
Chern classes



Characteristic classes

▶ Measure how “twisted” a vector bundle is

▶ For real vector bundles we have Stiefel-Whitney classes and
Pontryagin classes

▶ For complex vector bundles we have Chern classes

▶ Versions in topology, differential geometry, algebraic geometry,
sheaf theory, number theory...

▶ Important to understand links between different versions



Vector bundles
A rank r complex vector bundle E → X over a topological space X
is a family of vector spaces ∼= Cr “continuously varying” over X .

▶ Topological space E with a map π : E → X

▶ (Locally trivial) Every x ∈ X has an open neighbourhood
U ⊂ X over which E is the “trivial” or product bundle: there
exists an isomorphism E |U := π−1(U)

gU−→
∼

U × Cr

▶ Linear structure on fibres preserved by changes in local
trivialisations. On overlaps the trivialisations gU differ by
linear maps; i.e.

gUV := gU |U∩V ◦ g−1
V |U∩V

is multiplication by a map (transition function)

gUV : U ∩ V → GL(r ,C).



Möbius band
Example of a real bundle over circle S1.

      

Ex: If put in two Möbius twists show resulting bundle is trivial.
Further, show it can be untwisted if embedded in R4.



Exercises

So we may think of E as
∐

U(U × Cr )/ ∼ , where we glue by the
transition functions gUV :

V × Cr ∈ (x , e) ∼
(
x , gUV (x)e

)
∈ U × Cr .

Ex: Check defines an equivalence relation and quotient is E .

Ex: Show fibres are naturally vector spaces: if (x , e1), (x , e2) are
points of the same fibre Ex := π−1(x) and α, β ∈ C we can define
αx1 + βx2 ∈ Ex and 0 ∈ Ex such that....

Ex: Define smooth vector bundle over a smooth manifold,
algebraic bundle over an algebraic variety, real vector bundle, etc.



Sections

A section s of π : E → X is a continuous map s : X → E such that
π ◦ s = idX .

Can add, subtract, multiply by scalars. So get a vector space of
sections Γ(E ).

Ex: A trivialisation of the bundle, i.e. an isomorphism

E

π

��

∼ // X × Cr

��

⟳

X X ,

is the same thing as a choice of r sections s1, . . . , sr which form a
basis at every point.
(I.e. s1(x), . . . , sr (x) is a basis of Ex at every x ∈ X .)

So a trivialisation of a line bundle ⇐⇒ a nowhere-zero section.



Homotopy invariance

Fact 1: Homotopic bundles are isomorphic.
Given E → X × [0, 1], let Et := E |X×{t}. Then E0

∼= E1.

Fact 2: Bundles on contractible spaces X are trivial.
X ≃ {∗} =⇒ (E → X ) ∼= (X × Cr ).

Proofs using Tietze extension theorem; see e.g. Atiyah’s K-theory.

So given a rank r bundle E → Sn, we know that restricted to
either hemisphere, it is trivial,

Sn = Bn
1 ∪ Bn

2 , E |Bn
i

∼= Bn
i × Cr .

Glued over boundary ∂Bn
1
∼= Sn−1 by a map Sn−1 → GL(r ,C).

(Should really take Bn
i open, overlapping in an “annulus” Sn−1× (−ϵ, ϵ).)



Clutching construction

So rank r complex bundles on Sn are in 1-1 correspondence with
homotopy classes of maps Sn−1 → GL(r ,C), i.e. with

πn−1(GL(r ,C)).

E.g. real version with r = 1 gives{
line bundles on S1

}
←→ π0(GL(1,R)) = π0(R×) = Z/2.

(The mod 2 integer is called the first Stiefel-Whitney class of the bundle.)



First Chern class

E.g. complex version with r = 1 gives{
line bundles on S2

}
←→ π1(GL(1,C)) = π1(C×) = Z.

This integer classifying the bundle is called its first Chern class, c1.

Algebraic version: write

S2 ∼= P1 = Cx ∪C× Cy

glued over C× = {x ̸= 0} = {y ̸= 0} by x = 1
y .

