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Talk is based on the paper

Z. Avetisyan, Y.-L. Fang, N. Saveliev and D. Vassiliev, Analytic
definition of spin structure, JMP 58 (2017) 082301.



Object of study

Let M be a connected m-dimensional manifold without boundary,
local coordinates x = (x1, . . . , xm).

Will work with n-columns u : M → Cn of scalar fields.

First order sesquilinear form:

S(u, v) :=

∫
M

[
u∗Aα

(
∂v

∂xα

)
+

(
∂u

∂xα

)∗
Bαv + u∗Cv

]
dx ,

where Aα and Bα are matrix-valued vector densities, C is a
matrix-valued density and dx = dx1 . . . dxm.

I reserve bold font for density-valued quantities.



The symbol of a first order sesquilinear form

Canonical representation of a first order sesquilinear form:

S(u, v) =

∫
M

[
− i

2
u∗Eα

(
∂v

∂xα

)
+

i

2

(
∂u

∂xα

)∗
Eαv + u∗Fv

]
dx .

Density-valued principal symbol Sprin(x , p) := Eα(x) pα .

Density-valued subprincipal symbol Ssub(x) := F(x) .

Density-valued full symbol Sfull(x , p) := Sprin(x , p) + Ssub(x) .

Full symbol uniquely determines the sesquilinear form.

Sesquilinear form is Hermitian iff its full symbol is Hermitian.



Non-degeneracy condition

Definition 1 We say that our Hermitian first order sesquilinear
form S is non-degenerate if

Sprin(x , p) 6= 0, ∀(x , p) ∈ T ∗M \ {0}.



Gauge transformations of sesquilinear forms

Definition 2 We say that two sesquilinear forms, S and S̃ , are
GL-equivalent if

S̃(u, v) = S(Ru,Rv) (1)

for some smooth matrix-function

R : M → GL(n,C). (2)

Definition 3 We say that two sesquilinear forms, S and S̃ , are
SL-equivalent if we have (1) for some smooth matrix-function

R : M → SL(n,C). (3)

I view the map u 7→ Ru as a gauge transformation.



Task at hand

Give explicit necessary and sufficient conditions for a pair of
non-degenerate Hermitian first order sesquilinear forms to be
GL-equivalent or SL-equivalent.

I want to describe equivalence classes of sesquilinear forms.



Special case: two scalar fields over a 4-manifold

The case m = 4, n = 2 is special.

We can provide a complete description of equivalence classes of
sesquilinear forms, both in the GL setting and the SL setting.



Lorentzian metric appears out of thin air

The determinant of the principal symbol is a quadratic form in
momentum

det Lprin(x , p) = −gαβ(x) pαpβ ,

where gαβ(x) is a real symmetric 4× 4 matrix-function with values
in 2-densities.

Lemma 1 The matrix-function gαβ(x) has Lorentzian signature,
i.e. it has three positive eigenvalues and one negative eigenvalue.

My definition of the metric tensor:

gαβ(x) := | det gµν(x)|−1/3 gαβ(x) .

Invariant under SL(2,C) transformations. Not invariant under
GL(2,C) transformations but conformal class is preserved.



Other geometric objects encoded within a sesquilinear form

I Orthonormal frame Covariant under GL(2,C) transformations.

I Electromagnetic covector potential A. Invariant under
SL(2,C) transformations. Not invariant under GL(2,C)
transformations: picks up the gradient of a scalar field.

I Electromagnetic tensor dA. Invariant under GL(2,C) trans-
formations.

I Spin structure.

Definition 4 We say that two principal symbols, Sprin and S̃prin,
are equivalent if we have

S̃prin = R∗SprinR

for some smooth matrix-function R : M → SL(2,C) . An
equivalence class of principal symbols is called spin structure.



Bottom line, in plain English

Suppose that I am looking at a system of two linear first order
PDEs for two unknown complex-valued scalar fields over a
4-manifold.

Suppose that I know that this system of PDEs admits a variational
formulation.

Then Lorentzian geometry is automatically encoded within this
system of PDEs.

There is no need to introduce geometric constructs a priori. They
are already there.


