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Playing field

Let M be an n-dimensional manifold without boundary, n ≥ 2.

Will denote local coordinates by x = (x1, . . . , xn).

A half-density is a quantity M → C which under changes of local

coordinates transforms as the square root of a density.

Will work with m-columns v : M → Cm of half-densities.

Inner product 〈v, w〉 :=
∫
M
w∗v dx, where dx = dx1 . . . dxn.

Want to study a formally self-adjoint first order linear differential

operator L acting on m-columns of complex-valued half-densities.
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Need an invariant analytic description of my differential operator.

In local coordinates my operator reads

L = Fα(x)
∂

∂xα
+G(x),

where Fα(x) and G(x) are some m×m matrix-functions.

The principal and subprincipal symbols are defined as

Lprin(x, p) := iFα(x) pα,

Lsub(x) := G(x) +
i

2
(Lprin)xαpα(x),

where p = (p1, . . . , pn) is the dual variable (momentum).
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Fact: Lprin and Lsub are invariantly defined Hermitian matrix-

functions on T ∗M and M respectively.

Fact: Lprin and Lsub uniquely determine the operator L.

We assume that our operator L is elliptic:

detLprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M \ {0}.

Spectrum of L is discrete and accumulates to +∞ and −∞.

Spectral asymmetry: spectrum asymmetric about zero.
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The two counting functions

N±(λ) :=

0 if λ ≤ 0,∑
0<±λk<λ 1 if λ > 0.

Want to derive two-term asymptotic expansions

N±(λ) = a±λ
n + b±λ

n−1 + o(λn−1)

as λ → +∞, where a± and b± are some real constants. Want
explicit formulae for the asymptotic coefficients a± and b±.

Stop! Two-term asymptotics require conditions on periodic tra-
jectories. Better work with mollified counting functions

(N± ∗ ρ)(λ) = a±λ
n + b±λ

n−1 + o(λn−1),

where ρ(λ) is a function from Schwartz space such that ρ̂(t) has
small compact support and ρ̂(t) = 1 in a neighbourhood of zero.
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Levitan’s hyperbolic equation method

Let xn+1 ∈ R be the additional ‘time’ coordinate. Consider the

Cauchy problem

w|xn+1=0 = v (1)

for the hyperbolic system

(−i∂/∂xn+1 + L)w = 0 (2)

on M × R. The m-column of half-densities v = v(x1, . . . , xn) is

given and the m-column of half-densities w = w(x1, . . . , xn, xn+1)

is to be found. The solution of the Cauchy problem (1), (2) can

be written as w = U(xn+1) v, where U(xn+1) is the propagator.

Fact: if one constructs the propagator modulo C∞, then this

allows one to recover spectral asymptotics.
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Formula for the first asymptotic coefficient

a± =
1

(2π)n
∑
j

∫
0<h(j)<1

dx dp ,

where the h(j)(x, p) are the positive eigenvalues of Lprin(x, p).

We see that in the leading term in λ the spectrum is symmetric.
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Formula for the second asymptotic coefficient

b± = ∓
n

(2π)n
∑
j

∫
0<h(j)<1

( obvious term︷ ︸︸ ︷
[v(j)]∗Lsubv

(j)

Safarov’s term︷ ︸︸ ︷
−
i

2
{[v(j)]∗, Lprin − h(j)I, v(j)}

+
i

n− 1
h(j){[v(j)]∗, v(j)}

)
dx dp ,

where the v(j)(x, p) are the eigenvectors of Lprin(x, p) correspond-
ing to the positive eigenvalues h(j)(x, p),

{P,R} := PxαRpα − PpαRxα
is the Poisson bracket on matrix-functions and

{P,Q,R} := PxαQRpα − PpαQRxα
is its further generalisation.
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The U(1) connection

Each eigenvector v(j)(x, p) of Lprin(x, p) is defined modulo a

gauge transformation

v(j) 7→ eiφ
(j)
v(j),

where

φ(j) : T ∗M \ {0} → R

is an arbitrary smooth real-valued function. There is a connec-

tion associated with this gauge degree of freedom, a U(1) con-

nection on the cotangent bundle (similar to electromagnetism).

The U(1) connection has curvature, and this curvature appears

in asymptotic formulae for the counting function and propagator.
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Why am I confident that my formulae for b± are correct?

Invariance under gauge transformations of the operator

L 7→ R∗LR,

where

R : M → U(m)

is an arbitrary smooth unitary matrix-function.
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Two by two operators are special

If m = 2 then detLprin is a quadratic form in momentum

detLprin(x, p) = −gαβ(x) pαpβ .

The coefficients gαβ(x) = gβα(x), α, β = 1, . . . , n, can be inter-

preted as components of a (contravariant) metric tensor.

Further on we always assume that m = 2.
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Dimensions 2, 3 and 4 are special

Lemma 1 If n ≥ 5, then our metric is degenerate, i.e.

det gαβ(x) = 0, ∀x ∈M.

Further on we always assume that n ≤ 4.

Dimensions 2, 3 and are even more special

Lemma 2 If n = 4, then our 2×2 operator L cannot be elliptic.

Further on we always assume that n = 3. This is the highest

dimension in which one can have an elliptic 2 × 2 first order

self-adjoint linear differential operator.
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Additional assumption:

trLprin(x, p) = 0. (3)

Logic: want to single out the simplest class of first order systems,

expect to extract more geometry out of our asymptotic analysis

and hope to simplify the results.

Lemma 3 Under the assumption (3) our metric is Riemannian,

i.e. the metric tensor gαβ(x) is positive definite.

Note: half-densities are now equivalent to scalars. Just multiply

or divide by (det gαβ(x))1/4 .

