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Playing field

Let M be a 4-manifold, local coordinates x = (x1, x2, x3, x4).

A half-density is a quantity M → C which under changes of local

coordinates transforms as the square root of a density.

Will work with 2-columns v : M → C2 of half-densities.

Inner product 〈v, w〉 :=
∫
M
w∗v dx, where dx = dx1dx2dx3dx4.

Note: if M is equipped with a prescribed positive density ρ then

half-densities can be identified with scalar fields. Just a matter

of multiplying or dividing by
√
ρ.
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Want to study a formally self-adjoint first order linear differential
operator L acting on 2-columns of complex-valued half-densities.

Need an invariant analytic description of my differential operator.

In local coordinates my operator reads

L = Fα(x)
∂

∂xα
+G(x),

where Fα(x) and G(x) are some 2× 2 matrix-functions.

The principal and subprincipal symbols are defined as

Lprin(x, p) := iFα(x) pα,

Lsub(x) := G(x) +
i

2
(Lprin)xαpα(x) = G(x)−

1

2
(Fα)xα(x),

where p = (p1, p2, p3, p4) is the dual variable (momentum).
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Fact: Lprin and Lsub are invariantly defined 2 × 2 Hermitian

matrix-functions on T ∗M and M respectively.

Fact: Lprin and Lsub uniquely determine the operator L.
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Emergence of parallelizability

We say that our operator L is non-degenerate if

Lprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M \ {0}.

Lemma 1 A manifold M admits a non-degenerate operator L

if and only if it is parallelizable.
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Lorentzian metric appears out of thin air

The determinant of the principal symbol is a quadratic form in

momentum

detLprin(x, p) = −gαβ(x) pαpβ (1)

and the coefficients gαβ(x) = gβα(x), α, β = 1,2,3,4, can be

interpreted as components of a (contravariant) metric tensor.

Lemma 2 My metric is Lorentzian, i.e. the metric tensor gαβ(x)

has three positive eigenvalues and one negative eigenvalue.
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Time-orientability

Lemma 3 A parallelizable Lorentzian manifold (M, g) admits a

non-degenerate operator L satisfying condition (1) if and only if

it is time-orientable.
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Extracting more geometry and topology from operators

Assume that our time-orientable Lorentzian metric is fixed. Work

with all possible 2 × 2 formally self-adjoint non-degenerate first

order linear differential operators corresponding, in the sense of

formula (1), to the given metric.

Want to classify operators corresponding to the given metric.
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Take an arbitrary smooth matrix-function

R : M → SL(2,C) (2)

and consider the transformation of the differential operator

L 7→ R∗LR.

This induces the transformation of the principal symbol

Lprin 7→ R∗LprinR.

Note: detLprin is preserved, hence, metric is preserved.

Definition 1 We say that the operators L and L̃ are equivalent if

L̃prin = R∗LprinR

for some smooth matrix-function (2). An equivalence class of

operators is called spin structure.
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Main result

Theorem 1 For parallelizable time-orientable Lorentzian

4-manifolds the two definitions of spin structure, our analytic

definition and the traditional one, are equivalent.

In collaboration with topologist Nikolai Saveliev (University of

Miami).

Z. Avetisyan, Y.-L. Fang, N. Saveliev and D. Vassiliev, Analytic

definition of spin structure. Preprint arXiv:1611.08297 (2016).
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Classification beyond spin structure

Subprincipal symbol transforms as

Lsub 7→ R∗LsubR+
i

2

(
R∗xα(Lprin)pαR−R∗(Lprin)pαRxα

)
.

Problem: subprincipal symbol does not transform covariantly.
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Solution: define covariant subprincipal symbol Lcsub(x) as

Lcsub := Lsub +
i

16
gαβ{Lprin, adjLprin, Lprin}pαpβ ,

where

{U, V,W} := UxαVWpα − UpαVWxα

is the generalised Poisson bracket on matrix-functions and adj

is the operator of matrix adjugation

U =

(
a b
c d

)
7→
(
d −b
−c a

)
=: adjU

from elementary linear algebra.
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Electromagnetic covector potential appears out of thin air

The covariant subprincipal symbol can be uniquely represented as

Lcsub(x) = Lprin(x,A(x)), (3)

where A is a real-valued covector field which is invariant under

gauge transformations.

Explanation: the matrices (Lprin)pα, α = 1,2,3,4, are Pauli ma-

trices and these form a basis in the real vector space of 2 × 2

Hermitian matrices. Formula (3) is simply an expansion of the

matrix Lcsub with respect to the basis of Pauli matrices.
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3-dimensional Riemannian geometry

1. More restrictive choice of operators: trLprin(x, p) = 0.

2. My non-degeneracy condition is now equivalent to the more
familiar ellipticity condition detLprin(x, p) 6= 0.

3. A 3-manifold admits a 2× 2 first order elliptic operator with
trace-free principal symbol if and only if it is parallelizable.

4. A 3-manifold is parallelizable if and only if it is orientable.

5. My metric is automatically Riemannian: detLprin(x, p) < 0.

6. More restrictive choice of gauge transformations:

R : M → SU(2).
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Examples from 3-dimensional Riemannian geometry

1. S3 has a unique spin structure.

2. T3 has eight distinct spin structures.
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Two different spin structures on T3

Lprin(x, p) =

(
p3 p1 − ip2

p1 + ip2 −p3

)
,

Lprin(x, p) =

 p3 eix
3
(p1 − ip2)

e−ix
3
(p1 + ip2) −p3


=

e i2x3
0

0 e−
i
2x

3

( p3 p1 − ip2
p1 + ip2 −p3

)e− i
2x

3
0

0 e
i
2x

3

 .

Here we use cyclic coordinates xα, α = 1,2,3, of period 2π.

Special unitary matrix-function in latter formula is discontinuous.
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Massless Dirac operator on Riemannian 3-manifold

Elliptic self-adjoint 2 × 2 first order linear differential operator

with trace-free principal symbol and zero covariant subprincipal

symbol.
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Two different massless Dirac operators on T3

−i
(

∂3 ∂1 − i∂2
∂1 + i∂2 −∂3

)
,

−i

 ∂3 eix
3
(∂1 − i∂2)

e−ix
3
(∂1 + i∂2) −∂3

− 1

2
I.

Their spectra are different.
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