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Playing field

Let (M, g) be a connected closed Riemannian manifold of
dimension d ≥ 2. Local coordinates xα, α = 1, . . . , d .

Will work with scalar functions u : M → C.

Inner product

(u, v) :=

∫
M
u(x) v(x) ρ(x) dx ,

where ρ(x) :=
√

det gµν(x) and dx = dx1 . . . dxd .



Laplace–Beltrami operator

∆ := ρ(x)−1 ∂

∂xµ
ρ(x) gµν(x)

∂

∂xν
.

Eigenvalues and normalised eigenfunctions:

−∆vk = λ2
kvk ,

0 = λ0 < λ1 ≤ λ2 ≤ . . . ≤ λk ≤ . . .→ +∞.



The propagator

Time-dependent unitary operator

U(t) := e−it
√
−∆ =

∞∑
k=0

∫
M
e−itλk vk(x) vk(y) ( · ) ρ(y) dy .

Propagator is the solution of the operator-valued Cauchy problem

U(0) = Id

for the half-wave equation(
−i ∂

∂t
+
√
−∆

)
U(t) = 0 .



Task

Construct the propagator U(t) approximately and do it explicitly.

‘Approximately’ means ‘modulo an integral operator with infinitely
smooth integral kernel’. ‘Explicitly’ means ‘by solving ODEs as
opposed to PDEs’.

Levitan, Hörmander and many others: can be done using micro-
local techniques. But issues with the classical construction.

I It is not invariant under changes of local coordinates.

I It is local in space.

I It is local in time.

Locality in time is especially serious (topological obstructions):

U(t) = U(t − tj) ◦ U(tj − tj−1) ◦ · · · ◦ U(t2 − t1) ◦ U(t1).



The basics of microlocal analysis

Consider M = Rd equipped with Cartesian coordinates and metric
gαβ(x) = δαβ. The exact explicit formula for the propagator reads

U(t) =
1

(2π)d

∫
e iϕ(t,x ;y ,η) ( · ) dy dη ,

where

ϕ : R×M × T ∗M → R, ϕ(t, x ; y , η) = (x − y)αηα − t‖η‖

is the phase function and dη = dη1 . . . dηd .

In curved space one has to replace the above function ϕ by a
different phase function which feels the geometry of the particular
Riemannian manifold (M, g). Microlocal analysis is, in essence, the
art of doing the Fourier transform in curved space.



Global invariant construction

Main idea: replace real-valued phase function by complex-valued.

Illustration in Rd : instead of expanding over a trigonometric basis

e ix
αηα

expand over the set
e ix

αηα− ε
2
‖η‖ ‖x‖2

,

where ε > 0 is a parameter.

Keywords: Gaussian beam, wavelet.



Our construction originates from:

A. Laptev, Yu. Safarov and D. Vassiliev, On global representation
of Lagrangian distributions and solutions of hyperbolic equations,
Comm. Pure Appl. Math. 47 11 (1994) 1411–1456.

Yu. Safarov and D. Vassiliev, The asymptotic distribution of
eigenvalues of partial differential operators. Amer. Math. Soc.,
Providence (RI), 1997.

Current talk based on:

M. Capoferri, M. Levitin and D. Vassiliev, Geometric wave
propagator on Riemannian manifolds, arXiv:1902.06982.
To appear in Comm. Anal. Geom.

https://arxiv.org/abs/1902.06982


Hamiltonian flow on T ∗M

h(x , ξ) :=
√
gαβ(x) ξα ξβ = ‖ξ‖ ,

{
ẋ∗ = hξ(x

∗, ξ∗) ,

ξ̇∗ = −hx(x∗, ξ∗) ,

(x∗, ξ∗)|t=0 = (y , η) .

Hamiltonian trajectories

(x∗(t; y , η), ξ∗(t; y , η))

play the role of a skeleton in our construction.



The real-valued Levi-Civita phase function

For x close to x∗(t; y , η)

ϕ(t, x ; y , η) :=

∫
γ
ζ dz ,

where the path of integration γ is the (unique) shortest geodesic
connecting x∗(t; y , η) to x and ζ is the result of the parallel
transport of ξ∗(t; y , η) along γ.

Nice properties: (∆ϕ)|x=x∗ = 0 , (ϕtt)|x=x∗ = 0 .

Problem: it may happen that for some t

detϕxαηβ

∣∣
x=x∗

= 0 .



The complex-valued Levi-Civita phase function

For x close to x∗(t; y , η)

ϕ(t, x ; y , η) :=

∫
γ
ζ dz +

i ε

2
h(y , η) dist2(x , x∗(t; y , η)) ,

where ε > 0 is a parameter.

Fact: we are now guaranteed to have

detϕxαηβ

∣∣
x=x∗

6= 0 .



