Chern classes



Characteristic classes

» Measure how “twisted” a vector bundle is

» For real vector bundles we have Stiefel-Whitney classes and
Pontryagin classes

» For complex vector bundles we have Chern classes

» Versions in topology, differential geometry, algebraic geometry,
sheaf theory, number theory...

» Important to understand links between different versions



Vector bundles

A rank r complex vector bundle E — X over a topological space X
is a family of vector spaces =2 C" “continuously varying” over X.

» Topological space E withamap 7: E — X

» (Locally trivial) Every x € X has an open neighbourhood
U C X over which E is the “trivial” or product bundle: there
exists an isomorphism E|y =7 1(U) €% U x C’

» Linear structure on fibres preserved by changes in local
trivialisations. On overlaps the trivialisations gy differ by
linear maps; i.e.

: -1
guv = gulunvogy lunv
is multiplication by a map (transition function)

guv: UNV — GL(r,C).



Mobius band

Example of a real bundle over circle St.
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Ex: If put in two Mobius twists show resulting bundle is trivial.
Further, show it can be untwisted if embedded in R*.



Exercises

So we may think of E as [, (U x C")/ ~, where we glue by the
transition functions gyy:

VXxC" e (x,e)~ (x,guv(x)e) € UxC".

Ex: Check defines an equivalence relation and quotient is E.

Ex: Show fibres are naturally vector spaces: if (x,e1), (x,e2) are
points of the same fibre E, := 77 1(x) and a, 3 € C we can define
axy + Bxy € Ex and 0 € E, such that....

Ex: Define smooth vector bundle over a smooth manifold,
algebraic bundle over an algebraic variety, real vector bundle, etc.



Sections

A section s of m: E — X is a continuous map s: X — E such that
mos=idx.

Can add, subtract, multiply by scalars. So get a vector space of
sections '(E).

Ex: A trivialisation of the bundle, i.e. an isomorphism

E——=XxCr

™ O

X:X

Y

is the same thing as a choice of r sections si,...,s, which form a
basis at every point.
(Le. s1(x),...,s.(x) is a basis of E, at every x € X.)

So a trivialisation of a line bundle <= a nowhere-zero section.



Homotopy invariance

Fact 1: Homotopic bundles are isomorphic.
Given E — X x [0,1], let E; := E|x ¢y Then Eg = E;.

Fact 2: Bundles on contractible spaces X are trivial.
X~{x} = (E—X)=Z(XxC").

Proofs using Tietze extension theorem; see e.g. Atiyah's K-theory.

So given a rank r bundle E — 5", we know that restricted to
either hemisphere, it is trivial,

S"=BJUB},  Elg =Bl xC".

Glued over boundary 9BJ = S"~! by a map S"! — GL(r,C).

(Should really take B! open, overlapping in an “annulus” S"~! x (—¢,€).)



Clutching construction

So rank r complex bundles on S” are in 1-1 correspondence with
homotopy classes of maps S"~! — GL(r,C), i.e. with

mn—1(GL(r, C)).

E.g. real version with r =1 gives

{line bundles on S'} «— 7(GL(L,R)) = m(R*) = Z/2.

(The mod 2 integer is called the first Stiefel-Whitney class of the bundle.)



First Chern class
E.g. complex version with r =1 gives
{line bundles on S?} «— 71 (GL(1,C)) = m(C*) = Z.
This integer classifying the bundle is called its first Chern class, ci.
Algebraic version: write
S22 P! = CyUex Cy
glued over C* = {x #0} ={y #0} by x = %

Then glue trivial bundles C, x C to C, x C by

(,8) <)1(,x”t> — (y.y"0).

We call the resulting line bundle O(n) with ¢; = n.



Tautological bundle

When n = —1 we get the tautological bundle O(—1) — P!.
Over R this is the Mobius bundle on RP! = St

R
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Tautological bundle over C

Over C we also see that O(—1) (defined as above with transition

function 1) is the tautological bundle O(—1) < C? over PL.
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Tautological bundle over C

Over C we also see that O(—1) (defined as above with transition

function 1) is the tautological bundle O(—1) < C? over PL.
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Zeros of sections

The O(n) line bundle over P! was defined with transition function
x~", gluing the section 1 over C, to x~" = y" over C,.

Therefore this defines a global holomorphic section of O(n), n >0
with a degree n zero at y = 0.
(Meromorphic section with degree |n| pole at y =0 if n < 0.)

