Classification of first order sesquilinear forms

Dmitri Vassiliev

University College London

29 November 2017

Joint work with Zhirayr Avetisyan, Matteo Capoferri, Yan-Long Fang and Nikolai Saveliev.

Main results in

Z. Avetisyan, Y.-L. Fang, N. Saveliev and D. Vassiliev, *Analytic definition of spin structure*, JMP **58** (2017) 082301.

Another paper in preparation.

Linear algebra in a finite-dimensional complex vector space

Concept of self-adjoint linear operator L. Requires inner product.

Concept of Hermitian sesquilinear form S(u, v). Does not require inner product.

In the presence of an inner product there is a one-to-one correspondence between self-adjoint linear operators and sesquilinear forms: $S(u, v) = \langle u, Lv \rangle$.

Given an Hermitian sesquilinear form S(u, v), can define a real-valued quadratic form S(v, v). A physicist would call S(v, v) an action. Variation gives a system of equations for v.

Object of study

Let M be a connected m-dimensional manifold without boundary, local coordinates $x=(x^1,\ldots,x^m)$.

Will work with *n*-columns $u: M \to \mathbb{C}^n$ of scalar fields.

First order sesquilinear form:

$$S(u,v) := \int_{M} \left[u^* \mathbf{A}^{\alpha} \left(\frac{\partial v}{\partial x^{\alpha}} \right) + \left(\frac{\partial u}{\partial x^{\alpha}} \right)^* \mathbf{B}^{\alpha} v + u^* \mathbf{C} v \right] dx,$$

where **A** and **B** are matrix-valued vector densities, **C** is a matrix-valued density and $dx = dx^1 \dots dx^m$.

I reserve bold font for density-valued quantities.

The symbol of a first order sesquilinear form

Canonical representation of a first order sesquilinear form:

$$S(u,v) = \int_{M} \left[-\frac{i}{2} u^* \mathbf{E}^{\alpha} \left(\frac{\partial v}{\partial x^{\alpha}} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial x^{\alpha}} \right)^* \mathbf{E}^{\alpha} v + u^* \mathbf{F} v \right] dx.$$

Density-valued principal symbol $\mathbf{S}_{\mathrm{prin}}(x,p) := \mathbf{E}^{lpha}(x)\,p_{lpha}$.

Density-valued subprincipal symbol $S_{sub}(x) := F(x)$.

Density-valued full symbol $\mathbf{S}_{\mathrm{full}}(x,p) := \mathbf{S}_{\mathrm{prin}}(x,p) + \mathbf{S}_{\mathrm{sub}}(x)$.

Full symbol uniquely determines the sesquilinear form.

Sesquilinear form is Hermitian iff its full symbol is Hermitian.

Non-degeneracy condition

Definition 1 We say that our Hermitian first order sesquilinear form S is *non-degenerate* if

$$\mathbf{S}_{\mathrm{prin}}(x,p) \neq 0, \qquad \forall (x,p) \in T^*M \setminus \{0\}.$$

Gauge transformations of sesquilinear forms

Consider a smooth matrix-function

$$R:M\to GL(n,\mathbb{C}).$$

Given a sesquilinear form S can define another sesquilinear form

$$\tilde{S}(u,v) := S(Ru,Rv).$$

The corresponding full symbol is

$$\tilde{\mathbf{S}}_{\text{full}} = R^* \, \mathbf{S}_{\text{full}} \, R + \frac{i}{2} \left[R_{\mathsf{x}^{\alpha}}^* (\mathbf{S}_{\text{full}})_{\boldsymbol{p}_{\alpha}} R - R^* (\mathbf{S}_{\text{full}})_{\boldsymbol{p}_{\alpha}} R_{\mathsf{x}^{\alpha}} \right].$$

Want to solve 'inverse problem'. We are given two full symbols, $\boldsymbol{S}_{\mathrm{full}}$ and $\boldsymbol{\tilde{S}}_{\mathrm{full}}$. Do they describe the same sesquilinear form?

