3-MANIFOLDS (EXERCISE SHEET)

Exercise 1 (van Kampen-based warm-up). (1) Show that the fundamental group of the genus 2 surface is isomorphic to the following

 $\langle a_1, b_1, a_2, b_2 \mid [a_1, b_1] \cdot [a_2, b_2] = 1 \rangle$

where [a, b] denotes the commutator $aba^{-1}b^{-1}$.

(2) Show that if M_1 and M_2 are both manifolds of dimension $d \geq 3$ then

$$\pi_1(M_1 \# M_2) = \pi_1(M_1) * \pi_1(M_2)$$

where G * H denotes the free product of the two groups G and H.

Exercise 2. Show that, for any $n \in \mathbb{N}$, there exists a compact 3-manifold whose fundamental group is isomorphic to the free group generated by n elements.

Exercise 3. Show that $S^2 \times \mathbb{R}$ cannot be written as a non-trivial connected sum of two other 3-manifolds.

Exercise* 4. Let $A \in SL(2,\mathbb{Z})$, and let ψ_A be the homeomorphism of the torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ induced by A.

- (1) Compute the homology group $H_1(M,\mathbb{Z})$ of M the suspension of \mathbb{T}^2 by ψ_A , depending on the value of A.
- (2) Give a presentation of its fundamental group.

Exercise 5 (Poincaré sphere). By definition, the Poincaré sphere SP is the quotient of a regular dodecahedron where opposite faces (which are pentagons) have been identified via a positive twist of angle $\frac{\pi}{5}$.

- (1) Show that SP is a 3-manifold.
- (2) Compute its homology groups.

Exercise 6. Show that $\mathbb{R}^3 \setminus S$ where S is a finite set of cardinality ≥ 2 cannot be the universal cover of a compact manifold.

Exercise 7. Let $\mathcal{H}(\mathbb{R}) = \{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{R} \}$ and $\mathcal{H}(\mathbb{Z}) = \{ \begin{pmatrix} 1 & n & m \\ 0 & 1 & l \\ 0 & 0 & 1 \end{pmatrix} \mid n, m, l \in \mathbb{R} \}$

 \mathbb{Z} . Show that $\mathcal{H}(\mathbb{R})/\mathcal{H}(\mathbb{Z})$ is homeomorphic to the mapping torus of \mathbb{T}^2 by the homeomorphism induced by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Exercise^{*} 8. (Warning: you might have to look up a bit of hyperbolic geometry to do this exercise, although nothing fancy, just basic definitions)

- (1) Show that the quotient of \mathbb{H}^3 the hyperbolic 3-space by $PSL(2, \mathbb{Z}[i])$ is neither compact nor a manifold.
- (2) Show that there is a finite index subgroup Γ of $PSL(2, \mathbb{Z}[i])$ such that \mathbb{H}^3/Γ is a manifold.