Similarly p(x) over Cy is glued to y"p(y!) over C,, so if
deg p = n we get another algebraic/regular section over P!.
(Gives all sections from Spec & Proj lecture, [(O(n)) = Sym"(C?)*.)

Again these all have n zeros.

Ex: When n < 0 we get a meromorphic section with n poles. Or
instead glue 1 to an anti-holomorphic function across the circle
|x| =1 to give a (non-holomorphic) section with n zeros.



Intersecting with zero section

Indeed ¢; = n is the number of zeros (counted with orientation and

multiplicity) of any section of O(n).

In other words, ¢;(L) is the intersection of the zero section of L
with itself (or equivalently the graph of any other section).
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Clutching construction on arbitrary Riemann surfaces

Again line bundles = trivial bundles glued across circles/annuli.

C, [z nn
bonn
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ci(L) = total winding number of transition functions

= number of zeros of a section.

(So under line bundle « divisor correspondence, ¢;(O(D)) = deg D.)



First Chern class on manifolds

More generally, for any complex line bundle L on a manifold X we

define
a(l) = [s70)] € Haimx—2(X),
where s is any section transverse to the zero section.

(If s" is another choice let s, = s+ ts'. Then [Z(s;)]¢cpo,1], is a chain

interpolating between the two.)

In fact we define c1(L) € H?(X) to be the Poincaré dual of
[s~1(0)] as (only) this cohomology classes will generalise to
arbitrary topological spaces X.

For general X we can understand/define c1(L) € H*(X) by
evaluating it on [X] € H2(X), where ¥ < X is a Riemann surface
and

<C1(L),[Z]> = C1<L’z).



Chern classes on manifolds

For any rank r complex vector bundle E — X pick a transverse
C*°-section s and define the Euler class or top Chern class

e(E) = c(E) = [s}(0)] Haim x—2r (X)

H?"(X).

M

Analogously define
c(E) € H?K(X)

to be Poincaré dual to the locus where r — k 4 1 generic sections
fail to be linearly independent:

[Z(s1 Ao Asr—kq1)] € Haim x—2k(X).

So ¢,(E) = e(E) while ¢c1(E) = c1(A"E) and ¢;(E) =0 for i > r.
(When k # 1,r then cx(E) # e(A"~**1(E)) — this has the wrong
degree, and s; A ... A s,_ki1 is far from a generic section of A"~k+1(E).)



Whitney sum formula |

Given two generic sections s; € ['(Ey), s» € I'(Ez) we get a section
(s1,52) € T(E1 & E3) and

e(E1® E) = [Z(s1,%)] = [Z(s1)NZ(s2)] = [Z(s1)]V[Z(s2)]
= e(El)Ue(Eg) S H2r1+2r2(X).

In particular for line bundles cx(L; @ L) = c1(L1) U c1(Ly) and

alli®l) = alP(Lel)) = alli®ly) = [Z(s1® )]
[Z(s))UZ(s2)] = [Z(s1)] + [Z(s2)]
C1(L1) + C1(L2).

We can write this as ¢(L; @ Ly) = ¢(L1) U ¢(Ly) where the total
Chern class ¢c(E) :=14+ ca(E)+ c(E)+ ... € H(X).



Whitney sum formula [l

More generally for bundles E, F of ranks r, s use the decomposition

k

PN (E) @ NI(F)

i=0

N(E@F)

I

and generic sections e1,...ex € [(E) and fi,...fx € [(F) to
compute

Z((el/\.../\ek)@(el/\.../\ek_1®fk)€B...
...@(el®f2/\.../\fk)@(ﬂ/\.../\fk)).
Ex: Work it out and take Poincaré duals to give
Cris—kt1(EDF) = c(E)cs—k+1(F) + ... + cr—k+1(E)cs(F).

Deduce the Whitney sum formula c(E © F) = c(E)c(F).



Axiomatic approach

Knowing (or defining!) c1(Opn(1)) = [P™1], the Whitney sum
formula and functoriality is then enough to completely determine
all Chern classes on all topological spaces.

Functoriality: c(f*E) = f*c(E). Ex: Define f*E and prove this
using zero loci of sections when f: X — Y is a map of manifolds.
There are two steps to proving this:

» All rank r bundles on X are pull backs f*@ of the universal
bundle on classifying space Q — BGL(r,C) by a map
f: X = BGL(r,C). (So only need to define ¢; on one space.)
» Splitting principle: we may assume E is a direct sum of line
bundles, without loss of generality.



