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Proper definition of curl and its basic properties

It is natural to define curl as an operator

curl : δΩ2 ∩ H1 → δΩ2,

where δΩ2 is the Hilbert space of real-valued coexact 1-forms with
inner product

〈u, v〉 :=

∫
M
∗u ∧ v =

∫
M
u ∧ ∗v

and H1 is the Sobolev space of real-valued 1-forms which are
square integrable together with their first partial derivatives.



Theorem 1

(a) The operator curl is self-adjoint.

(b) The spectrum of curl is discrete and accumulates to +∞ and
to −∞.

(c) Zero is not an eigenvalue of curl.

(d) The operator curl−1 is a bounded operator from δΩ2 ∩ Hs to
δΩ2 ∩ Hs+1 for all s ≥ 0.



Classical approach to spectral asymmetry

Definition of eta function:

ηcurl(s) :=
∑
λk 6=0

sgnλk
|λk |s

.

Series converges absolutely for Re s > 3 .

Meromorphic continuation to C .

Eta function generalises the more familiar zeta function.

Definition of eta invariant: ηcurl(0) .



Mathematicians who contributed to this subject area: Atiyah,
Patodi, Singer, Hitchin, Gilkey, Pontryagin, Hirzebruch, Chern,
Simons, Seeley ...

Key words: Hirzebruch L-polynomials, Hirzebruch Â-polynomials,
Pontryagin forms, Pontryagin classes ...



Our approach to spectral asymmetry

Put
P± := θ(± curl) ,

where

θ(x) :=

{
1, x > 0,

0, x ≤ 0,

is the Heaviside step function.

Then, morally,
ηcurl(0) = Tr(P+ − P−) .

Major problem: operator P+ − P− is not of trace class.



Invariant calculus for operators acting on 1-forms

Definition of subprincipal symbol for operators acting on 1-forms.

Original definition of subprincipal symbol for scalar operators acting
on half-densities is due to Duistermaat and Hörmander (1972).

Subprincipal symbol of adjoint.

Subprincipal symbol of composition.

In dimension d the subprincipal symbol of Hodge Laplacian is zero.

In dimension 3 the subprincipal symbol of curl is zero.



Constructing the projection operators P±
Theorem 2 The operators P+ and P− are pseudodifferential
operators of order zero and we have written down explicitly the
homogeneous components of their symbols of degree of
homogeneity 0, −1, −2, −3.

Components of degree of homogeneity −2 and −3 have been
written in geodesic normal coordinates.

Algorithm is described in our paper

Capoferri and Vassiliev, Invariant subspaces of elliptic systems I:
pseudodifferential projections, Journal of Functional Analysis, 2022.

Algorithm is global and does not use local coordinates. Magic!

Implementation of ‘magic’ algorithm benefits from the use of the
computer algebra package Mathematica©.



Where did the ‘magic’ algorithm come from?

Spectral theory of elliptic systems. Second Weyl coefficient.

1 V.Ivrii, 1980, Soviet Math. Doklady.
2 V.Ivrii, 1982, Funct. Anal. Appl.
3 V.Ivrii, 1984, Springer Lecture Notes. In 1998 book in Springer.
In 2019 another book in 5 volumes, also in Springer.
4 Yu.Safarov, DSc thesis, 1989, Steklov Mathematical Institute.
5 W.J.Nicoll, PhD thesis, 1998, University of Sussex.
6 I.Kamotski and M.Ruzhansky, 2007, Comm. PDEs.
7 O.Chervova, R.J.Downes and D.Vassiliev, 2013, Journal of
Spectral Theory.

2020: Matteo Capoferri and I realised that we have been looking
at elliptic systems the wrong way. Should look for almost invariant
subspaces and pseudodifferential projections. Benefit of hindsight.



Elephant in the room

How do we calculate the trace of the operator P+ − P− ?

The operator P+ − P− is of order 0. Trace class requires order to
be strictly less than −3 .



Calculating the trace of an operator acting on 1-forms

Consider

Q : uα(x) 7→
∫
M
qα

β(x , y) uβ(y) ρ(y) dy ,

where q is the (distributional) integral kernel (Schwartz kernel) and
ρ is the Riemannian density.

Suppose that the integral kernel q is sufficiently smooth. Then

TrQ =

∫
M
qα

α(x , x) ρ(x) dx ,

Idea: split the process of calculating trace into two separate steps.

I Take matrix trace first, which would give a scalar operator.

I Calculate the trace of the scalar operator the usual way, by
taking the value of the integral kernel on the diagonal x = y
and integrating over the manifold M.



Matrix trace of an operator acting on 1-forms

Definition 3 The matrix trace of an operator acting on 1-forms is
the scalar operator obtained by contracting tensor indices in the
integral kernel qα

β(x , y) of the original operator. No assumptions
on the smoothness of the integral kernel.

Slight problem: tensor indices α and β live at different points,
x and y . To make above definition invariant need to perform
parallel transport along shortest geodesic connecting x and y .

Another minor problem: need smooth cut-off about the diagonal
x = y so that the shortest geodesic connecting x and y is unique.

Matrix trace of an operator acting on 1-forms is defined uniquely
modulo the addition of a scalar operator whose integral kernel is
infinitely smooth and vanishes in a neighbourhood of the diagonal.



Properties of matrix trace of operator acting on 1-forms

Matrix trace of adjoint.

