Gauge theory from an analyst's perspective

Dmitri Vassiliev

University College London

29 August 2017

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Object of study

Let *M* be an *n*-manifold equipped with local coordinates $x = (x^1, ..., x^n)$.

Will work with *m*-columns $u: M \to \mathbb{C}^m$ of scalar fields.

First order Hermitian sesquilinear form:

$$S(u,v) := \int_{\mathcal{M}} \left[-\frac{i}{2} v^* \mathbf{S}_1^{\alpha} \frac{\partial u}{\partial x^{\alpha}} + \frac{i}{2} \frac{\partial v^*}{\partial x^{\alpha}} \mathbf{S}_1^{\alpha} u + v^* \mathbf{S}_0 u \right] dx^1 \dots dx^n,$$

where S_1^{α} is a matrix-valued vector density and S_0 is a matrix-valued density. These matrix-functions are assumed to be Hermitian: $(S_1^{\alpha})^* = S_1^{\alpha}$, $S_0^* = S_0$.

I reserve bold font for density-valued quantities.

My sesquilinear form generates a linear first order Euler–Lagrange equation Lu = 0.

Non-degeneracy condition

Define the density-valued principal symbol

$$\mathsf{L}_{\mathrm{prin}}(x, p) := \mathsf{S}_1^lpha(x) \, p_lpha$$
 .

Here $p = (p_1, \ldots, p_n)$ is the dual variable (momentum).

We say that our sesquilinear form S is *non-degenerate* if

$$\mathbf{L}_{\mathrm{prin}}(x,p)
eq 0, \qquad orall (x,p)\in T^*M\setminus\{0\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Gauge transformations of sesquilinear forms

Definition 1 Sesquilinear forms S and \tilde{S} are said to be *GL*-equivalent if there exists a smooth matrix-function $Q: M \to GL(m, \mathbb{C})$ such that $\tilde{S}(u, v) = S(Qu, Qv)$.

Definition 2 Sesquilinear forms S and \tilde{S} are said to be GL^+ -equivalent if there exists a smooth matrix-function $Q: M \to GL(m, \mathbb{C})$ with det Q > 0 s. t. $\tilde{S}(u, v) = S(Qu, Qv)$.

I view the map $u \mapsto Qu$ as a gauge transformation.

Task: write down necessary and sufficient conditions for a pair of sesquilinear forms to be equivalent. I want to describe explicitly equivalence classes of sesquilinear forms.

Special case: two scalar fields over a 4-manifold

The case n = 4, m = 2 is special.

Can provide complete description of equivalence classes of sesquilinear forms.

Main results in

Z. Avetisyan, Y.-L. Fang, N. Saveliev and D. Vassiliev, *Analytic definition of spin structure*, JMP **58** (2017) 082301.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○○○

Lorentzian metric appears out of thin air

The determinant of the principal symbol is a quadratic form in momentum

$$\det \mathbf{L}_{\mathrm{prin}}(x,p) = -\mathbf{g}^{lphaeta}(x) \, p_{lpha} p_{eta} \, ,$$

where $\mathbf{g}^{\alpha\beta}(x)$ is a real symmetric 4 × 4 matrix-function with values in 2-densities.

Lemma 1 The matrix-function $\mathbf{g}^{\alpha\beta}(x)$ has Lorentzian signature, i.e. it has three positive eigenvalues and one negative eigenvalue.

My definition of the metric tensor:

$$g^{lphaeta}(x):=|\det \mathbf{g}^{\mu
u}(x)|^{-1/3}\,\mathbf{g}^{lphaeta}(x)\,.$$

Note that my gauge transformations preserve the conformal class of metrics.

Other geometric objects encoded within a sesquilinear form

- Orthonormal frame e_i^{α} . Behaves covariantly under $GL(2,\mathbb{C})$ transformations.
- ► Electromagnetic covector potential A. Invariant under GL⁺(2, C) transformations. Not invariant under GL(2, C) transformations: picks up the gradient of a real-valued scalar field.

Electromagnetic tensor dA. Invariant under $GL(2, \mathbb{C})$ transformations.

Explicit formula for the orthonormal frame

Introduce 'normal', as opposed to density-valued, principal symbol

$$L_{
m prin}(x,p) := |\det g_{\mu
u}(x)|^{-1/2} \, {\sf L}_{
m prin}(x,p) \, .$$

It is an invariantly defined 2×2 Hermitian matrix-function on T^*M .

Decomposing the principal symbol with respect to the standard basis

$$s^1=egin{pmatrix} 0&1\ 1&0 \end{pmatrix},\quad s^2=egin{pmatrix} 0&-i\ i&0 \end{pmatrix},\quad s^3=egin{pmatrix} 1&0\ 0&-1 \end{pmatrix},\quad s^4=egin{pmatrix} 1&0\ 0&1 \end{pmatrix}$$

in the real vector space of 2×2 Hermitian matrices, we get

$$L_{\mathrm{prin}}(x,p) = s^j e_j^{\alpha}(x) p_{\alpha}$$

・ロト ・ 画 ト ・ 画 ト ・ 画 ・ 今々ぐ

Explicit formula for the electromagnetic covector potential

Pretty complicated.

It involves the generalised Poisson bracket on matrix-functions

$$\{U, V, W\} := U_{x^{\alpha}} V W_{p_{\alpha}} - U_{p_{\alpha}} V W_{x^{\alpha}}$$

and the operator of matrix adjugation

$$U = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} =: \operatorname{adj} U$$

from elementary linear algebra.

Why is the formula for the electromagnetic covector potential complicated? Because it implicitly contains connection coefficients for spinor fields.

Classification of sesquilinear forms in the GL^+ guage

Theorem 1 A pair of sesquilinear forms S and \tilde{S} is GL^+ -equivalent iff

- their metrics are in the same conformal class,
- their electromagnetic covector potentials are the same,
- their topological charges are the same,
- their temporal charges are the same and
- they have the same spin structure.

Here I use the following analytic definition of spin structure.

Definition 3 Principal symbols L_{prin} and \tilde{L}_{prin} are said to be GL^+ -equivalent if there exists a smooth matrix-function $Q: M \to GL(2, \mathbb{C})$ with det Q > 0 such that $\tilde{L}_{\text{prin}} = Q^* L_{\text{prin}} Q$. An equivalence class of principal symbols is called spin structure.

Classification of sesquilinear forms in the GL guage

Theorem 2 A pair of sesquilinear forms S and \tilde{S} is GL-equivalent iff

- their metrics are in the same conformal class,
- their electromagnetic tensors are the same,
- their topological charges are the same,
- their temporal charges are the same and
- some topological conditions are satisfied.

Here the topological conditions are weaker than those for the GL^+ gauge. Something weaker than the spin structure condition.

Suppose that I am looking at a system of two linear first order PDEs for two unknown complex-valued scalar fields over a 4-manifold.

Suppose that I know that this system of PDEs admits a variational formulation.

Then Lorentzian geometry is automatically encoded within this system of PDEs.

There is no need to introduce geometric constructs a priori. They are already there.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで