An analyst's take on gauge theory

Dmitri Vassiliev

University College London

17 October 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Talk is based on the paper

Z. Avetisyan, Y.-L. Fang, N. Saveliev and D. Vassiliev, *Analytic definition of spin structure*, JMP **58** (2017) 082301.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Object of study

Let *M* be a connected *m*-dimensional manifold without boundary, local coordinates $x = (x^1, ..., x^m)$.

Will work with *n*-columns $u: M \to \mathbb{C}^n$ of scalar fields.

First order sesquilinear form:

$$S(u,v) := \int_{\mathcal{M}} \left[u^* \mathbf{A}^{\alpha} \left(\frac{\partial v}{\partial x^{\alpha}} \right) + \left(\frac{\partial u}{\partial x^{\alpha}} \right)^* \mathbf{B}^{\alpha} v + u^* \mathbf{C} v \right] dx \,,$$

where \mathbf{A}^{α} and \mathbf{B}^{α} are matrix-valued vector densities, **C** is a matrix-valued density and $dx = dx^1 \dots dx^m$.

I reserve bold font for density-valued quantities.

The symbol of a first order sesquilinear form

Canonical representation of a first order sesquilinear form:

$$S(u,v) = \int_{M} \left[-\frac{i}{2} u^* \mathbf{E}^{\alpha} \left(\frac{\partial v}{\partial x^{\alpha}} \right) + \frac{i}{2} \left(\frac{\partial u}{\partial x^{\alpha}} \right)^* \mathbf{E}^{\alpha} v + u^* \mathbf{F} v \right] dx \, .$$

Density-valued principal symbol $\mathbf{S}_{prin}(x, p) := \mathbf{E}^{\alpha}(x) p_{\alpha}$.

Density-valued subprincipal symbol $S_{sub}(x) := F(x)$.

Density-valued full symbol $S_{full}(x, p) := S_{prin}(x, p) + S_{sub}(x)$.

Full symbol uniquely determines the sesquilinear form.

Sesquilinear form is Hermitian iff its full symbol is Hermitian.

Non-degeneracy condition

Definition 1 We say that our Hermitian first order sesquilinear form S is *non-degenerate* if

$$\mathbf{S}_{ ext{prin}}(x,p) \neq 0, \qquad orall (x,p) \in T^*M \setminus \{0\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Gauge transformations of sesquilinear forms

Definition 2 We say that two sesquilinear forms, S and \tilde{S} , are *GL*-equivalent if

$$\tilde{S}(u,v) = S(Ru,Rv)$$
 (1)

for some smooth matrix-function

$$R: M \to GL(n, \mathbb{C}). \tag{2}$$

Definition 3 We say that two sesquilinear forms, S and \tilde{S} , are *SL*-equivalent if we have (1) for some smooth matrix-function

$$R: M \to SL(n, \mathbb{C}). \tag{3}$$

I view the map $u \mapsto Ru$ as a gauge transformation.

Give explicit necessary and sufficient conditions for a pair of non-degenerate Hermitian first order sesquilinear forms to be *GL*-equivalent or *SL*-equivalent.

I want to describe equivalence classes of sesquilinear forms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Special case: two scalar fields over a 4-manifold

The case m = 4, n = 2 is special.

We can provide a complete description of equivalence classes of sesquilinear forms, both in the GL setting and the SL setting.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lorentzian metric appears out of thin air

The determinant of the principal symbol is a quadratic form in momentum

$$\det \mathbf{L}_{\mathrm{prin}}(x, p) = -\mathbf{g}^{lphaeta}(x) \, p_lpha p_eta \, ,$$

where $\mathbf{g}^{\alpha\beta}(x)$ is a real symmetric 4 × 4 matrix-function with values in 2-densities.

Lemma 1 The matrix-function $\mathbf{g}^{\alpha\beta}(x)$ has Lorentzian signature, i.e. it has three positive eigenvalues and one negative eigenvalue.

My definition of the metric tensor:

$$g^{lphaeta}(x):=|\det \mathbf{g}^{\mu
u}(x)|^{-1/3}\,\mathbf{g}^{lphaeta}(x)\,.$$

Invariant under $SL(2, \mathbb{C})$ transformations. Not invariant under $GL(2, \mathbb{C})$ transformations but conformal class is preserved.

Other geometric objects encoded within a sesquilinear form

- Orthonormal frame Covariant under $GL(2, \mathbb{C})$ transformations.
- ► Electromagnetic covector potential A. Invariant under SL(2, C) transformations. Not invariant under GL(2, C) transformations: picks up the gradient of a scalar field.
- ► Electromagnetic tensor *dA*. Invariant under *GL*(2, C) transformations.
- Spin structure.

Definition 4 We say that two principal symbols, $S_{\rm prin}$ and $\tilde{S}_{\rm prin}$, are *equivalent* if we have

$$ilde{\mathbf{S}}_{ ext{prin}} = R^* \mathbf{S}_{ ext{prin}} R$$

for some smooth matrix-function $R: M \to SL(2, \mathbb{C})$. An equivalence class of principal symbols is called *spin structure*.

Bottom line, in plain English

Suppose that I am looking at a system of two linear first order PDEs for two unknown complex-valued scalar fields over a 4-manifold.

Suppose that I know that this system of PDEs admits a variational formulation.

Then Lorentzian geometry is automatically encoded within this system of PDEs.

There is no need to introduce geometric constructs a priori. They are already there.