Equivalence classes of symbols

Definition 2 We say that two full symbols $S_{\rm full}$ and $\tilde{S}_{\rm full}$ are *GL-equivalent* if there exists a smooth matrix-function

$$R: M \to GL(n, \mathbb{C}).$$
 (1)

such that

$$\tilde{\mathbf{S}}_{\text{full}} = R^* \, \mathbf{S}_{\text{full}} \, R + \frac{i}{2} \left[R_{\mathsf{x}^{\alpha}}^* (\mathbf{S}_{\text{full}})_{\boldsymbol{p}_{\alpha}} R - R^* (\mathbf{S}_{\text{full}})_{\boldsymbol{p}_{\alpha}} R_{\mathsf{x}^{\alpha}} \right]. \tag{2}$$

Definition 3 We say that two full symbols $\mathbf{S}_{\mathrm{full}}$ and $\tilde{\mathbf{S}}_{\mathrm{full}}$ are $\mathit{SL-equivalent}$ if there exists a smooth matrix-function

$$R: M \to SL(n, \mathbb{C}).$$
 (3)

such that (2) is satisfied.

Task at hand

Give explicit necessary and sufficient conditions for a pair of full symbols to be GL-equivalent or SL-equivalent.

I want to describe equivalence classes of sesquilinear forms.

Will achieve this goal for special values of m and n. Here m is the dimension of the manifold and n is the number of scalar fields.

The analysis that follows is dimension sensitive.

For definiteness will deal with *SL*-equivalence.

Special case $m = n^2$

Lemma 1 A manifold M admits a non-degenerate Hermitian first order sesquilinear form iff it is parallelizable.

Proof is based on the observation that $n \times n$ Hermitian matrices form a real vector space of dimension n^2 . But $m = n^2$ is also the dimension of our manifold.

Case m = 4, n = 2: appearance of Lorentzian geometry

The determinant of the denisty-valued principal symbol is a quadratic form in momentum

$$\det \mathbf{L}_{\mathrm{prin}}(x, p) = -\mathbf{g}^{\alpha\beta}(x) \, p_{\alpha} p_{\beta} \,,$$

where $\mathbf{g}^{\alpha\beta}(x)$ is a real symmetric 4 \times 4 matrix-function with values in 2-densities.

Lemma 2 The matrix-function $\mathbf{g}^{\alpha\beta}(x)$ has Lorentzian signature, i.e. it has three positive eigenvalues and one negative eigenvalue.

Definition of Lorentzian density: $\rho(x) := |\det \mathbf{g}^{\mu\nu}(x)|^{1/6}$. This density is invariant under gauge transformations.

Rewriting sesquilinear form in terms of half-densities

Turn scalar fields into half-densities: $v \mapsto \sqrt{\rho}v$. Our sequilinear form now reads

$$S(u,v) = \int_{M} \left[-\frac{i}{2} u^* E^{\alpha} \left(\frac{\partial v}{\partial x^{\alpha}} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial x^{\alpha}} \right)^* E^{\alpha} v + u^* F v \right] dx.$$

Elements of the matrix E are vector fields and elements of the matrix F are scalar fields.

Principal symbol $S_{\text{prin}}(x,p) := E^{\alpha}(x) p_{\alpha}$. Invariantly defined 2×2 Hermitian matrix-function on T^*M .

Subprincipal symbol $S_{\mathrm{sub}}(x) := F(x)$. Invariantly defined Hermitian 2×2 matrix-function on M.

Full symbol
$$S_{\text{full}}(x,p) := S_{\text{prin}}(x,p) + S_{\text{sub}}(x)$$
.

My definition of the metric tensor

$$\det S_{\text{prin}}(x,p) = -g^{\alpha\beta}(x) \, p_{\alpha} p_{\beta} \,. \tag{4}$$

Metric is Lorentzian and is invariant under gauge transformations.

