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Basic example of a problem in my subject area

Acoustic resonator. Suppose we are studying the vibrations of air
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Here p is the pressure and c is the speed of sound.

Seek solutions in the form p(x1, x2, x3, t) = p(x1, x2, x3)e−iωt ,
where ω is the unknown natural frequency.



This leads to an eigenvalue problem:

−∆p = λp in Ω, ∂p/∂n|∂Ω = 0,

where ∆ is the Laplacian and λ := ω2

c2 is the spectral parameter.

Finding eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ . . . is difficult, so one
introduces the counting function

N(λ) :=
∑

0≤λk<λ
1

(“number of eigenvalues below a given λ”) and studies the
asymptotic behaviour of N(λ) as λ→ +∞.



Rayleigh–Jeans law (1905)

N(λ) =
V

6π2
λ3/2 + o(λ3/2) as λ→ +∞,

where V is the volume of the resonator.



Rayleigh’s “proof” of the Rayleigh–Jeans law

Suppose Ω is a cube with side length a. Then the eigenvalues and
eigenfunctions can be calculated explicitly:
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where k = (k1, k2, k3) and k1, k2, k3 are nonnegative integers.
N(λ) is the number of integer lattice points in the nonnegative
octant of a ball of radius a
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Jeans’ contribution to the Rayleigh–Jeans law

“It seems to me that Lord Rayleigh has introduced an unnecessary
factor 8 by counting negative as well as positive values of his
integers”.



1910: Lorentz visits Göttingen at Hilbert’s invitation and delivers a
series of lectures “Old and new problems in physics”. Lorentz
states the Rayleigh–Jeans law as a mathematical conjecture.
Hermann Weyl is in the audience.

1912: Weyl publishes a rigorous proof of Rayleigh–Jeans law.
Almost incomprehensible.

Comprehensible proof: in R.Courant and D.Hilbert, Methods of
Mathematical Physics (1924).



Courant’s method

Approximate domain Ω by a collection of small cubes, setting
Dirichlet or Neumann boundary conditions on boundaries of cubes.
Setting extra Dirichlet conditions raises the eigenvalues whereas
setting extra Neumann conditions lowers the eigenvalues.

Remains only to

I choose size of cubes correctly (in relation to λ) and

I estimate contribution of bits of domain near the boundary (we
throw them out).



General statement of the problem

Let M be a compact n-dimensional manifold with boundary ∂M.
Consider the spectral problem for an elliptic self-adjoint semi-
bounded from below differential operator of even order 2m:

Au = λu on M, (B(j)u)
∣∣∣
∂M

= 0, j = 1, . . . ,m.

Has been proven (by many authors over many years) that

N(λ) = aλn/(2m) + o(λn/(2m)) as λ→ +∞

where the constant a is written down explicitly.



Weyl’s Conjecture (1913)

One can do better and prove two-term asymptotic formulae for the
counting function. Say, for the case of the Laplacian in 3D with
Neumann boundary conditions Weyl’s Conjecture reads

N(λ) =
V

6π2
λ3/2 +

S

16π
λ+ o(λ) as λ→ +∞,

where S is the surface area of ∂M. For a general partial differential
operator of order 2m Weyl’s Conjecture reads

N(λ) = aλn/(2m) + bλ(n−1)/(2m) + o(λ(n−1)/(2m)) as λ→ +∞

where the constant b can also be written down explicitly.



For the case of a second order operator Weyl’s Conjecture was
proved by V.Ivrii in 1980.

I proved it for operators of arbitrary order in 1984.

My main research publication:

Yu.Safarov and D.Vassiliev, The asymptotic distribution of
eigenvalues of partial differential operators, American
Mathematical Society, 1997 (hardcover), 1998 (softcover).

“In the reviewer’s opinion, this book is indispensable for serious
students of spectral asymptotics”. Lars Hörmander for the Bulletin
of the London Mathematical Society.



Two basic issues

I Prove the existence of a two-term asymptotics expansion.
Need to exclude situations with too many symmetries.
Requires the examination of a particular dynamical system, a
Hamiltonian billiards on the cotangent bundle. There
shouldn’t be too many periodic billiard trajectories.

I Derive explicit formula for the second Weyl coefficient for the
general case.



Idea of proof: Levitan’s wave equation method

Key word: microlocal analysis.

Developed by B.M.Levitan, L.Hörmander (Fields Medal 1962),
J.J.Duistermaat, V.W.Guillemin and others.

Introduce time t and study the “hyperbolic” equation

Au =

(
i
∂

∂t

)2m

u.

