Line Bundles and Bend-and-Break

1 Line Bundles and the Kodaira Embedding

Let X be a compact complex manifold or a smooth algebraic variety, let say over \mathbb{C} . The content of this section is succinctly expressed by the mantra: 'line bundles of X give rational maps of X into projective space'.

In order to make precise this sentiment consider a line bundle \mathscr{L} on X which admits a global section. To each $x \in X$, so long as the evaluation map ev_x on global sections of \mathscr{L} is not identically zero, we can describe a hyperplane in $H^0(\mathscr{L})$ given by $\{s \in H^0(\mathscr{L}) \mid s(x) = 0\}$. This yields a rational map

$$X - \stackrel{\Phi_{\mathscr{L}}}{-} \to \mathbb{P}(H^0(\mathscr{L})^{\vee}).$$

The map $\Phi_{\mathscr{L}}$ is defined on the whole of X whenever ev_x is not, for all $x \in X$, identically zero. When this is the case we say \mathscr{L} is generated by sections or base-point free.

Under suitable conditions the line bundle \mathscr{L} will yield, via $\Phi_{\mathscr{L}}$, an embedding of X into projective space: in which case $\Phi_{\mathscr{L}}$ is known as the *Kodaira Embedding*. A line bundle \mathscr{L} is called

- very ample $\Leftrightarrow \Phi_{\mathscr{L}}$ is an embedding.
- $ample \Leftrightarrow \Phi_{\mathscr{L}^N}$ is an embedding for some N > 0.
- semiample $\Leftrightarrow \Phi_{\mathscr{L}^N}$ is a regular morphism for N >> 0.

Exercise 1. Work with X an algebraic variety and \mathscr{L} a very ample line bundle on X. Reconcile the image of $\Phi_{\mathscr{L}}$ with Proj of a suitable graded ring.

Exercise 2. Show that \mathscr{L} is very ample if and only if $H^0(\mathscr{L})$ separates points and tangents of X, i.e. if and only if

- for all $x, y \in X$ there exists $s_x, s_y \in H^0(\mathscr{L})$ such that $s_x(x) \neq 0, s_y(y) \neq 0$ and $s_x(y) = s_y(x) = 0$,
- and for all $v \in T_x X$ there exists $s_x \in H^0(\mathscr{L})$ such that $s_x(x) = 0$ and $D_v s_x(x) \neq 0$.

Exercise 3. Rephrase the two conditions of the previous exercise algebraically, i.e., in terms of sections generating $L \otimes k(x)$. Here k(x) is the residue field of x.

Exercise 4. Show that, so long as \mathscr{L} is generated by sections, $\mathscr{L} \simeq \Phi_{\mathscr{L}}^* \mathscr{O}(1)$.

Exercise 5. Show that \mathscr{L} is semi-ample if and only if \mathscr{L} is the pull-back of an ample line bundle under a regular map.

2 When is a Kähler manifold projective?

If \mathscr{L} is an ample line bundle on a compact complex manifold X then X is projective and so restricting the Fubini-Study metric ω_{FS} on \mathbb{P}^n endows X with the structure of a Kähler manifold. By Exercise 4 an integer multiple of the first chern class of \mathscr{L} is the pullback along $\Phi_{\mathscr{L}}$ of $c_1(\mathscr{O}(1))$. Since $c_1(\mathscr{O}(1)) = [\omega_{FS}]$ we have that $c_1(\mathscr{L})$ is represented by a Kähler form. In fact:

Kodaira's Embedding Theorem. If \mathscr{L} is positive in the sense that $c_1(\mathscr{L}) \in H^2(X, \mathbb{R})$ is represented by a Kähler form then \mathscr{L} is ample.

Corollary. Suppose X is a Kähler manifold. It is projective if and only if it has an integral Kähler form. We say a 2-form ω is integral if its class lies in the image of $H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{R})$.

Exercise 6. Prove this corollary.

3 When is a line bundle ample?

In this section we describe a necessary and sufficient condition for a line bundle over a projective variety X to be ample in terms of intersection theory. If C is a curve in X and \mathscr{L} a line bundle over X we define

$$\mathscr{L} \cdot C := \int_C c_1(\mathscr{L}).$$

For a curve $C \subset \mathbb{P}^n$, we can write $\mathscr{O}(1) \cdot C$ in a variety of ways:

- The number of zeroes of a section of $\mathscr{O}(1)$ restricted to C; recall that $c_1(\mathscr{O}(1))$ may be defined as the Poincare Dual to the locus of zeroes of a section of $\mathscr{O}(1)$.
- The volume of C with respect to the Fubini-Study metric; this is because $c_1(\mathcal{O}(1)) = \omega_{FS}$.
- The intersection pairing of C with H, the Poincare Dual to $c_1(\mathcal{O}(1))$. This H is a hyperplane since sections of $\mathcal{O}(1)$ are homogeneous linear polynomials in x_0, \ldots, x_n ; their vanishing describes a hyperplane in \mathbb{P}^n .

