Lorentzian elasticity arXiv:1805.01303

Matteo Capoferri and Dmitri Vassiliev

University College London
29 June 2018

Abstract formulation of elasticity theory

Consider a manifold M equipped with non-degenerate metric g.
Unknown quantity in elasticity is diffeomorphism $\varphi: M \rightarrow M$.

Perturbed metric

$$
h_{\alpha \beta}(x):=g_{\mu \nu}(\varphi(x)) \frac{\partial \varphi^{\mu}}{\partial x^{\alpha}} \frac{\partial \varphi^{\nu}}{\partial x^{\beta}}
$$

where

$$
y=\varphi(x)
$$

is the representation of the diffeomorphism in local coordinates.

A pair of metrics, g and h, allows us to write down an action (variational functional).

Strain tensor

Linear algebra: a pair of non-degenerate symmetric bilinear forms $g, h: V \times V \rightarrow \mathbb{R}$ in a real finite-dimensional vector space V defines an invertible linear operator $L: V \rightarrow V$ via the formula

$$
h(u, v)=g(L u, v), \quad \forall u, v \in V
$$

Convenient to subtract the identity operator,

$$
S:=L-\mathrm{Id}
$$

Definition of strain tensor:

$$
S^{\alpha}{ }_{\beta}(x):=\left[g^{\alpha \gamma}(x)\right]\left[h_{\gamma \beta}(x)\right]-\delta^{\alpha}{ }_{\beta} .
$$

Describes, pointwise, linear map in the fibres of the tangent bundle

$$
v^{\alpha} \mapsto S^{\alpha}{ }_{\beta} v^{\beta}
$$

Scalar invariants of the strain tensor

Obvious choice: $\operatorname{tr}\left(S^{k}\right), k=1, \ldots, d$, where d is dimension of M.
More convenient choice:

$$
\begin{aligned}
e_{1}(\varphi) & :=\operatorname{tr} S=\lambda_{1}+\ldots+\lambda_{d} \\
e_{2}(\varphi) & :=\frac{1}{2}\left[(\operatorname{tr} S)^{2}-\operatorname{tr}\left(S^{2}\right)\right]=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\ldots+\lambda_{d-1} \lambda_{d} \\
& \ldots \\
e_{d}(\varphi) & :=\operatorname{det} S=\lambda_{1} \ldots \lambda_{d} .
\end{aligned}
$$

These are elementary symmetric polynomials. The lambdas are the eigenvalues of the strain tensor.

Elastic action

$$
\mathcal{J}(\varphi):=\int_{M} \mathcal{L}\left(e_{1}(\varphi), \ldots, e_{d}(\varphi)\right) \sqrt{\left|\operatorname{det} g_{\mu \nu}(x)\right|} d x
$$

where \mathcal{L} is some smooth real-valued function of d real variables and $d x:=d x^{1} \ldots d x^{d}$.

This action describes an isotropic homogeneous elastic continuum.

Examples of meaningful Lagrangians

Example 1 Lagrangian linear in strain

$$
\mathcal{L}\left(e_{1}, \ldots, e_{d}\right)=e_{1} .
$$

This is the Lagrangian of a harmonic map. No free parameters.
Example 2 Lagrangian quadratic in strain

$$
\mathcal{L}\left(e_{1}, \ldots, e_{d}\right)=\alpha\left(e_{1}\right)^{2}+\beta e_{2}
$$

where $\beta \neq 0$. This is the Lagrangian of an elastic continuum that is physically linear. One free parameter: $\frac{\alpha}{\beta}$.
Poisson's ratio: $\nu=\frac{2 \alpha+\beta}{4 \alpha+\beta}$.

Equations of elasticity

$$
E(\varphi)=0,
$$

where E is a nonlinear second order partial differential operator mapping a diffeomorphism to a covector field.

Lorentzian elasticity

$d=4$, metric has signature.+++-
Remark 1 Lorentzian elasticity has never been studied. Not to be confused with 'relativistic elasticity'.

