

Spectral theory of differential operators: what's it all about and what is its use

Part III

Dmitri Vassiliev

University College London

June 2024

Spectral theory for systems

There are two main types of systems.

Type 1 Self-adjoint and **semi-bounded** system of m PDEs, each of **even order** $2n$, on a compact d -dimensional manifold M **with boundary** ∂M . Requires mn boundary conditions.

Type 2 Self-adjoint system of m PDEs, each of **odd order** $2n - 1$, on a compact d -dimensional manifold M **without boundary**. No requirement for system to be semi-bounded. In fact, the most interesting and physically meaningful examples are when the system is **not semi-bounded**. Think particle/antiparticle.

For type 1: second Weyl coefficient comes from the boundary ∂M .

For type 2: second Weyl coefficient comes from M itself.

For both types of systems the principal symbol is an $m \times m$ Hermitian matrix-function on $T^*M \setminus \{0\}$.

I will always assume that the eigenvalues of the principal symbol have constant multiplicity.

Moreover, for type 2 systems I will assume that the eigenvalues of the principal symbol are simple.