DYNAMICAL SYSTEMS

NATTALIE TAMAM

1. Definition and main questions

Most generally, a dynamical system is a tuple (T, X, φ) , where X is a set (the space), T is a monoid (the time), and for every $t \in T$ is $\varphi(t)$ an action on this set, i.e., a function $\varphi(t): X \to X$ so that

$$\varphi(e)(x) = x,$$

$$\varphi(t_1 + t_2)(x) = \varphi(t_2)(\varphi(t_1)(x)).$$

There are different types of dynamical systems, for example:

- Discrete. X is discrete, for example a graph, or T is discrete, for example $T = \mathbb{Z}$.
- Geometrical. X is a manifold, i.e. locally a Banach space or Euclidean space.
- Measurable. X is a measurable space and $\varphi(t)$ is measure preserving. That is, (X, Σ, μ) , where Σ is a σ -algebra on X and μ is a (finite) measure on (X, Σ) , and for every $s \in \Sigma$ we have $\varphi(t)^{-1}(s) \in \Sigma$ and $\mu(\varphi(t)^{-1}(s)) = \mu(s)$.

The type of questions one can ask are:

- What are the orbit closures? (Ergodicity)
- Are the periodic orbits?
- Are there dense orbits?
- What is a common orbit?
- Classification of $\varphi(T)$ -invariant measures.

2. Ergodic theory and some examples

Let us recall:

Definition 2.1. A set $\Sigma \subseteq 2^X$ is a Σ -algebra if

Date: 24 January, 2025.

NATTALIE TAMAM

- $\varnothing \in \Sigma$,
- $s_1, s_2 \in \Sigma$ implies $s_1 \cap s_2 \in \Sigma$,
- $s \in \Sigma$ implies $X \setminus s \in \Sigma$,
- $s_1, s_2, \dots \in \Sigma$ implies that $\bigcap_{i=1^{\infty}} s_i \in \Sigma$.

Definition 2.2. A measure μ is a map $\mu : \Sigma \to \mathbb{R}_+ \cup \{\infty\}$, such that

•
$$\mu(\emptyset) = 0$$

• $\mu\left(\bigcup_{i=1}^{\infty} s_i\right) = \sum_{i=1}^{\infty} \mu(s_i)$ for every pairwise disjoint sequence of sets $\{s_i\}_{i\in\mathbb{N}}$.

Example 2.3. On [0,1] we can define the σ -algebra generated by all open intervals (a,b), $a \leq b \in \mathbb{R}$ and the measure $\mu([a,b]) = b - a$. This is the natural measure on intervals, called the **Lebesgue measure**.

Now, we have X = [0, 1) as a measurable set with the above σ -algebra and μ the Lebesgue measure. Let us define an action, $T = T_a : X \to X$ by

$$T_a(x) = x + a \mod 1$$

Then T is measure preserving. Fix $a \in \mathbb{R} \setminus \mathbb{Q}$. Then, for any $x \in [0, 1)$ the orbit

$$\{T^n(x):n\in\mathbb{Z}\}$$

is infinite. By the axiom of choice one can construct a set $s \subset [0,1)$ which contains exactly one element of every orbit of T.

Let $s_n = T^n(s)$. Then, we have the following:

For any n ≠ m, s_n ∩ s_m = Ø.
↓ J_{n∈ℤ} s_n = [0, 1).

If the set A was Lebesgue measurable, then

$$1 = \mu([0, 1)) = \sum_{n \in \mathbb{Z}} \mu(s_n)$$
$$= \sum_{n \in \mathbb{Z}} \mu(s).$$

Since $\mu(s) = 0$ or $\mu(s) > 0$ and in both cases we get a contradiction, s is non-measurable.

Assume (X, Σ, μ, T) is a measurable dynamical system. In particular, T is measure preserving.

Definition 2.4. Let $T : X \to X$ be a measure-preserving transformation on a measure space (X, Σ, μ) , with $\mu(X) = 1$. Then T is **ergodic** if for every $s \in \Sigma$ we have

$$T^{-1}(s) = s \Rightarrow \mu(s) \in \{0, 1\}.$$

 $\mathbf{2}$

DYNAMICAL SYSTEMS

Example 2.5. Given the previous example - X = [0, 1) with μ the Lebesgue measure (and the appropriate σ -algebra), and $T_a : X \to X$ is the rotation

$$T_a(x) = x + a \mod 1.$$

This map is ergodic with respect to the Lebesgue measure when a is irrational and is not when a is rational.

Example 2.6. Fix $0 \le p \le 1$, and let us consider the infinite coin toss with probability p. That is, $X = \{0,1\}^{\mathbb{Z}}$ (one may also consider $X = \{0,1\}^{\mathbb{N}}$), and every element in X is an infinite string of integers in $\{0,1\}^{\mathbb{N}}$. If we give this set the product topology, we can consider the smallest σ -algebra Σ which contains all the open sets.

A cylinder is a set of the form

$$(2.1) A = \{x \in X : x_i = a_i \text{ for } i \in I\},$$

for some finite $I \subset \mathbb{Z}$ and fixed $a_i \in \{0,1\}$ for all $i \in I$. Σ is the σ -algebra generated by all cylinders. The measure μ on X is defined by its definition on cylinder sets: $\mu(A) = \prod_{i \in I} p_i$, where

$$p_i = \begin{cases} 1-p & \text{if } a_i = 0, \\ p & \text{if } a_i = 1 \end{cases}$$

Consider the transformation $T: X \to X$ that shifts every element left, so that

 $T(x)_i = x_{i-1}.$

It preserves the measure of all cylinder sets, which generate Σ so it is measure-preserving. T is called a **Bernoulli Shift**.

Theorem 2.7 (Birkhoff–Khinchin theorem - ergodic case). Let f be measurable (i.e., the preimage of any measurable set is measurable) such that $\int_X |f| d\mu < \infty$ and assume T is ergodic. Then,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k x) = \int_X f d\mu.$$

- (1) In Example 2.3.
 - (a) Show that T is measure preserving.
 - (b) Prove the two properties of the sequence of sets $\{s_n\}_{n\in\mathbb{Z}}$.
- (2) Show that the dynamical system X = [0, 1), μ is the Lebesgue measure, Σ is the σ -algebra of the Lebesgue measure, and $T: X \to X$ is the rotation

$$T(x) = x + 1/2 \operatorname{mod} 1,$$

is not ergodic.

- (3) Show that the Bernoulli Shift (from Example 2.6) is ergodic.
- (4) Let ([0,1],T) be the dynamical system on the space [0,1] with a transformation $T: X \to X$ defined by

$$T(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1/2, \\ 2x - 1 & \text{if } 1/2 < x. \end{cases}$$

- (a) Show that T preserves the Lebesgue measure.
- (b) Can you find a periodic orbit of the system, i.e., a point $x \in [0,1]$ so that $\{T^n(x) : n \in \mathbb{N}\}$ is a finite set?
- (c) Can you find a non-periodic orbit of the system, i.e., a point $x \in [0, 1]$ so that $\{T^n(x) : n \in \mathbb{N}\}$ is infinite?
- (d) Can you classify the periodic orbits?