Then glue trivial bundles Cx × C to Cy × C by

(x , t) p−→
(
1

x
, x−nt

)
= (y , ynt).

We call the resulting line bundle O(n) with c1 = n.



Tautological bundle

When n = −1 we get the tautological bundle O(−1)→ P1.

Over R this is the Möbius bundle on RP1 ∼= S1:
`

      



Tautological bundle over C

Over C we also see that O(−1) (defined as above with transition
function 1

x ) is the tautological bundle O(−1) ↪→ C2 over P1.

      



Tautological bundle over C

Over C we also see that O(−1) (defined as above with transition
function 1

x ) is the tautological bundle O(−1) ↪→ C2 over P1.

0

      



Zeros of sections

The O(n) line bundle over P1 was defined with transition function
x−n, gluing the section 1 over Cx to x−n = yn over Cy .

Therefore this defines a global holomorphic section of O(n), n ≥ 0
with a degree n zero at y = 0.
(Meromorphic section with degree |n| pole at y = 0 if n < 0.)

Similarly p(x) over Cx is glued to ynp(y−1) over Cy , so if
deg p = n we get another algebraic/regular section over P1.
(Gives all sections from Spec & Proj lecture, Γ(O(n)) = Symn(C2)∗.)

Again these all have n zeros.

Ex: When n < 0 we get a meromorphic section with n poles. Or
instead glue 1 to an anti-holomorphic function across the circle
|x | = 1 to give a (non-holomorphic) section with n zeros.



Intersecting with zero section

Indeed c1 = n is the number of zeros (counted with orientation and

multiplicity) of any section of O(n).

In other words, c1(L) is the intersection of the zero section of L
with itself (or equivalently the graph of any other section).

      



Clutching construction on arbitrary Riemann surfaces

Again line bundles = trivial bundles glued across circles/annuli.

      

c1(L) = total winding number of transition functions

= number of zeros of a section.

(So under line bundle ↔ divisor correspondence, c1(O(D)) = degD.)



First Chern class on manifolds

More generally, for any complex line bundle L on a manifold X we
define

c1(L) := [s−1(0)] ∈ HdimX−2(X ),

where s is any section transverse to the zero section.
(If s ′ is another choice let st = s + ts ′. Then [Z (st)]t∈[0,1], is a chain

interpolating between the two.)

In fact we define c1(L) ∈ H2(X ) to be the Poincaré dual of
[s−1(0)] as (only) this cohomology classes will generalise to
arbitrary topological spaces X .

For general X we can understand/define c1(L) ∈ H2(X ) by
evaluating it on [Σ] ∈ H2(X ), where Σ ↪→ X is a Riemann surface
and 〈

c1(L), [Σ]
〉

= c1
(
L|Σ

)
.



Chern classes on manifolds

For any rank r complex vector bundle E → X pick a transverse
C∞-section s and define the Euler class or top Chern class

e(E ) = cr (E ) := [s−1(0)] ∈ HdimX−2r (X )
∼= H2r (X ).

Analogously define
ck(E ) ∈ H2k(X )

to be Poincaré dual to the locus where r − k + 1 generic sections
fail to be linearly independent:[

Z (s1 ∧ . . . ∧ sr−k+1)
]
∈ HdimX−2k(X ).

So cr (E ) = e(E ) while c1(E ) = c1(Λ
rE ) and ci (E ) = 0 for i > r .

(When k ̸= 1, r then ck(E ) ̸= e(Λr−k+1(E )) — this has the wrong

degree, and s1 ∧ . . . ∧ sr−k+1 is far from a generic section of Λr−k+1(E ).)



Whitney sum formula I

Given two generic sections s1 ∈ Γ(E1), s2 ∈ Γ(E2) we get a section
(s1, s2) ∈ Γ(E1 ⊕ E2) and

e(E1 ⊕ E2) = [Z (s1, s2)] = [Z (s1) ∩ Z (s2)] = [Z (s1)] ∪ [Z (s2)]

= e(E1) ∪ e(E2) ∈ H2r1+2r2(X ).

