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Describing a 3-dimensional elastic medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and rotations. See

E.Cosserat and F.Cosserat, Théorie des Corps Déformables, 1909.

Reprinted by Cornell and now available from Amazon.

(c) Rotational elasticity: rotations only.

Classical and rotational elasticity are two limit cases of Cosserat.
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Motivation for rotational elasticity.

(a) Curiosity.

(b) MacCullagh, 1839. Tried modelling world aether in terms of
rotational elasticity. Inadequate mathematical apparatus.

(c) A. Einstein and É. Cartan, 1920s. Teleparallelism = absolute
parallelism = fernparallelismus. Formal geometric definition of
teleparallelism: curvature is zero but torsion is nonzero. Compare
with general relativity: torsion is zero but curvature is nonzero.

Note: Cartan knew the Cosserat book. He wrote that he drew
inspiration from the ‘beautiful’ work of the Cosserat brothers.

(d) Ericksen fluid. See J. L. Ericksen, Twist waves in liquid
crystals, Q. Jl Mech. Appl. Math. 21 (1968) 463–465.
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Elastic medium occupies R3. To describe rotations of material
points I attach to each geometric point of R3 a coframe.

A coframe ϑ is a triple ϑj, j = 1,2,3, of orthonormal covector
fields. Each ϑj has hidden tensor index: ϑj = ϑjα, α = 1,2,3.

Same in plain English: a coframe is a field of orthonormal bases.

Can think of the coframe as a field of orthogonal matrices ϑjα.

NB. Coframe lives separately from Cartesian coordinates. It is
not aligned with coordinate lines.

The coframe ϑ is a dynamical variable (unknown quantity).

The other dynamical variable is a density ρ.
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Measuring rotational deformations

The natural measure of rotational deformations is torsion

T := ϑ1 ⊗ dϑ1 + ϑ2 ⊗ dϑ2 + ϑ3 ⊗ dϑ3.

Torsion is a rank 3 tensor antisymmetric in the last pair of indices.

Irreducible decomposition of rotational deformations

T = Tax + T vec + T ten.

Adjectives axial, vector and tensor.

Vector torsion is sometimes called trace torsion.

5



Potential energy

P (t) =
∫
R3

(
cax‖Tax‖2 + cvec‖T vec‖2 + cten‖T ten‖2

)
ρ dx1dx2dx3.

Kinetic energy

K(t) = ckin
∫
R3
‖Ω‖2ρ dx1dx2dx3,

where Ω =
1

2
∗(ϑ1∧∂tϑ1+ϑ2∧∂tϑ2+ϑ3∧∂tϑ3) is the (pseudo)vector

of angular velocity.

Action (variational functional) of rotational elasticity

S(ϑ, ρ) =
∫
R

(
P (t)−K(t)

)
dt .
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Euler–Lagrange equations: vary coframe ϑ and density ρ.

Model is physically linear but geometrically nonlinear.

Solving Euler–Lagrange equations

Varying coframe is difficult because of kinematic constraint:
covectors ϑj, j = 1,2,3, have to remain orthonormal. Could
use Euler angles (yaw, pitch, and roll) but this is inconvenient.

Most convenient description of rotations in R3: switch to spinors

coframe ϑ and positive density ρ

m

nonvanishing 2-component complex spinor field ξ modulo sign
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Plane wave solutions

Look first for plane wave solutions

ξ(x1, x2, x3, t) = e−i(k1x
1+k2x

2+k3x
3+ωt)ζ .

Theorem 1 My Euler–Lagrange equations admit plane wave

solutions with velocities

√
4cax + 2cten

3ckin
and

√
cvec + cten

2ckin
.
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Purely axial material

cax 6= 0, cvec = cten = 0.

Potential energy feels only the axial deformation, i.e. only the

totally antisymmetric piece of torsion.

Look for stationary solutions

ξ(x1, x2, x3, t) = e−iωtη(x1, x2, x3).

Theorem 2 In the stationary setting my Euler–Lagrange

equations are equivalent to a pair of massless Dirac equations

i

(
∓∂t + ∂3 ∂1 − i∂2
∂1 + i∂2 ∓∂t − ∂3

)(
ξ1

ξ2

)
= 0.
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Summary

• Cosserat elasticity is a fun subject.

• Adding rotational degrees of freedom to material points leads

to the appearance of interesting new waves.

Papers and preprints can be found on my web page

http://www.homepages.ucl.ac.uk/~ucahdva/

My talks (including this one) are also on my web page.
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