Time-orientability

The Lorentzian manifold (M, g) is said to be *time-orientable* if it admits a timelike vector field.

Lemma 3 A parallelizable Lorentzian manifold (M, g) admits a non-degenerate Hermitian first order sesquilinear form satisfying condition (4) iff it is time-orientable.

Proof in one direction is easy: just take trace of principal symbol.

Other way round not 100% obvious: proof relies on the fact that \mathbb{S}^3 is parallelizable.

Topological charge

$$c_{ ext{top}} := -rac{i}{2}\sqrt{|\det g_{lphaeta}|} \; \mathsf{tr}ig((S_{ ext{prin}})_{oldsymbol{
ho}_1}(S_{ ext{prin}})_{oldsymbol{
ho}_2}(S_{ ext{prin}})_{oldsymbol{
ho}_3}(S_{ ext{prin}})_{oldsymbol{
ho}_4}ig),$$

where the subscripts p_1 , p_2 , p_3 and p_4 indicate partial derivatives with respect to the components of momentum.

Can take only two values, +1 or -1, and describes the orientation of the principal symbol relative to our chosen orientation of local coordinates $x = (x^1, x^2, x^3, x^4)$.

It is invariant under gauge transformations.

Temporal charge

$$\mathbf{c}_{\text{tem}} := \operatorname{sgn} \operatorname{tr} S_{\text{prin}}(x, q(x)),$$

where q is a prescribed timelike covector field used as a reference.

Can take only two values, +1 or -1, and describes the orientation of the principal symbol relative to our chosen time orientation.

It is invariant under gauge transformations.

Spin structure

Definition 4 Consider two principal symbols, $S_{\rm prin}$ and $\tilde{S}_{\rm prin}$, which carry the same metric, same topological charge and same temporal charge. We say that these two principal symbols are *spin-equivalent* if we have

$$\tilde{S}_{\text{prin}} = R^* S_{\text{prin}} R$$

for some smooth matrix-function $R:M\to SL(2,\mathbb{C})$. An equivalence class of principal symbols is called *spin structure*.

Lemma 4 For parallelizable time-orientable Lorentzian 4-manifolds the two definitions of spin structure, our analytic definition and the traditional one, are equivalent.

Proof due to Nikolai Saveliev.

How restrictive is the parallelizability assumption?

Lemma 5 A non-compact time-orientable Lorentzian 4-manifold is parallelizable if and only if it is spin.

Proof also due to Nikolai Saveliev.

Implication: my analytic definition of spin structure may not work for Lorentzian 4-manifolds that are compact or not time-orientable.

Dealing with the subprincipal symbol

Subprincipal symbol transforms as

$$S_{\mathrm{sub}}\mapsto R^*S_{\mathrm{sub}}R+rac{i}{2}\left(R_{x^{lpha}}^*(S_{\mathrm{prin}})_{m{p}_{lpha}}R-R^*(S_{\mathrm{prin}})_{m{p}_{lpha}}R_{x^{lpha}}
ight).$$

Problem: subprincipal symbol does not transform covariantly.

Solution: define *covariant* subprincipal symbol $S_{csub}(x)$ as

$$S_{ ext{csub}} := S_{ ext{sub}} + rac{i}{16} \, \mathsf{g}_{lphaeta} \{ S_{ ext{prin}}, \mathsf{adj} \, S_{ ext{prin}}, S_{ ext{prin}} \}_{m{
ho}_lpham{
ho}_eta} \, ,$$

where $\{U,V,W\}:=U_{x^{\alpha}}V\ W_{p_{\alpha}}-U_{p_{\alpha}}V\ W_{x^{\alpha}}$ is the generalised Poisson bracket on matrix-functions and adj is the operator of matrix adjugation $U=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}=:\operatorname{adj} U$.

Electromagnetic covector potential appears out of thin air

The covariant subprincipal symbol can be uniquely represented as

$$S_{\text{csub}}(x) = S_{\text{prin}}(x, A(x)), \tag{5}$$

where A is a real-valued covector field which is invariant under gauge transformations.