In particular for line bundles c2(L1 ⊕ L2) = c1(L1) ∪ c1(L2) and

c1(L1 ⊕ L2) = c1(Λ
2(L1 ⊕ L2)) = c1(L1 ⊗ L2) = [Z (s1 ⊗ s2)]

=
[
Z (s1) ∪ Z (s2)

]
= [Z (s1)] + [Z (s2)]

= c1(L1) + c1(L2).

We can write this as c(L1 ⊕ L2) = c(L1) ∪ c(L2) where the total
Chern class c(E ) := 1 + c1(E ) + c2(E ) + . . . ∈ H∗(X ).



Whitney sum formula II

More generally for bundles E ,F of ranks r , s use the decomposition

Λk(E ⊕ F ) ∼=
k⊕

i=0

Λi (E )⊗ Λk−i (F )

and generic sections e1, . . . ek ∈ Γ(E ) and f1, . . . fk ∈ Γ(F ) to
compute

Z
(
(e1 ∧ . . . ∧ ek)⊕ (e1 ∧ . . . ∧ ek−1 ⊗ fk)⊕ . . .

. . .⊕ (e1 ⊗ f2 ∧ . . . ∧ fk)⊕ (f1 ∧ . . . ∧ fk)
)
.

Ex: Work it out and take Poincaré duals to give

cr+s−k+1(E ⊕ F ) = cr (E )cs−k+1(F ) + . . .+ cr−k+1(E )cs(F ).

Deduce the Whitney sum formula c(E ⊕ F ) = c(E )c(F ).



Axiomatic approach

Knowing (or defining!) c1(OPn(1)) = [Pn−1], the Whitney sum
formula and functoriality is then enough to completely determine
all Chern classes on all topological spaces.

Functoriality: c(f ∗E ) = f ∗c(E ). Ex: Define f ∗E and prove this
using zero loci of sections when f : X → Y is a map of manifolds.

There are two steps to proving this:

▶ All rank r bundles on X are pull backs f ∗Q of the universal
bundle on classifying space Q → BGL(r ,C) by a map
f : X → BGL(r ,C). (So only need to define ci on one space.)

▶ Splitting principle: we may assume E is a direct sum of line
bundles, without loss of generality.



Classifying space

Any bundle is a quotient of an infinite rank trivial bundle Γ(E )

Γ(E )
ev−−→−→ E −→ 0. (∗)

(Or take a sufficiently large subbundle CN ⊂ C∞ = Γ(E ), N ≫ 0.)

Therefore it defines a map from X to the Grassmannian

f : X −→ Gr (C∞, r),

x p−→ (∗)x .

There’s a (tautological) universal quotient bundle Q → Gr,

C∞ −→ Q −→ 0 on Gr,

and it is tautological from (∗) that f pulls this back to give E ,

f ∗Q ∼= E .



Classifying space II

Thus Vectr (X ) = [X ,Gr].

We call Gr = Gr (C∞, r) the classifying space BGL(r ,C).

E.g. for r = 1 we have BC× = CP∞.

So any line bundle L → X is f ∗O(1) for some (homotopy class of)
map f : X → CP∞

(or f : X → CPN for N ≫ 0 if X is finite dimensional).

Then
c1(L) = f ∗c1(O(1)) = f ∗h,

where h ∈ H2(CP∞) is the generator (the limit as N →∞ of the

Poincaré duals of CPN−1 ⊂ CPN , or the standard Kähler form).



Splitting principle

Given E → X (e.g. Q → Gr) there’s a space dominating Y on
which E splits as a sum of line bundles:

π : Y → X such that π∗E ∼= L1 ⊕ . . .⊕ Lr ,

with fibres Yx = π−1(x) given by the flag manifolds

Yx =
{
Linearly independent complex lines L1, . . . , Lr ⊂ Ex

}
.

There are universal/tautological bundles Li on Y and it is then
tautological that π∗E ∼=

⊕r
i=1 Li .

Fact π∗ : H∗(X )→ H∗(Y ) is an injection. So pulling back c(E )
loses no information, and

π∗c(E ) = c(π∗E ) = c(L1 ⊕ . . .⊕ Lr ) = c(L1) · . . . · c(Lr ).