In particular $\mathscr{O}(1) \cdot C > 0$. If \mathscr{L} is ample over X then $\Phi_{\mathscr{L}^N}$ describes an embedding for some N > 0. If $C \subset X$ is a curve then

$$N(\mathscr{L} \cdot C) = \mathscr{L}^N \cdot C = \mathscr{O}(1) \cdot \Phi_{\mathscr{L}^N}(C) > 0.$$

Kleiman's Criterion. Suppose X is a projective variety and \mathscr{L} is a line bundle over X. Fix an ample line bundle \mathscr{L}' on X and define, for each curve $C \subset X$, the degree deg $C := \mathscr{L}' \cdot C$. A necessary and sufficient condition for \mathscr{L} to be ample is that, for all curves $C \subset X$, $L \cdot C > \varepsilon \deg C$ for some positive constant ε (depending on \mathscr{L}').

Exercise 7. Beware! There are line bundles with $L \cdot C > 0$ for all curves C which are not ample. Use google to find a counterexample.

4 When $\Phi_{\mathscr{L}}$ is not an embedding

In this section take X a compact complex manifold over \mathbb{C} . If \mathscr{L} is once more a line bundle over X what can we say about $\Phi_{\mathscr{L}}$ if $C \subset X$ is a curve with $\mathscr{L} \cdot C = 0$? If C has genus zero then

 $\mathscr{L} \cdot C = 0 \Leftrightarrow \mathscr{L}|_C \simeq \mathscr{O}_C$. This is not true for curves of higher genus. For example if E is an elliptic curve and P_0, P_1 are distinct points on E then $\mathscr{O}_E(P_0 - P_1)$ is not a trivial bundle.

If $\mathscr{L}|_C$ is trivial then sections of \mathscr{L} are constant along C (because sections are just functions $X \to \mathbb{C}$ and X is compact) and so $\Phi_{\mathscr{L}}$ is either ill-defined on all of C or maps each point of C onto a single point of projective space. If \mathscr{L} is generated by sections then of course $\Phi_{\mathscr{L}}$ cannot be ill-defined. Also a general result says that for $Y \subset X$ a submanifold of codimension at least 2 sections of $\mathscr{L}|_{X\setminus Y}$ can be lifted to sections of \mathscr{L} ; thus if dim X = 2 then $\Phi_{\mathscr{L}}$ will always be defined on a neighbourhood of C.

Example. Let S be a surface and let $C \subset S$ be a genus zero curve with self-intersection -1. Let \mathscr{L} be a very ample line bundle on S and set $d := \mathscr{L} \cdot C > 0$. The line bundle $\mathscr{L}(dC) := \mathscr{L} \otimes \mathscr{O}_S(dC)$ has first chern class $c_1(\mathscr{L}) + d[C]$ and so

$$\mathscr{L} \cdot C = d + \int_C d[C] = d + d[C] \cdot [C] = 0.$$

Thus $\mathscr{L}(dC)|_C$ is trivial and so $\Phi_{\mathscr{L}(dC)}$ contracts C to a point. If we interpret $\mathscr{O}_S(-C)$, as the subsheaf of \mathscr{O}_S of functions which vanish along C then we see that $\mathscr{O}_S(-C)|_{S\setminus C} = \mathscr{O}_{S\setminus C}$. Hence $\mathscr{O}_S(dC)|_{S\setminus C}$ is trivial and so $\mathscr{L}(dC)|_{S\setminus C}$ is still very ample. In particular $\Phi_{\mathscr{L}(dC)}$ is an embedding of $S \setminus C$ into projective space which contracts C to a point.

Exercise 8. Let $C \subset \mathbb{P}^2$ be a smooth cubic and let $Z = \{12 \text{ points on } C\}$.

- For generic Z show that there does not exist a non-trivial line bundle \mathscr{L} on $\operatorname{Bl}_Z \mathbb{P}^2$ which is trivial (holomorphically or algebraically) on \overline{C} .
- However, show that if Z is the intersection of C with a quartic then ℒ may be chosen trivial on C. Further show that in this case Φ_ℒ contracts C to a singular surface.

5 When a line bundle is not generated by sections

If \mathscr{L} is a line bundle on an algebraic variety X, we write $\underline{H^0(\mathscr{L})}$ for $\mathcal{O}_X \otimes_{\mathbb{C}} H^0(\mathscr{L})$. We have a natural map

$$H^0(\mathscr{L}) \to \mathscr{L}$$

which acts via $(x, s) \mapsto (x, s(x))$. To ask that \mathscr{L} be generated by sections amounts to asking that $H^0(\mathscr{L}) \to \mathscr{L}$ be surjective. What happens when this is not the case? TO DO!

Exercise 9. Assume we are in the setting just described. Then $\Phi_{\mathscr{L}}$ is ill-defined along Z. Show that after blowing up along Z we get obtain regular map

$$\operatorname{Bl}_Z X \xrightarrow{\Phi} \mathbb{P}(H^0(\mathscr{L})^{\vee})$$

such that $\Phi^* \mathscr{O}(1) = \mathscr{L}(-E)$ where E is the exceptional divisor of the blow up.

Exercise 10. Show that a degree one curve in \mathbb{P}^3 must be a line.