Construct the operator

U(t) := e−itA1/(2m)

This operator is called the propagator. It is a Fourier integral
operator.



Having constructed the propagator, recover information about the
spectrum using Fourier Tauberian theorems. These allow us to
perform the inverse Fourier transform from variable t (time) to
variable λ (spectral parameter) using incomplete information, with
control of error terms.

Similar to Tauberian theorems used in analytic number theory.



Example: vibrations of a plate

∆2u = λu in Ω ⊂ R2, u|∂Ω = ∂u/∂n|∂Ω = 0.

My formula (1987):

N(λ) =
S

4π
λ1/2 +

βL

4π
λ1/4 + o(λ1/4) as λ→ +∞

where S is area of the plate, L is length of the boundary and

β = −1− Γ(3/4)√
π Γ(5/4)

≈ −1.763.

The first asymptotic term was derived by Courant (1922).

Inverting the formula and switching to frequencies λ
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N , we get
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My current research programme

Study of first order systems on manifolds without boundary.

Why do this?

I Second Weyl coefficient appears even without boundary. It
comes from the bulk (interior) of the manifold.

I The spectrum is not semi-bounded. Spectral asymmetry.

I I developed an obsession in my old age: I want to understand
elementary particles.



My main result for first order systems on manifolds

Explicit formula for second Weyl coefficient.

O.Chervova, R.J.Downes and D.Vassiliev, The spectral function of
a first order elliptic system, Journal of Spectral Theory 3 (2013),
317–360.



Warning: doing microlocal analysis for systems is not easy

I V.Ivrii, 1980, Soviet Math. Doklady.

I V.Ivrii, 1982, Funct. Anal. Appl.

I G.V.Rozenblyum, 1983, Journal of Mathematical Sciences.

I V.Ivrii, 1984, Springer Lecture Notes.

I Yu.Safarov, DSc thesis, 1989, Steklov Mathematical Institute.

I V.Ivrii, book, 1998, Springer.

I W.J.Nicoll, PhD thesis, 1998, University of Sussex.

I I.Kamotski and M.Ruzhansky, 2007, Comm. PDEs.



The circle group U(1)

U(1) = {z ∈ C : |z | = 1}.

Here the group operation is multiplication.



Why the circle group U(1) is relevant

Look at the matrix differential operator A, keep only leading (first
order) derivatives and replace each ∂/∂xα by iξα , α = 1, . . . , n, to
get a matrix-function A1(x , ξ) on the cotangent bundle.

The matrix-function A1(x , ξ) is called principal symbol.

Let v(x , ξ) be an eigenvector of the principal symbol.

Problem: v(x , ξ) is not defined uniquely. It is is defined modulo a
gauge transformation v 7→ e iφv where φ : T ∗M \ {0} → R is an
arbitrary smooth function. This gives rise to a U(1) connection
which, in turn, generates curvature.



Physical meaning of the U(1) connection

In theoretical physics a U(1) connection is usually associated with
electromagnetism. The corresponding curvature tensor is the
electromagnetic (Faraday) tensor.

I have shown that inside any system of partial differential equations
with variable coefficients there is an intrinsic electromagnetic field
which lives on the cotangent bundle. Abstract mathematical fact.

One has to take account of this intrinsic electromagnetic field in
order to get correct results.



Basic ideas driving my current research programme

I God is more of an analyst than a geometer.

I Dimension four is special.



Recent results

Suppose I am looking at a system of two linear first order PDEs for
two unknown complex-valued scalar fields over a 4-manifold.

Suppose I know that this system admits a variational formulation.

Then Lorentzian geometry is automatically encoded within this
system of PDEs. There is no need to introduce geometric
constructs a priori. They are already there.

Z. Avetisyan, Y.-L. Fang, N. Saveliev and D. Vassiliev, Analytic
definition of spin structure, JMP 58 (2017) 082301.



Why does Lorentzian metric appear out of thin air?

Observation: 2× 2 Hermitian matrices form a real vector space of
dimension four. Our manifold also has dimension four.

Take four linearly independent 2× 2 Hermitian matrices σα,
α = 1, 2, 3, 4, multiply them by ξα, α = 1, 2, 3, 4, and add up.
This gives us a principal symbol

A1(ξ) := σαξα .

Determinant of principal symbol is a quadratic form in momentum

detA1(ξ) = −gαβ ξαξβ .

Lemma The real symmetric matrix gαβ has Lorentzian signature,
i.e. it has three positive eigenvalues and one negative eigenvalue.