14



Extracting more geometry from our differential operator

Let us perform gauge transformations of the operator

L 7→ R∗LR

where

R : M → SU(2)

is an arbitrary smooth special unitary matrix-function. Why uni-
tary? Because I want to preserve the spectrum of my operator.

Principal and subprincipal symbols transform as

Lprin 7→ R∗LprinR,

Lsub 7→ R∗LsubR+
i

2

(
R∗xα(Lprin)pαR−R∗(Lprin)pαRxα

)
.
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Problem: subprincipal symbol does not transform covariantly.

Solution: define covariant subprincipal symbol Lcsub(x) as

Lcsub := Lsub −
i

16
gαβ{Lprin, Lprin, Lprin}pαpβ ,

where subscripts pα and pβ indicate partial derivatives and curly
brackets denote the generalised Poisson bracket on matrix-functions.

Electromagnetic covector potential appears out of thin air

Covariant subprincipal symbol can be uniquely represented as

Lcsub(x) = Lprin(x,A(x)) + IA4(x),

where A = (A1, A2, A3) is some real-valued covector field [mag-
netic covector potential] and A4 is some real-valued scalar field
[electric potential].
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Geometric meaning of asymptotic coefficients in 3D

a± =
1

6π2

∫
M

√
det gαβ dx ,

b± = ∓
1

2π2

∫
M
A4

√
det gαβ dx .

17



Two special operators on a Riemannian 3-manifold:
massless Dirac operator and the operator curl

• Massless Dirac is a 2× 2 operator.

• Geometers drop the adjective “massless”.

• “Massless Dirac” 6= “Dirac type”.

• Massless Dirac is determined by metric∗ modulo gauge trans-
formations. There is no electromagnetic field in massless Dirac.

• Massless Dirac commutes with operator of charge conjugation(
v1
v2

)
7→
(
−v2
v1

)
.

All eigenvalues have even multiplicity.
∗And spin structure.
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• For massless Dirac the first five asymptotic coefficients of
(N ′+ ∗ ρ)(λ) and (N ′− ∗ ρ)(λ) are the same. Difficult to observe
spectral asymmetry for large λ.

• Curl is a 3× 3 operator.

• Curl is not elliptic.

• Hardly any literature on the spectral theory of operator curl.

• Eigenvalue problem for the Maxwell system reduces to an
eigenvalue problem for the operator curl.

• The massless Dirac operator is a mathematical model for the
most basic fermion, the neutrino, whereas the operator curl is a
mathematical model for the most basic boson, the photon.
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Some results for the massless Dirac

• Second asymptotic coefficient for N+(λ) and N−(λ) is zero.

• We have an idea of how the third asymptotic coefficient looks.

• Asymptotic formulae for eigenvalues with smallest modulus.

Work on T3 or S3 and perturb metric starting from standard one:

gαβ(x; ε), with ε being a small parameter. Here asymptotic coef-

ficients are not expressed via differential geometric invariants.

• Special families of nontrivial metrics for which eigenvalues

can be evaluated explicitly. For S3 these are generalised Berger

spheres. For T3 there is no name for these special metrics.
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Generalised Berger sphere

We work in R4 equipped with Cartesian coordinates (x1, x2, x3, x4).
Consider the following three covector fields

e1
α =


x4

x3

−x2

−x1

 , e2
α =


−x3

x4

x1

−x2

 , e3
α =


x2

−x1

x4

−x3

 .
These covector fields are cotangent to the 3-sphere

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1.

We define the rank 2 tensor

gαβ :=
3∑

j,k=1

cjk e
j
α e

k
β

and restrict it to the 3-sphere. Here the cjk are real constants,
elements of a positive symmetric 3× 3 matrix.
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Two tricks for tackling the operator curl

Making curl elliptic. Introduce a new unknown, a scalar field

(pressure), and consider the extended operator(
curl −grad
div 0

)
. (4)

This gives additional eigenvalues, those of the operators ±
√
−∆ .

Dealing with double eigenvalues of the principal symbol.

The operator (4) reduces to a pair of massless Dirac operators

perturbed by lower order terms. Explicit formula representing a

covector field and scalar field as a rank two spinor.
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Four fundamental equations of theoretical physics

1 Maxwell’s equations. Describe electromagnetism and photons.

2 Dirac equation. Describes electrons and positrons.

3 Massless Dirac equation. Describes∗ neutrinos and antineutrinos.

4 Linearized Einstein field equations of general relativity.

Describe gravity.

All four contain the same physical constant, the speed of light.

∗OK, I know that neutrinos actually have a small mass.
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Accepted explanation: theory of relativity

God is a geometer. He created a 4-dimensional world parame-
terized by coordinates x1, x2, x3, x4 (here x4 is time), in which
distances are measured in a funny way:

distance2 = (dx1)2 + (dx2)2 + (dx3)2 − c2(dx4)2 ,

where c is the speed of light.

Without the term −c2(dx4)2 this would be Pythagoras’ theorem.
Funny way of measuring distances is called Minkowski metric.

Having decided to use the Minkowski metric, God then wrote
down the main equations of theoretical physics using only geo-
metric constructions, i.e. using concepts such as connection,
curvature etc. This way all equations have the same physical
constant, the speed of light, encoded in them.
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Alternative explanation

God is an analyst. He created a 4-dimensional world, then wrote

down a single system of nonlinear PDEs which describes all phe-

nomena in this world. In doing this, God did not have a partic-

ular way of measuring distances in mind. This system of PDEs

has different solutions which we interpret as electromagnetism,

gravity, electrons, neutrinos etc. The reason the same physical

constant, the speed of light, manifests itself in all physical phe-

nomena is because we are looking at different solutions of the

same system of PDEs.

Potential advantage of formulating a field theory in “non-geometric”

terms: there might be a chance of describing the interaction of

physical fields in a more consistent (non-perturbative?) manner.
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