Remark 2 In the Lorentzian setting strain may be nilpotent with nilpotency index ≤ 3 (Gohberg, Lancaster and Rodman 2005). This means that a Lorentzian spacetime can be deformed in a most unusual way: strain is nonzero but all the scalar invariants are zero.

Our mathematical model

Vary elastic action subject to the volume preservation constraint

$$
\operatorname{det} g_{\alpha \beta}(x)=\operatorname{det} h_{\mu \nu}(x)
$$

Work in the subgroup of volume-preserving diffeomorphisms.
Equivalent representation of the volume preservation constraint:

$$
e_{1}(\varphi)+e_{2}(\varphi)+e_{3}(\varphi)+e_{4}(\varphi)=0
$$

Our field equations

Introducing a Lagrange multiplier $p: M \rightarrow \mathbb{R}$, we get

$$
E(\varphi)-\mathrm{d} p=0,
$$

where $\mathrm{d} p$ is the gradient of p
One can interpret p as pressure, like in Stokes equations.

Conditions on the Lagrangian $\mathcal{L}\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$

Put $f(z):=\mathcal{L}(-z, z, 0,0), f: \mathbb{R} \rightarrow \mathbb{R}$.
Condition $1 f^{\prime}(0) \neq 0$.
Condition $2 f^{\prime}(c)=0$ for some $c \in(0,4)$.

Vector field of displacements $A: M \rightarrow T M$

Connect a point $P \in M$ with the point $\varphi(P) \in M$ by a geodesic $\gamma:[0,1] \rightarrow M$, so that $\gamma(0)=P$ and $\gamma(1)=\varphi(P)$. Parameterize the geodesic in such a way that $\gamma(\tau)$ is a solution of the equation

$$
\ddot{\gamma}^{\lambda}+\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\} \dot{\gamma}^{\mu} \dot{\gamma}^{\nu}=0
$$

where the dot stands for differentiation in τ.

Then

$$
A(P):=\dot{\gamma}(0)
$$

Linearised field equations

Theorem 1 Our linearised field equations read

$$
\left(\begin{array}{cc}
\delta \mathrm{d}-2 \operatorname{Ric} & \mathrm{~d} \\
\delta & 0
\end{array}\right)\binom{A^{b}}{\tilde{p}}=0
$$

Here $A^{b}: M \rightarrow T^{*} M$ is the covector version of our vector field of displacements $A: M \rightarrow T M$ and \tilde{p} is a rescaled version of our original Lagrange multiplier $p: M \rightarrow \mathbb{R}$ (pressure).

Remark 3 For Ricci-flat manifolds we get Maxwell's equations

$$
\delta \mathrm{d} A^{b}=J
$$

in the Lorenz gauge

$$
\delta A^{b}=0
$$

with exact current $J:=-\mathrm{d} \tilde{p}$.

Solving nonlinear equations: group-theoretic trick

Definition 1 Let φ be a diffeomorphism. We say that φ is homogeneous if there exists a subgroup H of the isometry group acting transitively on M and satisfying

$$
H \circ \varphi=\varphi \circ H
$$

If we have the stronger property

$$
\xi \circ \varphi=\varphi \circ \xi, \quad \forall \xi \in H
$$

we say that φ is equivariant.
Theorem 2 Let φ be a homogeneous diffeomorphism. Then all the scalar invariants are constant. Furthermore, if the equations of elasticity are satisfied at a single point then they are satisfied on the whole manifold.

Minkowski space

Work in Minkowski space \mathbb{M}, $g_{\alpha \beta}=\operatorname{diag}(1,1,1,-1)$.
10-dimensional isometry group of \mathbb{M}, the Poincaré group.
Restricted Poincaré group (identity component of Poincaré group).

Need to find nontrivial 4-dimensional subgroups of the restricted Poincaré group.

