Indeed

Y = Spec f∗OX.

Idea: it is usually hard to find fibrations.

Example 1.1. Let X = Pn. Then there are no non-trivial
fibrations f : X → Y . E.g. if n = 2 and f : X → C is a
fibration onto a curve C then any two fibres do not meet
(contradicting Bezout theorem).
More in general, if Pic(X) = Z then there are no non-trivial
fibrations f : X → Y .

Let X be a smooth variety. A divisor on X is a linear
combination of hypersurfaces:

D =
∑

aiSi with dimSi = n− 1.
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We say that D is effective (D ≥ 0) if all the coefficients are
positive.
We may define OX(D) as a rank 1 sheaf associated to D.
Thus, on a projective manifold, we have

Divisors (up to lin. eq.)⇔ Invertible sheaves⇔ Line bundles

Note that:
OX(D1 + D2) = OX(D1)⊗OX(D2) and
OX(−D) = OX(D)∗.
If C is a curve (i.e. n = 1) and D =

∑
aipi is a divisor

then degD =
∑
ai.

If X is a surface (i.e. if n = 2), we may define intersection
product: Pic(X)× Pic(X)→ Z

C1 · C2 = degOX(C1)|C2

With the same trick, if n ≥ 2, D is a divisor (L is a line
bundle) and C is a curve, we can define D · C (L · C). It
turns out that

L · C =

∫
C

c1(L).

Exercise: If Li = OX(Di) we have

D1.D2 =

∫
D1

c1(L2) =

∫
D2

c1(L1) =

∫
S

c1(L1).c1(L2).
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In particularH0(X,OX(D)) is a finite dimensional C-vector
space such that

P(H0(X,OX(D)) =: |D| = {G ∼ D | G ≥ 0}.
is the linear system associated to D.

Fact: if f : X → Y is a fibration then

H0(X, f ∗L⊗m) = H0(Y, L⊗m)

for all m.
A divisor D (or a line bundle L) is base point free, if
for any x ∈ X there exists G ∈ |D| such that x /∈ G
(s ∈ H0(X,L) such that s(x) 6= 0).
Assume that L is base point free. Then we may define:

φL : X → P(H0(X,L)∗)

by, for any x ∈ X , φL(x) is the hyperplane in H0(X,L)
defined by all the sections vanishing at x.
L is very ample if φL is an embedding. L is ample
if there exists m > 0 such that L⊗m is very ample. L is
semi-ample if there exists m > 0 such that L⊗m is base
point free.

Note that if X is projective then by definition X ⊆ PN for
some N . and in particular, L = OX(1)|X is very ample. If
f : X → Y is a fibration and L is very ample (resp. ample)
on Y then f ∗L is base point free (resp. semi-ample) on X .
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In general ifH0(X,L) 6= 0, then we can still define ϕ : X 99K
P(H0(X,L)∗) as a rational map (i.e. defined on a Zariski
open subset of X).
Similarly if W ⊆ H0(X,L) is a subspace, then we can
define

φW : X 99K P(W ).

Example 1.2. Assume X is a surface (i.e. n = 2) and let
C ⊆ X be a curve such that C2 < 0 (e.g. let X be the
blow-up of P2 at one point and let C be the exceptional
divisor. In this case C2 = −1). Then for all m > 0,
|mC| = {mC} and clearly C is not semi-ample (exercise:
check it).

Example 1.3. Let X = P2 and let Z=6 points in general
position in P2. Consider L = OX(3) and

W = {s ∈ H0(X,L) | s|Z = 0} ⊆ H0(X,L) ' C10

Then dimW = 4. Thus

φW : X 99K Y := φW (X) ⊆ P(W ∗) ' P3.

It turns out that Y is a cubic surface which is isomorphic
to P2 blown-up along Z (Exercise: Check it).
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2. How to check if a line bundle (divisor) is
ample (semiample)?

2.1. Algebraic method. Projective varieties admit a lot
of curves. Curves can be used to understand if a line bundle
is ample.

Fact: If L is ample then L · C > 0 for any curve C.
Similarly if L is semi-ample then L · C ≥ 0 for any curve
C.

Example 2.1 (Stupid example). E=elliptic curve. X =
E ×E, p, q ∈ E general points. D = p∗1(p)− p∗1(q). Then
D · C = 0 for any curve C. On the other hand, D is not
semi-ample (if p, q are general). Actually H0(X,mD) = 0
for all D.