Upshot

Given E → X there’s a diagram

Y
f //

π

��

B(C×)r = (CP∞)r

X

such that π∗ : H∗(X )→ H∗(Y ) is an injection, and c(E ) ∈ H∗(X )
is the unique class such that

π∗c(E ) = f ∗
[
(1 + h1) · . . . · (1 + hr )

]
.

So the splitting principle, the Whitney sum formula, and
c1(O(1)) = h determine all Chern classes uniquely.
(Existence takes a bit – not much – more work, e.g. computing H∗(Gr).)

Ex: Corollary: if E has rank r then ci (E ) = 0 ∀i > r .



Grothendieck’s definition
On the projective bundle π : P(E )→ X we have the tautological
inclusion

OP(E)(−1) ↪−→ π∗E .

Since the quotient is a bundle of rank r − 1,

cr
(
π∗E/OP(E)(−1)

)
= 0.

By the Whitney sum formula, this is the degree r part of

π∗c(E )
/
c
(
OP(E)(−1)

)
= π∗c(E )

/
(1− h),

where h = c1(OP(E)(1)). Thus

hr + π∗c1(E )h
r−1 + . . .+ π∗cr−1(E )h + π∗cr (E ) = 0. (∗)

Fact: H∗(P(E )) = H∗(X )⊕ H∗(X )h ⊕ . . .⊕ H∗(X )hr−1 as a
vector space. So hr can be written uniquely in this basis to give
(∗) and thus define ci (E ).



Chern-Weil approach for line bundles

If X is a manifold we can pick a connection A on L → X .

Its curvature FA is a closed 2-form dFA = 0.

Changing a 7→ A+ a =⇒ FA 7→ FA + da so [FA] ∈ H2(X ,R)
independent of A. In fact it is

[FA]

2πi
= [c1(L)] ∈ H2(X ,Z)/torsion.

Let’s prove this for X a Riemann surface and L described by the
clutching construction.



Connections and clutching construction

Write X = U ∪S1 D2 where D is a disc and S1 is an annulus
thickening its boundary.

Write L as CU ∪ϕ CD2 for a transition function ϕ : S1 → C× of
winding number n = c1(L).

Put the trivial connection d on CU . In the trivialisation CD

restricted to the annulus this is the connection

d + ϕ−1dϕ

since this annihilates ϕ−1 (which is glued to 1 on U).

Extend this to any connection d + a over D2 and compute∫
X
FA =

∫
D2

FA =

∫
D2

da =

∫
S1

a

=

∫
S1

dϕ

ϕ
=

∫
S1

d log ϕ = 2πin.



Chern-Weil theory

Manifold X , rank r bundle E → X , connection A. Form

p
( FA
2πi

)
∈ H2k(X ,R)

for any ad-invariant (p(N−1MN) = p(M)) polynomial of EndCr .

Ex: p(FA) closed and changes by an exact form under A 7→ A+ a.

E.g. p could be tr (giving c1(E )) or det (giving cr (E )) or any other
symmetric polynomial in the eigenvalues like det Λr .

If p is integral the result is an integral characteristic class.

Theorem c(E ) = det
(
id+ FA

2πi

)
in H∗(X )/torsion, i.e.

1 + c1(E ) + c2(E ) + . . . = 1 +
tr FA
2πi

− tr(FA ∧ FA)

4π2
+ . . .

(H∗(BGL(r ,C) =
{
Ad-invariant polynomials

}
.)



Tangent bundle to projective space

Let V := Cn+1 so that P(V ) = Pn. Then

TPn = O(−1)∗ ⊗ V

O(−1)
.

Sketch: a point of P(V ) is a complex line L ≤ V . Pick any complement

to write V = L⊕ V /L. Then nearby lines in V ←→ graphs of linear

maps L→ V /L. So tangent space= L∗ ⊗ (V /L).
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Chern classes of projective space

Applying Whitney sum formula to TPn = V (1)/O gives

c(TPn) = c
(
V (1)

)
/c(O) = c

(
O(1)⊕(n+1)

)
= (1 + h)n+1,

where h = c1(O(1)) is the hyperplane class Poincaré dual to
Pn−1 ⊂ Pn.