Explanation: the matrices $(S_{\text{prin}})_{p_{\alpha}}$, $\alpha=1,2,3,4$, are Pauli matrices and these form a basis in the real vector space of 2×2 Hermitian matrices. Formula (5) is simply an expansion of the matrix S_{csub} with respect to the basis of Pauli matrices.

Main result

Theorem 1 A pair of full symbols is *SL*-equivalent iff

- their metrics are the same,
- their electromagnetic covector potentials are the same,
- their topological charges are the same,
- their temporal charges are the same and
- they have the same spin structure.

Bottom line, in plain English

Suppose that I am looking at a system of two linear first order PDEs for two unknown complex-valued scalar fields over a 4-manifold.

Suppose that I know that this system of PDEs admits a variational formulation.

Then Lorentzian geometry is automatically encoded within this system of PDEs.

There is no need to introduce geometric constructs a priori. They are already there.

3-dimensional Riemannian geometry

- 1. More restrictive choice of sesquilinear forms: $\operatorname{tr} S_{\text{prin}}(x, p) = 0$.
- 2. My non-degeneracy condition is now equivalent to the more familiar ellipticity condition det $S_{\text{prin}}(x, p) \neq 0$.
- 3. A 3-manifold admits a 2×2 first order sesquilinear form with trace-free principal symbol iff it is parallelizable.
- 4. A 3-manifold is parallelizable iff it is orientable.
- 5. My metric is automatically Riemannian: $\det S_{\text{prin}}(x,p) < 0$.
- 6. More restrictive choice of gauge transformations:

$$R:M\to SU(2)$$
.

Appearance of an operator

In the 3-dimensional setting we have a natural inner product on 2-columns of complex-valued half-densities:

$$\langle u, v \rangle := \int_M u^* v \, dx \, .$$

Our gauge transformations preserve this inner product.

An Hermitian sesquilinear form S can now be identified with a self-adjoint linear operator L via the formula $S(u, v) = \langle u, Lv \rangle$.

Definition 5 A massless Dirac operator is an elliptic self-adjoint 2×2 first order linear differential operator with trace-free principal symbol and zero covariant subprincipal symbol.

Examples from 3-dimensional Riemannian geometry

- 1. \mathbb{S}^3 has a unique spin structure.
- 2. \mathbb{T}^3 has eight distinct spin structures.

Two different spin structures on \mathbb{T}^3

Using cyclic coordinates x^{α} , $\alpha = 1, 2, 3$, of period 2π :

$$L_{\mathrm{prin}}(x,p) = \begin{pmatrix} p_3 & p_1 - ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix},$$

$$L_{\text{prin}}(x,p) = \begin{pmatrix} p_3 & e^{ix^3}(p_1 - ip_2) \\ e^{-ix^3}(p_1 + ip_2) & -p_3 \end{pmatrix}$$
$$= \begin{pmatrix} e^{\frac{i}{2}x^3} & 0 \\ 0 & e^{-\frac{i}{2}x^3} \end{pmatrix} \begin{pmatrix} p_3 & p_1 - ip_2 \\ p_1 + ip_2 & -p_3 \end{pmatrix} \begin{pmatrix} e^{-\frac{i}{2}x^3} & 0 \\ 0 & e^{\frac{i}{2}x^3} \end{pmatrix}.$$

Special unitary matrix-function in latter formula is discontinuous.

Two different massless Dirac operators on \mathbb{T}^3

$$L = -i \begin{pmatrix} \partial_3 & \partial_1 - i \partial_2 \\ \partial_1 + i \partial_2 & -\partial_3 \end{pmatrix},$$

$$L = -i \begin{pmatrix} \partial_3 & e^{ix^3}(\partial_1 - i\partial_2) \\ e^{-ix^3}(\partial_1 + i\partial_2) & -\partial_3 \end{pmatrix} - \frac{1}{2}I.$$

Their spectra are different.