Classifying space

Any bundle is a quotient of an infinite rank trivial bundle I'(E)

rE) = E—0. (%)

(Or take a sufficiently large subbundle CV c C* = T(E), N> 0.)

Therefore it defines a map from X to the Grassmannian

f: X — Gr(C®r),
x > (%),.

There's a (tautological) universal quotient bundle @ — Gr,
C*® —Q —0 on Gr,
and it is tautological from (x) that f pulls this back to give E,

"Q X E.



Classifying space |l

Thus Vect,(X) = [X, Gr].
We call Gr = Gr (C*°, r) the classifying space BGL(r,C).
E.g. for r =1 we have BC* = CP>.

So any line bundle £ — X is f*O(1) for some (homotopy class of)
map f: X — CP*
(or f: X — CPN for N > 0 if X is finite dimensional).

Then
Cl(ﬁ) = f*Cl(O(].)) = f*h,

where h € H?(CP™>) is the generator (the limit as N — oc of the
Poincaré duals of CPV=1  CPV, or the standard Kahler form).



Splitting principle

Given E — X (eg. @ — Gr) there's a space dominating Y on
which E splits as a sum of line bundles:

m:Y =X suchthat 7"E =2 Li®...®L,,
with fibres Y, = 771(x) given by the flag manifolds
Y, = {Linearly independent complex lines Ly,...,L, C EX}.

There are universal /tautological bundles £; on Y and it is then
tautological that 7*E = @7_, L.

Fact 7*: H*(X) — H*(Y) is an injection. So pulling back c(E)
loses no information, and

7 c(E) = o(n'E) = c(L16...®L,) = (L) ... c(Ly).



Upshot

Given E — X there's a diagram

y Lo B(C*)r = (CP>®)"

|

X

such that 7*: H*(X) — H*(Y) is an injection, and c(E) € H*(X)
is the unique class such that

mc(E) = FlL+m)-...-(1+h)]

So the splitting principle, the Whitney sum formula, and
c1(O(1)) = h determine all Chern classes uniquely.
(Existence takes a bit — not much — more work, e.g. computing H*(Gr).)

Ex: Corollary: if E has rank r then ¢;(E) =0 Vi > r.



Grothendieck's definition

On the projective bundle 7: P(E) — X we have the tautological
inclusion
OIP’(E)(_]-) — 7*E.

Since the quotient is a bundle of rank r — 1,
¢ (7 E/Opg)(—1)) = 0.
By the Whitney sum formula, this is the degree r part of
W*C(E)/C(OP(E)(—].)) = 7*c(E)/(1 - h),
where h = ¢1(Opg)(1)). Thus
R 41 c(E)h ™ + ...+ 7, 1(E)h +7*c(E) = 0. (%)
Fact: H*(P(E)) = H*(X) @ H*(X)h @ ... H*(X)h" ! as a

vector space. So h" can be written uniquely in this basis to give
(*) and thus define ¢;(E).



Chern-Weil approach for line bundles

If X is a manifold we can pick a connection A on £ — X.

Its curvature F4 is a closed 2-form dF 4 = 0.

Changing a— A+a = Fp > Fa+ daso [Fa] € H*(X,R)
independent of A. In fact it is

F

M = [a(L)] € H?*(X,Z)/torsion.
27

Let's prove this for X a Riemann surface and £ described by the

clutching construction.



Connections and clutching construction

Write X = U Ug1 D? where D is a disc and S! is an annulus
thickening its boundary.

Write £ as C(, Uy Cpe2 for a transition function ¢: Sl C* of
winding number n = ¢;(L).

Put the trivial connection d on C,. In the trivialisation Cp
restricted to the annulus this is the connection

d+ ¢ tdo

since this annihilates ¢! (which is glued to 1 on U).

Extend this to any connection d + a over D? and compute

/FA:/FA:/da:/a
X D? D2 St

- /51‘5’ = /J_ld|og¢ = 2min.



Chern-Weil theory

Manifold X, rank r bundle E — X, connection A. Form
Fa 2k
— H™ (X, R
p(zm) € HH(X.R)

for any ad-invariant (p(N~*MN) = p(M)) polynomial of End C".
Ex: p(Fa) closed and changes by an exact form under A +— A+ a.

E.g. p could be tr (giving ¢;(E)) or det (giving c.(E)) or any other
symmetric polynomial in the eigenvalues like det A".

If p is integral the result is an integral characteristic class.