E.g. cn(TPn) = (n + 1)hn so integrating gives e(Pn) = n + 1.



Hypersurfaces in projective space

Ex: “Adjunction”. If s ∈ Γ(E ) is transverse to the zero section,
show its zero locus Z = s−1(0) has normal bundle

NZ/X = E |Z .

      

Ex: Hence work out the total Chern class c(TXd
) of a degree d

hypersurface Xd ⊂ Pn (the zero locus of a section of O(d)). Apply to
n = 3, d = 4 to find c1(TS) and e(S) for S a “K3 surface”.



Exercises

Ex: Compute ci (End(E )) in terms of ci (E ) for E a rank 2 bundle.
(Hint: splitting principle.)
Why did you find c1 = 0 = c3 = c4?

Ex: (1) Compute c4(Sym
3(E )) in terms of ci (E ) for E a rank 2

bundle. (Hint: splitting principle.)

Ex: (2) The Grassmannian Gr(2, 4) of 2-planes in C4 has a
universal subbundle U ↪→ C4. Describe a cycle Poincaré dual to
c2(U∗). (Hint: use (C4)∗ →→ U∗ to pick a section of U∗.)

Ex: (3) Describe a cycle Poincaré dual to c1(U∗).
(Hint: pick two sections of U∗ and see where they’re linearly dependent.)

Ex: From (1,2,3) show
∫
Gr(2,4) c4(Sym

3 U∗) = 27.

Ex: Identify Gr(2, 4) with {lines P1 ⊂ P3}. Let s ∈ Γ(OP3(3)) cut
out a cubic surface S ⊂ P3. Show s defines a section of
Sym3 U∗ → Gr(2, 4) cutting out the (27) lines in P3 which lie in S .



Exercise: Segre classes

We defined ci (E ) as (Poincaré dual to) the locus where r − i + 1
generic sections fail to be linearly independent, i.e. the x ∈ X s.t.

Cr−i+1 s1(x), ..., sr−i+1(x)−−−−−−−−−−−−→ Ex

fails to be injective.

Similarly we can define the ith Segre class si (E ) ∈ H2i (X ) to be
((−1)i times by the Poincaré dual to) the locus where r + i − 1
generic sections fail to generate E , i.e. the x ∈ X where

Cr+i+1 s1(x), ..., sr+i+1(x)−−−−−−−−−−−−→ Ex

fails to be surjective.

Ex: Show that for line bundles, si (L) = (−1)ic1(L)i .
In fact s(E ) = c(E )−1, where s(E ) := 1 + s1(E ) + s2(E ) + . . . .



C̆ech cohomology formulation
Let O denote the sheaf of (holomorphic, or algebraic, or C∞, or . . . )
functions, and O× the (multiplicative) sheaf of invertible functions.

Then the exact sequence (in Euclidean topology)

0 −→ Z −→ O exp−−−→ O× −→ 0

induces the long exact sequence of C̆ech cohomology groups

H1(X ,O×)
δ−−→ H2(X ,Z) −→ H2(X ,O).

Consider an element e ∈ H1(X ,O×) (invertible eUV on each overlap

U ∩ V satisfying eUV eVW eWU = 1 on U ∩ V ∩W ) to be the transition
functions for a line bundle L.

Ex: Identify δ(e) ∈ H2(X ,Z) with c1(L) for X a Riemann surface.
(Hint: use clutching construction. Lift all eUV ∈ O×

U∩V to

log(eUV ) ∈ OU∩V compatibly except for the winding number of eUV ,

which gives Z ambiguity.)



Exercise: homotopy/homology groups

Ex: L→ Σ a line bundle over a Riemann surface, with sphere (S1)
bundle) S(L)→ Σ and LES of homotopy groups

. . . −→ π2(S(L)) −→ π2(Σ)
∂−−→ π1(S

1) −→ π1(S(L)) −→ . . .

When Σ = P1 show ∂ : Z→ Z is multiplication by c1(L) ∈ Z.

For more general Σ replace π∗ by H∗ and ∂ by a differential in the
Leray spectral sequence.

What about arbitrary X?