Principal and subprincipal symbols of matrix trace.

Matrix trace of a differential operator is a differential operator.

In dimension d the matrix trace of the Hodge Laplacian is
d∆ + 1

3 Sc, where ∆ is the Laplace–Beltrami operator and Sc is
scalar curvature.

In dimension 3 the matrix trace of curl is zero.

In dimension 3 the matrix trace of curl3 is zero.



The asymmetry operator

Definition 4 The asymmetry operator A is defined as the matrix
trace of the operator P+ − P− .

The asymmetry operator is a self-adjoint scalar pseudodifferential
operator determined by the Riemannian 3-manifold (M, g) and its
orientation.



The miracle

Theorem 5 The asymmetry operator is a pseudodifferential
operator of order −3.

Reason for miracle: symmetries of the Riemannian curvature tensor

Corollary 6 The asymmetry operator is almost trace class.



Singularity of the integral kernel of the asymmetry operator

Theorem 7 The principal symbol of the asymmetry operator reads

Aprin(x , ξ) = − εαβγ

2 ρ(x) ‖ξ‖5
∇α Ricβ

δ(x) ξγ ξδ ,

where Ric is the Ricci curvature tensor, ∇Ric is its covariant
derivative and ε is the totally antisymmetric symbol (Levi-Civita
symbol), ε123 := +1 .

Corollary 8 The singularity of the integral kernel a(x , y) of the
asymmetry operator is very weak. Namely, a(x , y) is a bounded
function, smooth outside the diagonal and discontinuous on the
diagonal: for any x ∈ M the limit limy→x a(x , y) depends on the
direction along which y tends to x .



The regularised local trace of the asymmetry operator

Denote by Sε(x) the geodesic sphere of radius ε > 0 centred at the
point x ∈ M.

Theorem 9 For any x ∈ M the limit

lim
ε→0+

1

4πε2

∫
Sε(x)

a(x , y) dSy

exists and defines a scalar continuous function

ψloc
curl(x) , ψloc

curl : M → R .

Definition 10 We call ψloc
curl(x) the regularised local trace of the

asymmetry operator.



The regularised global trace of the asymmetry operator

Definition 11 We call the number

ψcurl :=

∫
M
ψloc
curl(x) ρ(x)dx

the regularised global trace of the asymmetry operator.



Reconciling our approach with the classical one

Using microlocal techniques, we have defined a differential
geometric invariant ψcurl , a measure of the asymmetry of our
Riemannian 3-manifold under change of orientation.

Is it true that ψcurl = ηcurl(0) ?

Yes, it is.

Capoferri and Vassiliev, A microlocal pathway to spectral
asymmetry: curl and the eta invariant, in preparation.



The parameter-dependent asymmetry operator A(s)

Put
A(s) := tr [(P+ − P−)(−∆)−s/2 ] , s ∈ R.

∆ is the Hodge Laplacian on 1-forms and tr is the matrix trace.

Observation 1
A(0) = A ,

where A is our original asymmetry operator.

Observation 2 For s > 3 we have

Tr [A(s)] = ηcurl(s) .

Need to perform analytic continuation from s ∈ (3,+∞) to
s ∈ (0,+∞) and carefully examine what happens when s → 0+.



Properties of the operator A(s)

Theorem 12 The operator A(s) is a self-adjoint scalar
pseudodifferential operator of order −s − 3 .

Corollary 13 For s > 0 the operator A(s) is of trace class.

Theorem 14 The principal symbol [A(s)]prin of the operator A(s)

is

[A(s)]prin(x , ξ) =
(s + 1)(s + 3)

3‖ξ‖s
Aprin(x , ξ) ,

where Aprin is the principal symbol of our original asymmetry
operator A.



Weyl coefficients for the operator curl

N±curl(λ) :=

0 for λ ≤ 0,∑
0<±λk<λ

1 for λ > 0.

Let µ̂ : R→ C be a smooth function such that µ̂ = 1 in some
neighbourhood of the origin and supp µ̂ ⊂ (−T0,T0), where T0 is
the infimum of lengths of all the geodesic loops originating from all
the points of the manifold. Let µ be the inverse Fourier transform
of µ̂. Then

((N±curl)
′ ∗ µ)(λ) = c±2 λ

2 + c±1 λ+ c±0 + c±−1 λ
−1 + . . . ,

as λ→ +∞. Here the star stands for convolution in the variable λ.

We call the coefficients c±k Weyl coefficients.



Residues of the eta function are expressed via Weyl coefficients:

Res(ηcurl, n) = c+n−1 − c−n−1 , n = 3, 2, 1, 0,−1,−2, . . . .

Theorem 15 We have

c±2 =
1

2π2
Vol(M) ,

c±1 = 0 ,

c±0 = − 1

12π2

∫
M

Sc(x) ρ(x) dx ,

where Vol(M) is the Riemannian volume of the manifold, Sc is
scalar curvature and ρ is the Riemannian density.

Bracchi, Capoferri and Vassiliev, Higher order Weyl coefficients for
the operator curl, in preparation.



Zeros of ηcurl(s)?

We have

[A(s)]prin(x , ξ) = 0 for s = −1 and s = −3.

Furthermore, we have

A(s) = 0 for s = −1 and s = −3.

Possible zeros of ηcurl(s):

s = −1, s = −3.


