
Lorentzian elasticity
arXiv:1805.01303

Matteo Capoferri and Dmitri Vassiliev

University College London

14 July 2018



Abstract formulation of elasticity theory

Consider a manifold M equipped with non-degenerate metric g .

Unknown quantity in elasticity is diffeomorphism ϕ : M → M.

Perturbed metric

hαβ(x) := gµν(ϕ(x))
∂ϕµ

∂xα
∂ϕν

∂xβ
,

where
y = ϕ(x)

is the representation of the diffeomorphism in local coordinates.

A pair of metrics, g and h, allows us to write down an action
(variational functional).



Strain tensor

Linear algebra: a pair of non-degenerate symmetric bilinear forms
g , h : V × V → R in a real finite-dimensional vector space V
defines an invertible linear operator L : V → V via the formula

h(u, v) = g(Lu, v), ∀u, v ∈ V .

Convenient to subtract the identity operator,

S := L− Id

Definition of strain tensor:

Sαβ(x) := [gαγ(x)] [hγβ(x)]− δαβ .

Describes, pointwise, linear map in the fibres of the tangent bundle

vα 7→ Sαβ v
β.



Scalar invariants of the strain tensor

Obvious choice: tr(Sk), k = 1, . . . , d , where d is dimension of M.

More convenient choice:

e1(ϕ) := tr S = λ1 + . . .+ λd ,

e2(ϕ) :=
1

2

[
(tr S)2 − tr(S2)

]
= λ1λ2 + λ1λ3 + . . .+ λd−1λd ,

· · ·
ed(ϕ) := detS = λ1 . . . λd .

These are elementary symmetric polynomials. The lambdas are the
eigenvalues of the strain tensor.



Elastic action

J (ϕ) :=

∫
M
L
(
e1(ϕ), . . . , ed(ϕ)

)√
| det gµν(x)| dx ,

where L is some smooth real-valued function of d real variables
and dx := dx1 . . . dxd .

This action describes an isotropic homogeneous elastic continuum.



Examples of meaningful Lagrangians

Example 1 Lagrangian linear in strain

L(e1, . . . , ed) = e1 .

This is the Lagrangian of a harmonic map. No free parameters.

Example 2 Lagrangian quadratic in strain

L(e1, . . . , ed) = α(e1)2 + βe2 ,

where β 6= 0. This is the Lagrangian of an elastic continuum that

is physically linear. One free parameter:
α

β
.

Poisson’s ratio: ν =
2α + β

4α + β
.



Equations of elasticity

E (ϕ) = 0,

where E is a nonlinear second order partial differential operator
mapping a diffeomorphism to a covector field.



Lorentzian elasticity

d = 4, metric has signature + + +− .

Remark 1 Lorentzian elasticity has never been studied. Not to be
confused with ‘relativistic elasticity’.

Remark 2 In the Lorentzian setting strain may be nilpotent with
nilpotency index ≤ 3 (Gohberg, Lancaster and Rodman 2005).
This means that a Lorentzian spacetime can be deformed in a most
unusual way: strain is nonzero but all the scalar invariants are zero.



Our mathematical model

Vary elastic action subject to the volume preservation constraint

det gαβ(x) = det hµν(x).

Work in the subgroup of volume-preserving diffeomorphisms.

Equivalent representation of the volume preservation constraint:

e1(ϕ) + e2(ϕ) + e3(ϕ) + e4(ϕ) = 0 .



Our field equations

Introducing a Lagrange multiplier p : M → R, we get

E (ϕ)− dp = 0,

where dp is the gradient of p

One can interpret p as pressure, like in Stokes equations.



Conditions on the Lagrangian L(e1, e2, e3, e4)

Put f (z) := L(−z , z , 0, 0), f : R→ R.

Condition 1 f ′(0) 6= 0.

Condition 2 f ′(c) = 0 for some c ∈ (0, 4).