Example 2.2 (More interesting example). ∆=unit disk.
Γ irreducible lattice such that X = ∆2/Γ is a smooth sur-
face (called Hilbert modular surface). Note that if
Γ is not irreducible then we could have X = C1 × C2 for
C1, C2 of genus > 1. We have T ∗X = A ⊗ B where A,B
are line bundle such that A ·C > 0 and B ·C > 0 for any
curve C but again H0(X,mA) = H0(X,mB) = 0 for any
curve C.
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Conjecture 2.3 (Abundance Conjecture:). If KX ·C > 0
(resp. ≥ 0) for any curve C then KX is ample (resp.
semi-ample).

Given a curve C ∈ X and a point x ∈ X , we denote by
multxC the multiplicity of C at x (x ∈ C is a smooth
point if and only if multxC = 1).

Theorem 2.4 (Seshadri’s criterion). A divisor D is am-
ple if and only if there exists ε > 0 such that for any
x ∈ X and for any curve C 3 x we have

D · C > εmultxC.

Note that, because of the stupid example, there cannot be
any such criterion to check for semi-ampleness.
Seshadri’s criterion implies that if L is ample and D is nef
then A + D is ample.

Theorem 2.5 (Nakai-Moishezon-Kleiman’s criterion). Let
L be a line bundle on a projective manifold X. Then L
is ample if and only if

LdimV · V > 0

for any irreducible variety V ⊆ X (including V = X).

Note that if L is nef then L is said big if LdimX > 0. This,
in particular implies that

h0(X,mL) = CmdimX + . . .
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for some C > 0. It also implies that there exists m � 0
such that mL = A+D where A is ample and D is effective
(These last two properties make sense even if L is not nef).

2.2. Some conditions:

• Given a line bundle L, we define the base locus of L as

Bs(L) = {x ∈ X | x ∈ D for any D ∈ |L|}.1

Note that Bs(mL) ⊆ Bs(L) for all m. The stable
base locus of L is the intersection

B(L) := ∩m≥1Bs(mL).

Then L is semi-ample if and only if B(L) = ∅.
• (Zariski) If X is normal, L is big and nef then L is

semi-ample if and only if the graded ring

R(X,L) =
⊕

H0(X,mL)

is finitely generated.

Proof. First note that if R = ⊕Rd is a graded ring
then R is finitely generated if and only if any of its
truncations R(m) := ⊕Rmd is finitely generated. As-
sume that L is semi-ample. Let m such that mL is
base point free. It is enough to show that R(X,mL)
is finitely generated. There exists Y and A very ample
on Y such that R(X,mL) is isomorphic to R(Y,A)

1Note that this is just a subset of X, not a subscheme.
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and this is a quotient of the ring of polynomials which
is finitely generated. �

• (Fujita) If X is normal and Z is the stable base locus
of L then L|Z is not ample.
• over Fp, it is hard to find counterexamples of line bun-

dles which are not nef but not semi-ample. In partic-
ular, we do not know any line bundle on a surface X
which is positive on every curve and it is not ample.
• (Keel) in positive characteristic, L is semi-ample if

and only if L|E(L) is semi-ample. Recall that E(L) =
∪L|V is not bigV .

charK = p > 0 ⇒ use Frobenius: B = A + D nef
with A =ample and D ≥ 0
⇒ mB −D is ample and H1(X,mB −D) is evap-

orable, i.e. ∀α ∈ H1(X,mB−D), ∃F : Y → X finite
morphism s.t. F ∗α = 0.

• if X = C×C where C is a curve of genus > 1 and L =
p∗1ωC⊗OX(∆). Then L is big and nef and E(L) = ∆.
Moreover L|∆ = O∆. On the other hand, over C, L is
not semi-ample. Indeed L|2∆ is not torsion.
Nakamaye’s Theorem: over any algebraically closed

field, given L nef and A ample, we may define

B+(L) := ∩ε>0 B(L− εA)
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Then B+(L) = E(L). Note that, in particular, this
implies that B+(L) is a numerical invariant.