The global invariant formula for the propagator reads

U(t)
modC∞

=
1

(2π)n

∫
T∗M

e iϕ(t,x ;y ,η) a(t; y , η)χ(t, x ; y , η)w(t, x ; y , η) ( · ) dy dη

where

I the scalar function a : R× (T ∗M \ {0})→ C is the global
invariantly defined symbol,

I χ is a cut-off and

I w is a weight defined as

w(t, x ; y , η) := [ρ(x)]−1/2 [ρ(y)]1/2
[
det2

(
ϕxαηβ (t, x ; y , η)

)]1/4
.

The oscillatory integral is completely determined by its symbol.

Concept of quantization.



Calculating the symbol of the propagator
Expansion into components a−k positively homogeneous in
momentum η of degree −k,

a(t; y , η) ∼
∞∑
k=0

a−k(t; y , η) .

The a−k are the unknowns of our construction.

We call the function a0(t; y , η) the principal symbol of the
propagator. It turns out that a0(t; y , η) = 1.

We call the function a−1(t; y , η) the subprincipal symbol of the
propagator.

We have

I an explicit formula for the subprincipal symbol a−1(t; y , η) and

I an algorithm for the calculation of a−k(t; y , η), k = 2, 3, . . . .



Subprincipal symbol of the propagator on the 2-sphere

For general ε > 0

a−1(t; y , η) =
i t

8 ‖η‖
+
i sin(2t)− 4ε sin2(t) + 3 i ε2 sin(2t) + 6ε3 sin2(t)

48 ‖η‖ (cos(t)− iε sin(t))2
.

If we take ε = 1 formula simplifies and reads

a−1(t; y , η) =
i t

8 ‖η‖
+

2e2 i t + 3e4 i t − 5

96 ‖η‖
.

For ε = 0 formula becomes

a−1(t; y , η) =
i

24 ‖η‖
(3t + tan(t)) .



Subprincipal symbol for the hyperbolic plane

Setting ε = 0 we get

a−1(t; y , η) = − i

24 ‖η‖
(3t + tanh(t)) .



Small time expansion of subprincipal symbol of propagator

Let ε = 0. Then

a−1(t; y , η) =
i

12 ‖η‖
R(y) t + O(t2) as t → 0 ,

where R is scalar curvature.

This allows us to recover the third Weyl coefficient in the
asymptotic expansion of the local counting function.



Weyl coefficients

Local counting function: N(y , λ) :=
∑

λk<λ
|vk(y)|2 .

Global counting function: N(λ) :=
∑

λk<λ
1 =

∫
M N(y ;λ) ρ(y) dy .

Mollification:

(N ′ ∗µ)(y , λ) = cd−1(y)λd−1 + cd−2(y)λd−2 + cd−3(y)λd−3 + . . .

as λ→ +∞. Here µ(λ) is a mollifier. Turns out that

cd−1(y) =
Sd−1

(2π)d
, cd−2(y) = 0 , cd−3(y) =

d − 2

12
R(y) cd−1(y) ,

where Sd−1 is the volume of the (d − 1)-dimensional unit sphere.



Maslov index

Calculate the increment of

− 1

2π
arg det2ϕxαηβ

∣∣
x=x∗

along the closed geodesic.

For the 2-sphere

detϕxαηβ

∣∣
x=x∗

= [ρ(x)] [ρ(y)]−1 [cos(t)− i ε sin(t)] ,

which gives Maslov index 2.



Other approaches to global construction of propagator

Publications by applied mathematicians and physicists working in
solid state physics and electromagnetic wave propagation. Inspired
by geometric optics and use concept of Gaussian beam.

Publications by James Ralston and his students, 1983 to date. Also
inspired by geometric optics and use concept of Gaussian beam.

A. Melin and J. Sjöstrand, 1976. Real analytic manifold,
complexification of phase space.

Melin and Sjöstrand’s techniques later adopted and developed by
S. Zelditch, 2007 and 2014.



Adapting our method to other meaningful problems

1 Massless Dirac operator on an oriented Riemannian 3-manifold.

M. Capoferri and D. Vassiliev, Global propagator for the massless
Dirac operator and spectral asymptotics, arXiv:2004.06351.

2 Operator curl := ∗d on an oriented Riemannian 3-manifold.

3 Extension of our method to the Lorentzian setting. Start with
the (scalar) wave equation, then massless Dirac, then Maxwell ...

M. Capoferri, C. Dappiaggi and N. Drago, Global wave
parametrices on globally hyperbolic spacetimes, arXiv:2001.04164.

4 Linearised Einstein equations?

https://arxiv.org/abs/2004.06351
https://arxiv.org/abs/2001.04164

