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The scalar wave propagator

Let (M, g) be a connected closed Riemannian manifold and let ∆
be the corresponding Laplace–Beltrami operator. The operator

U(t) := e−it
√
−∆

is called the scalar wave propagator.

It is the (distributional) solution of the Cauchy problem

U(0) = Id

for the pseudodifferential hyperbolic half-wave equation(
−i ∂

∂t
+
√
−∆

)
U = 0 .



Microlocal techniques (Levitan, Hörmander): one can construct
the propagator U(t) approximately, modulo an integral operator
with smooth integral kernel.

Here U(t) is written locally, in time and in space, as a composition
of oscillatory integrals whose amplitudes and phase functions are
obtained by solving ODEs, as opposed to PDEs.

Issues with the classical construction.

I It is not invariant under changes of local coordinates.

I It is local in space.

I It is local in time.

Locality in time is especially serious (topological obstructions):

U(t) = U(t − tj) ◦ U(tj − tj−1) ◦ · · · ◦ U(t2 − t1) ◦ U(t1).



Global invariant construction

Basic idea: replace real-valued phase function by complex-valued.

Illustration in Rn: instead of expanding over a trigonometric basis

e ix
αξα

expand over the set
e ix

αξα− ε
2
‖ξ‖ ‖x‖2

,

where ε > 0 is a parameter. Here xα, α = 1, . . . , n, are Cartesian
coordinates and ξα, α = 1, . . . , n, is momentum.
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Hamiltonian flow on T ∗M

h(x , ξ) :=
√
gαβ(x) ξα ξβ = ‖ξ‖ ,

{
ẋ∗ = hξ(x

∗, ξ∗) ,

ξ̇∗ = −hx(x∗, ξ∗) ,

(x∗, ξ∗)|t=0 = (y , η) .

Hamiltonian trajectories

(x∗(t; y , η), ξ∗(t; y , η))

play the role of a skeleton in our construction.



The real-valued Levi-Civita phase function

For x close to x∗(t; y , η)

ϕ(t, x ; y , η) :=

∫
γ
ζ dz ,

where the path of integration γ is the (unique) shortest geodesic
connecting x∗(t; y , η) to x and ζ is the result of the parallel
transport of ξ∗(t; y , η) along γ.

Problem: it may happen that

detϕxαηβ

∣∣
x=x∗

= 0 .



The complex-valued Levi-Civita phase function

For x close to x∗(t; y , η)

ϕ(t, x ; y , η) :=

∫
γ
ζ dz +

i ε

2
h(y , η) dist2(x , x∗(t; y , η)) ,

where ε > 0 is a parameter.

Fact: we are now guaranteed to have

detϕxαηβ

∣∣
x=x∗

6= 0 .



The global invariant formula for the propagator reads

U(t)
modC∞

=
1

(2π)n

∫
T∗M

e iϕ(t,x ;y ,η) a(t; y , η)χ(t, x ; y , η)w(t, x ; y , η) ( · ) dy dη

where

I the scalar function a : R× (T ∗M \ {0})→ C is the global
invariantly defined symbol,

I χ is a cut-off,

I w is a weight defined as

w(t, x ; y , η) := [ρ(x)]−1/2 [ρ(y)]1/2
[
det2

(
ϕxαηβ (t, x ; y , η)

)]1/4
,

I ρ is the Riemannian density and

I dy = dy1 . . . dyn, dη = dη1 . . . dηn.

The oscillatory integral is completely determined by its symbol.

Concept of quantization.



Calculating the symbol of the propagator
Expansion into components a−k positively homogeneous in
momentum η of degree −k,

a(t; y , η) ∼
∞∑
k=0

a−k(t; y , η) .

The a−k are the unknowns of our construction.

We call the function a0(t; y , η) the principal symbol of the
propagator. It turns out that a0(t; y , η) = 1.

We call the function a−1(t; y , η) the subprincipal symbol of the
propagator.

We have

I an explicit formula for the subprincipal symbol a−1(t; y , η) and

I an algorithm for the calculation of a−k(t; y , η), k = 2, 3, . . . .