Theorem c(E) = det ( id+£4 ) in H*(X torsion, i.e.
27i

tr F, tr(Fa A F,
r,.4_r(A A)+

1+C1(E)+C2(E)+... = 1+ o 472

(H*(BGL(r,C) = {Ad-invariant polynomials}.)



Tangent bundle to projective space

Let V := C"*! so that P(V) = P". Then

Ton = (9(—1)*®O(M_1).

Sketch: a point of P(V) is a complex line L < V. Pick any complement
to write V = L@ V/L. Then nearby lines in V' «— graphs of linear
maps L — V//L. So tangent space= L* @ (V/L).

9 - Lﬁ_”“f’“(‘* L)



Chern classes of projective space

Applying Whitney sum formula to Tp» = V(1)/O gives
c(Ten) = c(V(1))/e(0) = c(OL)*V) = (L4 h)"*,

where h = ¢1(O(1)) is the hyperplane class Poincaré dual to
P c P

E.g. co(Tpn) = (n+ 1)h" so integrating gives e(P") = n+ 1.



Hypersurfaces in projective space

Ex: "Adjunction”. If s € ['(E) is transverse to the zero section,
show its zero locus Z = s~1(0) has normal bundle

Nz/;x = E|z.

Ex: Hence work out the total Chern class ¢(Tx,) of a degree d
hypersurface Xy C P" (the zero locus of a section of O(d)). Apply to
n=3,d=4to find ¢c;(Ts) and e(S) for S a “K3 surface".



Exercises

Ex: Compute ¢;(End(E)) in terms of ¢;(E) for E a rank 2 bundle.
(Hint: splitting principle.)

Why did you find ¢ =0 = ¢c3 = ¢47

Ex: (1) Compute c4(Sym3(E)) in terms of ¢;(E) for E a rank 2
bundle. (Hint: splitting principle.)

Ex: (2) The Grassmannian Gr(2,4) of 2-planes in C* has a
universal subbundle ¢/ < C*. Describe a cycle Poincaré dual to
co(U*). (Hint: use (C*)*—» U* to pick a section of U*.)

Ex: (3) Describe a cycle Poincaré dual to c1(U*).
(Hint: pick two sections of U* and see where they're linearly dependent.)

Ex: From (1,2,3) show fGr(2 2) ca(Sym3U*) = 27.

Ex: Identify Gr(2,4) with {lines P* C P3}. Let s € ['(Ops(3)) cut
out a cubic surface S C P3. Show s defines a section of
Sym3U* — Gr(2,4) cutting out the (27) lines in P* which lie in S.



Exercise: Segre classes

We defined ¢;(E) as (Poincaré dual to) the locus where r — i +1
generic sections fail to be linearly independent, i.e. the x € X s.t.

Cr,H,]_ 51(X)7~--’5r7i+1(x) EX

fails to be injective.

Similarly we can define the ith Segre class s;(E) € H*(X) to be
((—1)" times by the Poincaré dual to) the locus where r + i — 1
generic sections fail to generate E, i.e. the x € X where

Cr+,‘+1 51(X); oy Srrit1(x) s Ey

fails to be surjective.
Ex: Show that for line bundles, s;(£) = (—1)'c1(L)".
In fact s(E) = c(E)~ !, where s(E) :=1+ s1(E) +s2(E) + ... .



Cech cohomology formulation

Let O denote the sheaf of (holomorphic, or algebraic, or C>, or .. .)
functions, and O the (multiplicative) sheaf of invertible functions.

Then the exact sequence (in Euclidean topology)
0—2Z—0=25,0—0
induces the long exact sequence of Cech cohomology groups
HY(X,0%) 25 HA(X,Z) — H2(X, 0).

Consider an element e € HY(X, O) (invertible eyy on each overlap
UV satisfying epveywewy = 1 on UMV 11 W) to be the transition
functions for a line bundle L.

Ex: Identify d(e) € H?(X,Z) with c;(L£) for X a Riemann surface.
(Hint: use clutching construction. Lift all eyy € O, to

log(eyv) € Ounv compatibly except for the winding number of eyy,
which gives Z ambiguity.)



Exercise: homotopy/homology groups

Ex: L — X a line bundle over a Riemann surface, with sphere (S?)
bundle) S(L) — X and LES of homotopy groups

= m(S(L) — ma(T) -L i (SY) — m(S(L)) —> ...

When ¥ = P! show 9: Z — Z is multiplication by ci(L) € Z.

For more general ¥ replace m, by H, and O by a differential in the
Leray spectral sequence.

What about arbitrary X7