Massless screw groups, right-handed and left-handed

This is the set of isometries

$$
\left(\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3} \\
x^{4}
\end{array}\right) \mapsto\left(\begin{array}{cccc}
\cos \left(q^{3}+q^{4}\right) & \mp \sin \left(q^{3}+q^{4}\right) & 0 & 0 \\
\pm \sin \left(q^{3}+q^{4}\right) & \cos \left(q^{3}+q^{4}\right) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x^{1} \\
x^{2} \\
x^{3} \\
x^{4}
\end{array}\right)+\left(\begin{array}{l}
q^{1} \\
q^{2} \\
q^{3} \\
q^{4}
\end{array}\right), \quad q \in \mathbb{R}^{4}
$$

Massive screw group

For a given value of parameter $m>0$, this is the set of isometries

$$
\left(\begin{array}{c}
x^{1} \\
x^{2} \\
x^{3} \\
x^{4}
\end{array}\right) \mapsto\left(\begin{array}{cccc}
\cos \left(2 m q^{4}\right) & -\sin \left(2 m q^{4}\right) & 0 & 0 \\
\sin \left(2 m q^{4}\right) & \cos \left(2 m q^{4}\right) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x^{1} \\
x^{2} \\
x^{3} \\
x^{4}
\end{array}\right)+\left(\begin{array}{c}
q^{1} \\
q^{2} \\
q^{3} \\
q^{4}
\end{array}\right), \quad q \in \mathbb{R}^{4}
$$

Explicit massless solutions of our nonlinear field equations

Theorem 3 Let $a>0$ be parameter. Then the diffeomorphism described by the vector field of displacements

$$
A^{\alpha}(x)=a\left(\begin{array}{c}
\cos \left(x^{3}+x^{4}\right) \\
\pm \sin \left(x^{3}+x^{4}\right) \\
0 \\
0
\end{array}\right)
$$

is volume preserving and satisfies nonlinear equations of elasticity.

Explicit massive solutions of our nonlinear field equations

Theorem 4 Let $m>0, a>0$ and $b \in \mathbb{R}$ be parameters satisfying

$$
4 m^{2}\left(a^{2}+b^{2}\right)=c
$$

where c is the critical point from an earlier slide. Then the diffeomorphism described by the vector field of displacements

$$
A^{\alpha}(x)=\left(\begin{array}{c}
a \cos \left(2 m x^{4}\right) \\
a \sin \left(2 m x^{4}\right) \\
2 m b x^{4} \\
0
\end{array}\right)
$$

is volume preserving and satisfies nonlinear equations of elasticity.
Remark 4 We have here two free parameters, $m>0$ and $b \in \mathbb{R}$.

- m is quantum mechanical mass.
- b may be interpreted as electric charge.

(i) $b>0$
(ii) $b<0$

Figure 1: Massive solution

The Dirac equation

Claim One can see the Dirac equation in our explicit solutions.
Need to separate stretches and rotations.
Deformation gradient

$$
D_{\beta}^{\alpha}:=\delta^{\alpha}{ }_{\beta}+\frac{\partial A^{\alpha}}{\partial x^{\beta}} .
$$

It contains more geometric information than the strain tensor.
Polar decomposition

$$
D^{\alpha}{ }_{\beta}=U^{\alpha}{ }_{\gamma} V^{\gamma}{ }_{\beta},
$$

where U is Lorentz-orthogonal and V is Lorentz-symmetric.
Define the rotation 2-form as $F:=\ln U$.

For our explicit solutions the rotation 2-form F admits a natural complexification \mathbb{F},

$$
F=\operatorname{Re} \mathbb{F}
$$

Turns out, this complex-valued 2-form is degenerate,

$$
\operatorname{det} \mathbb{F}=\operatorname{det}(* \mathbb{F})=0,
$$

therefore it is equivalent to the square of a bispinor field.

Turns out, this bispinor field satisfies the Dirac equation.