Subprincipal symbol of the propagator on a 2-sphere

For general ε > 0

a−1(t; y , η) =
i t

8 ‖η‖
+
i sin(2t)− 4ε sin2(t) + 3 i ε2 sin(2t) + 6ε3 sin2(t)

48 ‖η‖ (cos(t)− iε sin(t))2
.

If we take ε = 1 formula simplifies and reads

a−1(t; y , η) =
i t

8 ‖η‖
+

2e2 i t + 3e4 i t − 5

96 ‖η‖
.

For ε = 0 formula becomes

a−1(t; y , η) =
i

24 ‖η‖
(3t + tan(t)) .



Subprincipal symbol for the hyperbolic plane

Setting ε = 0 we get

a−1(t; y , η) = − i

24 ‖η‖
(3t + tanh(t)) .



Small time expansion of subprincipal symbol of propagator

Theorem (Capoferri–Levitin–Vassiliev) Let ε = 0. Then

a−1(t; y , η) =
i

12 ‖η‖
R(y) t + O(t2) as t → 0 ,

where R is scalar curvature.

This theorem allows us to recover the third Weyl coefficient in the
asymptotic expansion of the local counting function:

N(y , λ) :=
∑
λk<λ

|vk(y)|2 ,

(N ′ ∗µ)(y , λ) = ad−1(y)λd−1 + ad−2(y)λd−2 + ad−3(y)λd−3 + . . .

as λ→ +∞. Here µ(λ) is a mollifier.



Maslov index

Calculate the increment of

− 1

2π
arg det2ϕxαηβ

∣∣
x=x∗

along the closed geodesic.

For the 2-sphere

detϕxαηβ

∣∣
x=x∗

= [ρ(x)] [ρ(y)]−1 [cos(t)− i ε sin(t)] ,

which gives Maslov index 2.



Work in progress

1 Massless Dirac operator on an oriented Riemannian 3-manifold.

2 Operator curl := ∗d on an oriented Riemannian 3-manifold.

Elementary particles come in two types — fermions and bosons.

The most basic fermion is the massless neutrino, whereas the most
basic boson is the photon. The massless neutrino is described by
the massless Dirac operator, whereas the photon is described by
Maxwell’s equations. The latter reduce to(

−i ∂
∂t

+ curl

)
u = 0 ,

δu = 0,

where u is the unknown complex-valued 1-form.



General challenges for massless Dirac and for curl

1 We are now dealing with systems.

2 The spectrum is no longer semi-bounded.

3 We now need two oscillatory integrals for our propagators.
These correspond to positive and negative eigenvalues.

4 The spectrum is asymmetric about zero. One has to deal with
positive and negative eigenvalues separately by introducing two
local counting functions

N±(y , λ) :=
∑

0<±λk<λ
‖vk(y)‖2 .

One expects to observe asymmetry in the sixth Weyl coefficient.



Challenge specific to the massless Dirac operator

The massless Dirac operator W is a 2× 2 matrix first order
differential operator. It is uniquely defined by metric and spin
structure modulo the gauge transformation

W 7→ G ∗WG ,

where
G : M → SU(2)

is an arbitrary smooth special unitary matrix-function.

We need to construct the massless Dirac propagator

U(t) := e−itW ,

in a geometrically meaningful fashion, in the sense that it respects
the above gauge transformations.



Challenges specific to the operator curl

1 The operator curl is not elliptic: the determinant of its principal
symbol is identically zero.

2 One can turn curl into an elliptic operator by switching to the

‘extended curl’ operator Curl :=

(
curl d
δ 0

)
acting in the space

Ω1(M)⊕ Ω0(M) and constructing its propagator e−it Curl .

3 The principal symbol of the ‘extended curl’ operator Curl has
double eigenvalues. Hence, the hyperbolic system(

−i ∂
∂t

+ Curl

)
v = 0

has double characteristics.

4 The Schwartz kernel of the curl propagator is a two-point tensor.


