Exercises

$\begin{array}{c} LSGNT \ Topics \\ {\rm Calculus \ of \ Variations} \end{array}$

- 1. Let $u \in W^{1,2}(B)$ solve $\int \nabla u \nabla \phi = 0$ for all $\phi \in C_c^{\infty}(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is an open set. Prove that u is C^2 in Ω following these steps.
 - (a) Assume that $f \in C^3(\Omega)$ solves $\Delta f = 0$ in $\Omega \subset \mathbb{R}^n$ (open set). Prove that there exists a constant c(n) such that for $B_r(x) \subset \Omega$

$$\sup_{B_{R/2}(x)} |\nabla f| \le \frac{c(n)}{R} \sup_{B_R(x)} |f|.$$

Hints: consider $D_k f$ (any partial derivative), note that $\Delta(D_k f) = 0$, use the mean value property for harmonic functions and the divergence theorem with vector field $f e_k$ (where e_k is the k-th vector of the standard basis of \mathbb{R}^n .

- (b) Mollify u with a standard mollifier ρ_{σ} , let $u_{\sigma} = u \star \rho_{\sigma}$, in an open set $\Omega' \subset \subset \Omega$. Check that $\Delta u_{\sigma} = 0$ in Ω' .
- (c) Prove that u_{σ} converges to u in $C^2_{\text{loc}}(\Omega)$.

Hints: Use (a) and iterated versions of it to obtain uniform bounds (independent of σ) for $|D^3 u_{\sigma}|$ in a suitable interior set and use said bounds to show that u_{σ} converges to a limit in C^2 . You may use the mean value theorem to control the supremum of a harmonic function by its L^1 norm, and Ascoli–Arzelà's theorem to extract a limit in C^2 .