Vector field of displacements A : M → TM

Connect a point P ∈ M with the point ϕ(P) ∈ M by a geodesic
γ : [0, 1]→ M, so that γ(0) = P and γ(1) = ϕ(P). Parameterize
the geodesic in such a way that γ(τ) is a solution of the equation

γ̈λ +

{
λ

µν

}
γ̇µγ̇ν = 0,

where the dot stands for differentiation in τ .

Then
A(P) := γ̇(0).



Linearised field equations

Theorem 1 Our linearised field equations read(
δd− 2Ric d

δ 0

)(
A[

p̃

)
= 0.

Here A[ : M → T ∗M is the covector version of our vector field of
displacements A : M → TM and p̃ is a rescaled version of our
original Lagrange multiplier p : M → R (pressure).

Remark 3 For Ricci-flat manifolds we get Maxwell’s equations

δdA[ = J

in the Lorenz gauge
δA[ = 0

with exact current J := −dp̃.



Solving nonlinear equations: group-theoretic trick

Definition 1 Let ϕ be a diffeomorphism. We say that ϕ is
homogeneous if there exists a subgroup H of the isometry group
acting transitively on M and satisfying

H ◦ ϕ = ϕ ◦ H.

If we have the stronger property

ξ ◦ ϕ = ϕ ◦ ξ, ∀ξ ∈ H,

we say that ϕ is equivariant.

Theorem 2 Let ϕ be a homogeneous diffeomorphism. Then all
the scalar invariants are constant. Furthermore, if the equations of
elasticity are satisfied at a single point then they are satisfied on
the whole manifold.



Minkowski space

Work in Minkowski space M, gαβ = diag(1, 1, 1,−1).

10-dimensional isometry group of M, the Poincaré group.

Restricted Poincaré group (identity component of Poincaré group).

Need to find nontrivial 4-dimensional subgroups of the restricted
Poincaré group.



Massless screw groups, right-handed and left-handed

This is the set of isometries


x1

x2

x3

x4

 7→


cos(q3 + q4) ∓ sin(q3 + q4) 0 0
± sin(q3 + q4) cos(q3 + q4) 0 0

0 0 1 0
0 0 0 1



x1

x2

x3

x4

+


q1

q2

q3

q4

, q ∈ R4.



Massive screw group

For a given value of parameter m > 0, this is the set of isometries


x1

x2

x3

x4

 7→


cos(2mq4) − sin(2mq4) 0 0
sin(2mq4) cos(2mq4) 0 0

0 0 1 0
0 0 0 1



x1

x2

x3

x4

+


q1

q2

q3

q4

, q ∈ R4.



Explicit massless solutions of our nonlinear field equations

Theorem 3 Let a > 0 be parameter. Then the diffeomorphism
described by the vector field of displacements

Aα(x) = a


cos(x3 + x4)
± sin(x3 + x4)

0
0


is volume preserving and satisfies nonlinear equations of elasticity.



Explicit massive solutions of our nonlinear field equations

Theorem 4 Let m > 0, a > 0 and b ∈ R be parameters satisfying

4m2(a2 + b2) = c ,

where c is the critical point from an earlier slide. Then the
diffeomorphism described by the vector field of displacements

Aα(x) =


a cos(2mx4)
a sin(2mx4)

2mbx4

0


is volume preserving and satisfies nonlinear equations of elasticity.

Remark 4 We have here two free parameters, m > 0 and b ∈ R.

I m is quantum mechanical mass.

I b may be interpreted as electric charge.





The Dirac equation

Claim One can see the Dirac equation in our explicit solutions.

Need to separate stretches and rotations.

Deformation gradient

Dα
β := δαβ +

∂Aα

∂xβ
.

It contains more geometric information than the strain tensor.

Polar decomposition

Dα
β = Uα

γ V
γ
β ,

where U is Lorentz–orthogonal and V is Lorentz–symmetric.

Define the rotation 2-form as F := lnU .



For our explicit solutions the rotation 2-form F admits a natural
complexification F ,

F = ReF.

Turns out, this complex-valued 2-form is degenerate,

detF = det(∗F) = 0,

therefore it is equivalent to the square of a bispinor field.

Turns out, this bispinor field satisfies the Dirac equation.