Exercise 11. Let Z be 6 distinct points in \mathbb{P}^2 and let \mathscr{I}_Z be the ideal sheaf corresponding to Z. *Exercise 9 provides us with a map*

$$\operatorname{Bl}_{Z} \mathbb{P}^{2} \longrightarrow \mathbb{P}(H^{0}(\mathscr{O}_{\mathbb{P}^{2}}(3) \otimes \mathscr{I}_{Z})^{\vee})$$

• Check the image is a surface of degree 3.

- Find 27 lines on it.
- Show any cubic surface has 27 lines and show that any configuration of 6 disjoint such lines can be blown down to give P².
- Show that these lines have self-intersection -1 (use adjunction formula).

6 The Minimal Model Program

In this final section we describe some results which make up the rudiments of what is known as the *minimal model program*. We wish to study K_X defined to be the line bundle det $T_X^* = \bigwedge^{\text{top}} T_X^*$. One reason for this is because the global sections of K_X are a birational invariant of X (see Exercise 12). say somehing about positivity, kodaira dimension, rational curves, canonical models

Bend-and-Break Lemma. Let X be a projective variety and $C \subset X$ a curve. Let c be a point on C. Suppose that hypothesis (*) is verified (we'll tell you what (*) is below). Then there exists a genus zero curve in X which contains c.

We shall sketch a proof of this result. By blowing up we can assume that the curve C is smooth, of genus > 0 and that we have an embedding $f: C \to X$ with $f^*K_X \cdot C < 0$. Lets write p for the point in C with f(p) = c. The strategy is to look at a moduli space of deformations of f which all map p onto c. We assume the hypothesis:

this moduli space has suitably large dimension (i.e., > 0). (*)

Then we can choose a smooth curve D in this space of deformations. The upshot of this is that we obtain a morphism

ev
$$:D \times C \to X$$
 such that
ev $(D \times \{p\}) = \{c\}.$

The maps $f_d := \text{ev}|_{\{d\} \times C} \to X$ are the deformations of f. We can compactify D to get a proper curve \overline{D} and extend our evaluation map to a rational map

$$\overline{\operatorname{ev}}:\overline{D}\times C\dashrightarrow X.$$

The key point is to observe that \overline{ev} cannot possibly be defined everywhere on $\overline{D} \times \{p\}$. If it was then points $v \in C$ in a suitably small affine neighbourhood of p would have $\overline{ev}(\overline{D} \times \{v\})$ in a small affine neighbourhood of c. Since $\overline{D} \times \{v\}$ is proper this forces $\overline{ev}(\overline{D} \times \{v\})$ to be a point and so $f_d(v) = f(v)$ for all v in an affine neighbourhood of p and all $d \in \overline{D}$. This implies $f_d = f$ on a dense open subset and so $f_d = f$ on all of X. This is impossible.

Let Λ be the blow up of $\overline{D} \times C$ at all the points at which \overline{ev} is not well-defined; we have regular maps $\varepsilon : \Lambda \to \overline{D} \times C$ and $e : \Lambda \to X$ such that $e = \overline{ev} \circ \varepsilon$. If \overline{ev} is not defined at (d_0, p) then the fibre of d_0 under the projection $\Lambda \to \overline{D}$ consists of the strict transform of $\{d_0\} \times C$ and a copy of \mathbb{P}^1 . Moreover e will not map all of this \mathbb{P}^1 to a point; the genus zero curve in X which is the image of this \mathbb{P}^1 is the curve we were looking for.

Theorem. The hypothesis (*) of the Bend-and-Break Lemma is verified if $K_X \cdot C < 0$.

Again we shall only provide a very vague sketch of the proof of this result. It is possible to give the following lower bound on the space of deformations of our curve $f : C \to X$:

$$\underbrace{-K_X \cdot f_*C}_{>0} -g(C) \dim X$$

If we could alter f so that it had arbitrarily high degree without changing the genus of f(C) then we would be good. Unfortunately, in characteristic zero, this can only be done if C is an elliptic curve; compose f with the multiplication by n covering; if g(C) > 1 then we have a problem. If we were in characteristic > 0 then we might however not be such a bad position; powers of the Frobenius morphism have high degree but do not change the geometry of your curve. Thus in characteristic > 0 the theorem holds.

To get the theorem working in characteristic 0 we reduce mod p for all p and obtain curves mod p in X. Actually we don't necessarily reduce mod p because X need not have a model over \mathbb{Z} ; instead we just adjoin to \mathbb{Z} the coefficients of the polynomials defining X to obtain a ring R of finite type over \mathbb{Z} and reduce mod \mathfrak{m} for some maximal ideal $\mathfrak{m} \subset R$. Some commutative algebra shows that R/\mathfrak{m} is finite and that the maximal ideals are dense in Spec R. This it turns out (by some theorems from algebraic geometry; see Hartshorne, Exercise 3.18-3.19) ensures that, since there exists rational curves in each $X \mod \mathfrak{m}$, there must be a rational curve in X.

Exercise 12. Consider the natural map $\pi : \operatorname{Bl}_Z X \to X$. Show that π^* induces an isomorphism between $H^0(K_X)$ and $H^0(K_{\operatorname{Bl}_Z X})$.