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Abstract formulation of elasticity theory

Consider a manifold M equipped with non-degenerate metric g.
Unknown quantity in elasticity is diffeomorphism ¢ : M — M.
Perturbed metric

It O
ha/ﬂ’(x) = guﬂ(@(x))ﬁ OB’

where
y = ¢(x)

is the representation of the diffeomorphism in local coordinates.

A pair of metrics, g and h, allows us to write down an action
(variational functional).



Strain tensor

Linear algebra: a pair of non-degenerate symmetric bilinear forms
g,h:V xV = Rin a real finite-dimensional vector space V
defines an invertible linear operator L : V — V via the formula

h(u,v) = g(Lu,v), Yu,v e V.
Convenient to subtract the identity operator,
S=L-1d
Definition of strain tensor:
$%5(x) = [g™(x)] [mya()] — 57
Describes, pointwise, linear map in the fibres of the tangent bundle

v = 5% Vo,



Scalar invariants of the strain tensor

Obvious choice: tr(Sk), k=1,...,d, where d is dimension of M.

More convenient choice:

eifg) =trS=XM+...+ Ag,
1
ez(tp) = 5 [(tr 5)2 — tr(52)] =AM+ MA3+ ...+ g1 Mg,

ed(ga) =detS =X\ ... \g.

These are elementary symmetric polynomials. The lambdas are the
eigenvalues of the strain tensor.



Elastic action

T(p) = /M L(er(9),- - eal9)) /| det gu(x)] dx,

where L is some smooth real-valued function of d real variables
and dx := dx!...dxq.

This action describes an isotropic homogeneous elastic continuum.



Examples of meaningful Lagrangians

Example 1 Lagrangian linear in strain
[,(el,...,ed): €.
This is the Lagrangian of a harmonic map. No free parameters.

Example 2 Lagrangian quadratic in strain

L(er,...,eq) = a(el)2 + Bez,

where 3 # 0. This is the Lagrangian of an elastic continuum that
. . : o
is physically linear. One free parameter: ik

20+

Poisson’s ratio: v = .
4o+ 3




Equations of elasticity

E(p) =0,

where E is a nonlinear second order partial differential operator
mapping a diffeomorphism to a covector field.



Lorentzian elasticity

d = 4, metric has signature + + +—.

Remark 1 Lorentzian elasticity has never been studied. Not to be
confused with ‘relativistic elasticity’.

Remark 2 In the Lorentzian setting strain may be nilpotent with
nilpotency index < 3 (Gohberg, Lancaster and Rodman 2005).
This means that a Lorentzian spacetime can be deformed in a most
unusual way: strain is nonzero but all the scalar invariants are zero.



Our mathematical model

Vary elastic action subject to the volume preservation constraint

det go5(x) = det hy(x).

Work in the subgroup of volume-preserving diffeomorphisms.

Equivalent representation of the volume preservation constraint:

e1(p) + ex(p) + e3() + ea(p) =0.



Our field equations

Introducing a Lagrange multiplier p: M — R, we get

E(p) —dp=0,

where dp is the gradient of p

One can interpret p as pressure, like in Stokes equations.



Conditions on the Lagrangian L(ey, e, €3, €4)

Put f(z) := L(-z,2,0,0), f:R—R.
Condition 1 /(0) # 0.

Condition 2 f’(c) = 0 for some ¢ € (0, 4).



Vector field of displacements A: M — TM

Connect a point P € M with the point p(P) € M by a geodesic
v :[0,1] — M, so that v(0) = P and (1) = ¢(P). Parameterize
the geodesic in such a way that v(7) is a solution of the equation

. A g
i+ { } 3" =0,
1%

where the dot stands for differentiation in 7.

Then



Linearised field equations

Theorem 1 Our linearised field equations read

6d —2Ric d\ (A 0
5 0)\p)

Here A’ : M — T*M is the covector version of our vector field of
displacements A: M — TM and p is a rescaled version of our
original Lagrange multiplier p : M — R (pressure).

Remark 3 For Ricci-flat manifolds we get Maxwell's equations
SAA” = J

in the Lorenz gauge
SA" =0

with exact current J := —dp.



Solving nonlinear equations: group-theoretic trick

Definition 1 Let ¢ be a diffeomorphism. We say that ¢ is
homogeneous if there exists a subgroup H of the isometry group
acting transitively on M and satisfying

Hop=poH.
If we have the stronger property
fop=pof,  VEeH,

we say that ¢ is equivariant.

Theorem 2 Let ¢ be a homogeneous diffeomorphism. Then all
the scalar invariants are constant. Furthermore, if the equations of
elasticity are satisfied at a single point then they are satisfied on
the whole manifold.



Minkowski space

Work in Minkowski space M, g,5 = diag(1,1,1,—1).
10-dimensional isometry group of M, the Poincaré group.
Restricted Poincaré group (identity component of Poincaré group).

Need to find nontrivial 4-dimensional subgroups of the restricted
Poincaré group.



Massless screw groups, right-handed and left-handed

X X X X

A~ W N =

This is the set of isometries

cos(q® + q*)
+sin(qg® + q*)
0
0

Fsin(q® + q%)
cos(q® + q*)
0
0

o= OO

= O O O

3 |t q3 , ¢ R4.
q
4 7



Massive screw group

For a given value of parameter m > 0, this is the set of isometries

x1 cos(2mg*) —sin(2mg*) 0 0\ /x? qt
x2 sin(2mg*)  cos(2mg*) 0 O [ x? q° 4
S| 0 0 1of 2] 7%
x4 0 0 0 1/ \x* q*



Explicit massless solutions of our nonlinear field equations

Theorem 3 Let a > 0 be parameter. Then the diffeomorphism
described by the vector field of displacements

cos(x> + x*)
+sin(x3 + x*)
0
0

AYx)=a

is volume preserving and satisfies nonlinear equations of elasticity.



Explicit massive solutions of our nonlinear field equations
Theorem 4 Let m >0, a > 0 and b € R be parameters satisfying
4m?(a® + b%) = c,

where c is the critical point from an earlier slide. Then the
diffeomorphism described by the vector field of displacements

acos(2mx*)
asin(2mx*)
2mbx*
0

A%(x) =

is volume preserving and satisfies nonlinear equations of elasticity.

Remark 4 We have here two free parameters, m > 0 and b € R.
> m is quantum mechanical mass.

» b may be interpreted as electric charge.



#Hbv>0 (i) b <0

Figure 1: Massive solution



The Dirac equation

Claim One can see the Dirac equation in our explicit solutions.
Need to separate stretches and rotations.
Deformation gradient

OA”

D% = ¢ .
B s+ OxP

It contains more geometric information than the strain tensor.
Polar decomposition

D% = U, Vg,
where U is Lorentz—orthogonal and V is Lorentz—symmetric.

Define the rotation 2-form as F :=1InU.



For our explicit solutions the rotation 2-form F admits a natural

complexification [,
F = ReF.

Turns out, this complex-valued 2-form is degenerate,
detF = det(«F) = 0,
therefore it is equivalent to the square of a bispinor field.

Turns out, this bispinor field satisfies the Dirac equation.