2.3. Analytic method: Let X be a compact Kähler
manifold and let L be an holomorphicm line bundle on
X . We say that L is positive if it admits a Hermitian
metric with positive curvature. Recall that a metric on L
is given by, for any trivialisation θ : L|U → U × C,

||ξ|| = |θ(ξ)| · h(x) x ∈ U, ξ ∈ Lx
and the curvature is given by

Θ(x) = ∂∂ log h

(check that it is well defined).
In other words, if c1(L) is represented by a Kähler form.
Fact: L is positive if and only if L⊗m is positive for some
m > 0.

Theorem 2.6. Let X be a compact Kähler manifold
and let L be an holomorphic line bundle. Then L is
positive if and only if it is ample.

If L is ample then it is easy to check that it is positive.
Indeed there exists m > 0 such that L⊗m is very ample
and in particular L⊗m = φL⊗mOPN (1) and it is enough to
take the restriction of the Fubini-study metric on PN .
Fact: there exist complete and smooth toric varieties (of
dimension 3) without any ample line bundle (i.e. they are
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not projective). Note that if X is not projective then there

does not exist any integral Kähler form in H2(X,R).

Kähler manifolds also have a Nakai-Moishezon type theo-
rem:

Theorem 2.7 (Demailly-Paun). Let X be a Kähler man-
ifold. The cone of all Kähler classes in H1,1(X,R) is
a connected component of the set of all classes α ∈
H1,1(X,R) such that ∫

V

αdimV > 0

for every irreducible variety V ⊆ X.

In particular, if X does not contain any proper subvariety
then the Kähler cone of X is a connected component of the
set of classes with positive self-intersection.

3. What about KX?

The easiest example in the study of directed graphs asso-
ciated to the birational geometry of projective varieties is
given by the category of smooth projective surfaces. To
this end, we consider the directed graph whose vertices
are smooth projective surfaces defined over an algebraically
closed field k and whose edges are proper birational mor-
phisms. The connected component containing a projective
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surface X corresponds to the birational class of X . We
now look at some easy properties of this component. First,
it is easy to check that this graph is a tree. Indeed, if
X, Y are non-isomorphic projective surfaces connected by
an edge, i.e. if there exists a non-trivial projective mor-
phism f : X → Y , then the second Betti number of X is
greater than the one of Y . Thus, the claim follows easily.
Note that there are always infinitely many vertices above a
vertex associated to a projective surface X , as it is always
possible to blow-up an infinite sequence of points to obtain
an infinite chain above X . On the other hand, using the
inequality on the second Betti number described above, it
is easy to check that starting from a vertex X , it is always
possible to find an end-point below X . More specifically,
there exists no infinite chain starting from X . Thus, we
can think of the end-point Y to be a good representative
of the connected class of X . We will see that also in higher
dimension, one the main goals of the minimal model pro-
gramme is to find the end-point of a connected component
associated to a projective variety X .
We now show that projective surfaces can be divided into
two large classes. The same dichotomy is expected to hold
also in higher dimension.
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First, we assume thatX is a smooth projective surface such
that h0(X,mKX) > 0 for some positive integer m. Then
the subgraph obtained by considering the vertices below X
and the corresponding edges is finite. In addition, there
exists a unique vertex which is an end-point for the con-
nected component containing X . Such a vertex Y is called
the minimal model of X and, by Castelnuovo theorem,
it is characterised by the fact that it does not admit any
smooth rational curve E of self-intersection −1. Alterna-
tively, Y is the only surface in the connected component of
X such that KY is nef, i.e. KY ·C ≥ 0 for any curve C in
Y .
We now assume that X is a smooth projective surface such
that h0(X,mKX) = 0 for all positive integer m. In this
case, X is uniruled, i.e. it is covered by rational curves. It
is possible to show that although the graph below X might
be finite, there are always infinitely many end-points for
the connected component of X . For example, if X = P2 is
the two-dimensional projective space over the field k, then
the connected component containing the vertex associated
to X , corresponds to the set of all the smooth rational
surfaces. Clearly, X is an end-point of such a graph, but
also each Hirzebruch surface Fn = P(OP1 ⊕ OP1(−n)),
with n ∈ N, n 6= 1, is such. Finally, note that not all the
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projective surfaces which admit a Mori fiber space is an
end-point for the directed graph we have constructed (e.g.
the blow-up of P2 at one point admits a Mori fiber space,
but it corresponds to a vertex which is not an end-point).
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